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Motivation
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Einfuhrung

Message Sequence Charts - Uberblick:

beschreibt das Kommunikationsverhalten von Prozessen
als Sequenzdiagramm z.B. in UML enthalten
grafischer und textueller Formalismus

Standard - ITU-TS Recommandation Z.120 - 1993 erstmalig
eingefiihrt von der International Telecommunication Union
(ITV)

Modell eines Systems besteht meist aus einer Sammlung von
MSCs
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Beispiel: ein MSC

msc

| User | |Termina|| |Server|
AdditionData

ConnectReq
ConnectAck

Query

Result
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MSC Sprachen

Message Sequence Charts

Definition (Message Sequence Chart = (P, E, C, I, m, <;j,<p))
@ P: eine endliche Menge von Prozessen oder Instanzen,
P={p1,....,pn)} mit n € N

@ E: Menge von Ereignissen, S: Menge der Sendeereignisee, R:
Menge der Empfangsereignisse

@ C: endliche Menge von Namen fiir Nachrichten

@ m: S — R, bijektive Funktion, die jedem Sendeereignis das
zugehorige Empfangsereignis zuordnet
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MSC Sprachen

Message Sequence Charts

Definition (Message Sequence Charts I1)

@ |: Beschriftungsfunktion, I: E — ¥ mit
r ={p'q(a),p?q(a)lp #q € P,ac C}:
@ plg(a): p sendet Nachricht a an q (bezeichnet Sendeereignis)
@ p?q(a): p empfangt Nachricht a von q (bezeichnet
Empfangsereignis)
@ <;j: Halbordnung auf Sendeereignissen des Prozesses P; mit
1 <i < n, und Empfangsereignissen des Prozesses P; mit
1<j<n. Esgilt: s <;jr, wenn m(s) =r.

@ <,: Totalordnung auf den Ereignissen des Prozesses p
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MSC Sprachen
Beispiel
msc
| User | |Termina|| | Server |
€1 €2
&) €3
e A
| | |




(Regulare) MSC Sprachen
[e]e]e] le]elelele]

MSC Sprachen

Bemerkung (Kanale eines MSC M)

Fiir zwei verschiedene Prozesse p,q € P im MSC M bezeichnet
das 2-Tupel (p, q) den (Nachrichten-)Kanal von p nach q.

Ch={(p,q)l p # q;p,q € P}.
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MSC Sprachen

Linearisierung eines MSC

Definition (Linearisierungen eines MSC)

lin(M) =

{I(m1), ..., I(7m)|(71, ...Tm) ist eine Totalordnung von ey, ..., ey €
E mit me Nund m<

|E|, die die vorhandenen Ordnungen respektiert}.

@ Linearisierung eines MSC ist Wort iiber dem Alphabet >

@ Erweiterung der Halbordnung tiber Ereignissen zu einer
Totalordnung

@ ein MSC besitzt meist mehr als eine Linearisierung
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MSC Sprachen

msc

| User | |Termina|| |Server|

€1 €2

e €3
/ e é

Mogliche Linearisierungen:

User! Terminal Server! Terminal Terminal?User Terminal?Server Server!User User?Server

User! Terminal Terminal?User Server! Terminal Terminal?Server Server!User User?Server
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MSC Sprachen

Regulare MSC Sprachen

Definition ((String) MSC Sprache)

Fiir eine Menge M von MSCs ist die von ihr erzeugte
MSC-Sprache L(M) die Menge aller Linearisierungen von MSCs in
M, d.h. L(M)) = {lin(M)|M € M}.

Definition (Regularitat von MSC Sprachen)

Die von M erzeugte MSC-Sprache L(M) ist genau dann regular,
wenn L(M) eine reguldre Teilmenge von L* ist.
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MSC Sprachen

B-Beschranktheit

® #,(w): Anzahl der Vorkommen von a € ¥ in w € ¥

Definition (B-Beschranktheit)

Ein MSC M wird B-beschrankt genannt (B € N), wenn jedes Wort
o aus L(M) = lin(M) und fiir jedes Prafix 7 des Wortes und jedes
Paar p,q € P gilt: #p14(7) > #42p(7) und

#piq(0) — #q2p(0) < B.

Theorem

Sei L eine regulare Sprache. Dann existiert eine Schranke B € N,
so dass L B-beschrankt ist.
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MSC Sprachen
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Monadische Logik zweiter Ordnung

Die monadische Logik zweiter Ordnung

@ Beschrankung der monadischen Logik durch Wahl von zwei
zusatzlichen Parametern P und B

@ MSO(P, B) — Logik
@ betrachte hier immer MSO(X)

@ speziell an MSC angepasste monadische Logik zweiter
Ordnung

Bemerkung

Im Folgenden sei M(P, B) die Menge der B-beschrankten MSCs
mit Prozessmenge P.
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Syntax und Semantik

Syntax

Formelaufbau aus bekannten Elementen der FO-Logik:
@ Variablen x, y, ...
o die logischen Symbole =, A, V, —, <, Jund ¥
@ die nichtlogischen Symbole S, <, Q.(a € X) und =
und einer Erweiterung:
@ Variablen 2. Ordnung (Mengenvariablen) X, Y
@ atomare Formeln der Art X(x), Y(x) mit der Bedeutung:
xeX, xeY
Beispiel:
¢ = IxAy3AZ : (Qpig(x) A S(x,¥)) = (Qarp(y) A Z(x) A Z(y))



Monadische Logik zweiter Ordnung
(o] T}

Syntax und Semantik

Semantik

Interpretation 7 : Var — E:

@ jeder Variablen x wird ein Ereignis Z(x) aus der
Ereignismenge E eines MSC M € M(P, B) zugewiesen

@ jeder Mengenvariablen X wird eine Teilmenge Z(X) der
Ereignismenge E eines MSC M € M(P, B) zugewiesen

Erfiillbarkeitsbeziehung =: M =7 ¢, wenn
o M =1 X(x) gdw. Z(x) € Z(X)
@ M =1 S(x,y) gdw. im MSC direkt nach dem Ereignis Z(x)
das Ereignis Z(y) folgt
M =1 Qa(x) gdw. I(Z(x)) = a
M= o1 A gdw. M |= @1 und M = ¢
M = @1V ¢ gdw. M = 1 und/oder M = 3
Rest analog
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Syntax und Semantik

MSO(P, B) - ein Beispiel

Sei ¢ € MSO(P, B) mit P ={p,q} und B =1.
¢ = 3xJy3Z : (Qpig(x) A S(x,¥)) = (Qqzp(y) A Z(x) A Z(y))



Monadische Logik zweiter Ordnung
[ofe] ]

Syntax und Semantik

MSO(P, B) - ein Beispiel

Sei ¢ € MSO(P, B) mit P ={p,q} und B =1.
¢ = 3xJy3Z : (Qpig(x) A S(x,¥)) = (Qqzp(y) A Z(x) A Z(y))

Interpretation Z: msc
o I(Z) = {e1, &2}
* 79— .
o I(y)=e
€1 [p)
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Syntax und Semantik

MSO(P, B) - ein Beispiel

Sei ¢ € MSO(P, B) mit P ={p,q} und B =1.
¢ = 3xJy3Z : (Qpig(x) A S(x,¥)) = (Qqzp(y) A Z(x) A Z(y))

Interpretation Z: msc
o I(Z) = {e1, &2}
* 79— .
o I(y)=e
= Mz @ el e
I
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MSO(P, B) — Sprachen

MSO(P, B)-Sprache

Definition (MSO(P, B)-Sprache)
Sei ¢ eine geschlossene Formel, d.h. ¢ enthalt keine freien Einzel-
oder Mengenvariablen.

Die von ¢ erzeugte MSC Sprache ist wie folgt definiert:
L(p) = {M € M(P,B)IM |= ¢}.

Definition (Biichi's Theorem)

Eine Sprache L ist genau dann MSO-definierbar, wenn sie regular
ist.
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MSO(P, B) — Sprachen

MSO(P, B) — MSC

Sei ¢ eine geschlossene MSO(P, B)-Formel. Dann ist die von ¢
erzeugte MSC Sprache L, regular und B-beschrankt.

Beweisidee:
@ B-Beschranktheit folgt direkt aus der Definition

o erstelle Formel ¢ aus MSO(X), die dieselbe Sprache wie ¢
erzeugt:

(3Xic,) (X, )--.(IXic,)(COMP A B — BOUNDED A ||o||)

@ durch die Definition der Formel ist sichergestellt, dass Lz nur
von gliltigen, B-beschrankten MSCs erfiillt wird, die auch ¢
erfullen

@ mit Existenz von ¢ folgt (Blichi's Satz) direkt die Regularitat
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MSO(P, B) — Sprachen

Kapazitatsfunktionen

Menge der Kapazitatsfunktionen:
o {]Co, Kl, PN IC,,}
° [, e N¢h
o Ktte: KT*¢(¢) = K(c) + 1 und KTT¢(d) = K(d) fir c # d
@ wegen B-Beschranktheit gibt es nur endlich viele verschiedene
Kapazitatsfunktionen

o Xic, ist Menge von Ereignissen, die bei Kanalkapazitaten K;
ausgefiihrt werden konnen
Beispiel:
Ko=(n,...,np) mitnm=...=n,=0
Ki=(n,...,np) mitm=...=n,=1
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MSO(P, B) — Sprachen

COMP

Der Formelteil COMP:
© jedes Ereignis x kommt in genau einer Menge der Menge
{Xicys s Xic, } vor.
© Wenn x das erste Ereignis darstellt, dann muss x € Xy, gelten.

© Wenn x das letzte Ereignis darstellt, dann gilt Qq?p(x) fur ein
c = (p, q) und x € Xi,, mit Lpy(c) =1 und K£p(d) =0 fiir
alle c < d

@ Wenn y das Folgeereignis von x ist, Qp14(x), x € Xk, und
y € X; gilt, dann ist K; = K€ mit ¢ = (p, q).

© Analog gilt wenn y das Folgeereignis von x ist, Qq2p(x),
x € Xi; und y € X; gilt, dann ist K;(c) >0 und K; = K; ¢
mit ¢ = (p, q).
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MSO(P, B) — Sprachen
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Definition (Message-Passing Automat)

o eine Struktur A = ({Ap} p, C,sin, F) iiber dem Alphabet ¥

@ C: endliches Alphabet von Nachrichten
@ jede Komponente A, mit p € P aus der Menge {A,}
endlicher Automaten hat die Form (S,, — ), wobei

o 5,: endliche Menge von p-lokalen Zustanden
o —,C S, x X, x C xSy p-lokale Transitionsrelation mit

Y, = {plalp # q} U{p?qlp # q}
@ sip € [[,cp Sp: globaler Anfangszustand
o FCIJ]

peP

pep Sp: Menge der globalen Endzustande
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Beispiel-MPA

Kanalinhalte:

o (p,q): ¢
o (q,p): ¢
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Beispiel-MPA

Kanalinhalte:

° (p,q): a
° (q,p): €
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Beispiel-MPA

Kanalinhalte:

° (p,q) aa
° (q,p): €
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Beispiel-MPA

plq q’p
plq

Kanalinhalte:

° (p,q): a
° (q,p): €
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Beispiel-MPA

p | | «a
(1) @-—(1)
plq q’p
(=) () .
plq qlp
© O,

Kanalinhalte:

° (p,q): a
° (q,p): a



Message Passing Automaten
[e]e]ele]ele] lelelelelele]e)

Beispiel-MPA

Kanalinhalte:

° (p,q): a
° (q,p): €
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Beispiel-MPA

Kanalinhalte:

o (p,q): ¢
o (q,p): ¢
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Beispiel-MPA

MSC lasst sich beliebig verlangern!
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@ eine Konfiguration von A ist ein 2-Tupel (s, x) mit s als
globalem Zustand und x : Ch — A*

o (Sin, Xe) ist die Anfangskonfiguration von A
o F x {x.} ist die Menge der Endkonfigurationen

@ = bezeichnet die globale Transitionsrelation mit
=C Confgq x X x Confy

Beispiel Konfigurationsiibergang:
(s,x) € Confa und (sp, p'q, m,s,) €—p.

|
Dann ex. eine globale Transition (s, x) pia(m) (s', X))
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Sprache eines MPA

Definition (Sprache eines MPA)

Die Sprache L(.A) eines Message-Passing Automaten ist definiert
als L(A) = {o € X*| A akzeptiert o'}

Bemerkung

Sprache L(A) ist MSC Sprache, aber nicht zwangslaufig regular.

Denn: betrachte MPA mit nicht nach oben beschrankter Anzahl
von Konfigurationen = Sprache nicht regular.
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B-Beschranktheit

Definition (B-Beschranktheit)

@ eine Konfiguration des Message-Passing Automaten A ist
B-beschrankt, wenn |x(c)| < B, Vc € Ch

@ ein Automat A ist B-beschrankt, wenn jede erreichbare
Konfiguration (s, x) € Confs B-beschrankt ist

Aus den Definitionen folgt direkt:

Sei A ein B-beschrankter Message-Passing Automat iiber dem

Alphabet . Dann ist L(A) eine B-beschrankte regulare MSC
Sprache.
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Zusammenfassung

Ergebnisse im Vortrag:
Sei L C X* mit X als Beschriftungsalphabet der Prozesse P eines
MSC M.

@ Sei A ein B-beschrankter Message-Passing Automat tber
dem Alphabet . Dann ist L(.A) eine B-beschrankte regulare
MSC Sprache.

@ Sei ¢ eine giiltige MSO(P, B)-Formel. Dann ist die von ¢
erzeugte MSC Sprache L, regular und B-beschrankt.
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Ergebnisse der Seminararbeit:
Sei L C ¥* mit ¥ als Beschriftungsalphabet der Prozesse P eines
MSC M. Folgende Aussagen sind dann dquivalent:

@ L ist eine regulare MSC Sprache.

© L ist eine B-beschrankte regulare MSC Sprache fiir ein
geeignetes B € N.

© Es existiert ein B-beschrankter Message Passing Automat A
mit L(A) = L.

Q L ist MSO(P, B)-definierbar fiir ein geeignetes B € N.
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