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Theorie regulärer MSC Sprachen

Christina Jansen

Lehrstuhl für Informatik 2
RWTH Aachen

SS 07
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Einführung

Message Sequence Charts - Überblick:

beschreibt das Kommunikationsverhalten von Prozessen

als Sequenzdiagramm z.B. in UML enthalten

grafischer und textueller Formalismus

Standard - ITU-TS Recommandation Z.120 - 1993 erstmalig
eingeführt von der International Telecommunication Union
(ITU)

Modell eines Systems besteht meist aus einer Sammlung von
MSCs
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Beispiel: ein MSC

User Terminal Server

AdditionData

ConnectReq

ConnectAck

Query

Result

msc
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MSC Sprachen

Message Sequence Charts

Definition (Message Sequence Chart = 〈P, E , C , I , m, <i ,j , <p〉)

P: eine endliche Menge von Prozessen oder Instanzen,
P = {p1, ..., pn)} mit n ∈ N

E: Menge von Ereignissen, S: Menge der Sendeereignisee, R:
Menge der Empfangsereignisse

C: endliche Menge von Namen für Nachrichten

m: S → R, bijektive Funktion, die jedem Sendeereignis das
zugehörige Empfangsereignis zuordnet
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MSC Sprachen

Message Sequence Charts

Definition (Message Sequence Charts II)

I: Beschriftungsfunktion, I: E → Σ mit
Σ = {p!q(a), p?q(a)|p 6= q ∈ P, a ∈ C}:

p!q(a): p sendet Nachricht a an q (bezeichnet Sendeereignis)
p?q(a): p empfängt Nachricht a von q (bezeichnet
Empfangsereignis)

<i ,j : Halbordnung auf Sendeereignissen des Prozesses Pi mit
1 ≤ i ≤ n, und Empfangsereignissen des Prozesses Pj mit
1 ≤ j ≤ n. Es gilt: s <i ,j r, wenn m(s) = r.

<p: Totalordnung auf den Ereignissen des Prozesses p
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MSC Sprachen

Beispiel

e1 e2

e3

e ′1

e ′2

e ′3

User Terminal Server

msc
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MSC Sprachen

Bemerkung (Kanäle eines MSC M)

Für zwei verschiedene Prozesse p, q ∈ P im MSC M bezeichnet
das 2-Tupel (p, q) den (Nachrichten-)Kanal von p nach q.
Ch = {(p, q)| p 6= q; p, q ∈ P}.
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MSC Sprachen

Linearisierung eines MSC

Definition (Linearisierungen eines MSC)

lin(M) =
{I (π1), ..., I (πm)|(π1, ...πm) ist eine Totalordnung von e1, ..., em ∈
E mit m ∈ N und m ≤
|E |, die die vorhandenen Ordnungen respektiert}.

Linearisierung eines MSC ist Wort über dem Alphabet Σ

Erweiterung der Halbordnung über Ereignissen zu einer
Totalordnung

ein MSC besitzt meist mehr als eine Linearisierung



Motivation (Reguläre) MSC Sprachen Monadische Logik zweiter Ordnung Message Passing Automaten Zusammenfassung

MSC Sprachen

e1 e2

e3

e ′1

e ′2

e ′3

User Terminal Server

msc

Mögliche Linearisierungen:
User!Terminal Server!Terminal Terminal?User Terminal?Server Server!User User?Server

User!Terminal Terminal?User Server!Terminal Terminal?Server Server!User User?Server
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MSC Sprachen

Reguläre MSC Sprachen

Definition ((String) MSC Sprache)

Für eine Menge M von MSCs ist die von ihr erzeugte
MSC-Sprache L(M) die Menge aller Linearisierungen von MSCs in
M, d.h. L(M)) =

⋃
{lin(M)|M ∈ M}.

Definition (Regularität von MSC Sprachen)

Die von M erzeugte MSC-Sprache L(M) ist genau dann regulär,
wenn L(M) eine reguläre Teilmenge von Σ∗ ist.
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MSC Sprachen

B-Beschränktheit

#a(w): Anzahl der Vorkommen von a ∈ Σ in w ∈ Σ∗

Definition (B-Beschränktheit)

Ein MSC M wird B-beschränkt genannt (B ∈ N), wenn jedes Wort
σ aus L(M) = lin(M) und für jedes Präfix τ des Wortes und jedes
Paar p, q ∈ P gilt: #p!q(τ) ≥ #q?p(τ) und
#p!q(σ) − #q?p(σ) ≤ B.

Theorem

Sei L eine reguläre Sprache. Dann existiert eine Schranke B ∈ N,
so dass L B-beschränkt ist.
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Die monadische Logik zweiter Ordnung

Beschränkung der monadischen Logik durch Wahl von zwei
zusätzlichen Parametern P und B

MSO(P, B) − Logik

betrachte hier immer MSO(Σ)

speziell an MSC angepasste monadische Logik zweiter
Ordnung

Bemerkung

Im Folgenden sei M(P, B) die Menge der B-beschränkten MSCs
mit Prozessmenge P.
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Syntax und Semantik

Syntax

Formelaufbau aus bekannten Elementen der FO-Logik:

Variablen x , y , ...

die logischen Symbole ¬,∧,∨,→,↔, ∃ und ∀

die nichtlogischen Symbole S , <, Qa(a ∈ Σ) und =

und einer Erweiterung:

Variablen 2. Ordnung (Mengenvariablen) X, Y

atomare Formeln der Art X(x), Y(x) mit der Bedeutung:
x ∈ X , x ∈ Y

Beispiel:

ϕ = ∃x∃y∃Z : (Qp!q(x) ∧ S(x , y)) → (Qq?p(y) ∧ Z (x) ∧ Z (y))
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Syntax und Semantik

Semantik

Interpretation I : Var → E :

jeder Variablen x wird ein Ereignis I(x) aus der
Ereignismenge E eines MSC M ∈ M(P, B) zugewiesen

jeder Mengenvariablen X wird eine Teilmenge I(X ) der
Ereignismenge E eines MSC M ∈ M(P, B) zugewiesen

Erfüllbarkeitsbeziehung |=: M |=I ϕ, wenn

M |=I X (x) gdw. I(x) ∈ I(X )

M |=I S(x , y) gdw. im MSC direkt nach dem Ereignis I(x)
das Ereignis I(y) folgt

M |=I Qa(x) gdw. I (I(x)) = a

M |= ϕ1 ∧ ϕ2 gdw. M |= ϕ1 und M |= ϕ2

M |= ϕ1 ∨ ϕ gdw. M |= ϕ1 und/oder M |= ϕ2

Rest analog
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Syntax und Semantik

MSO(P , B) - ein Beispiel

Sei ϕ ∈ MSO(P, B) mit P = {p, q} und B = 1.
ϕ = ∃x∃y∃Z : (Qp!q(x) ∧ S(x , y)) → (Qq?p(y) ∧ Z (x) ∧ Z (y))
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Syntax und Semantik

MSO(P , B) - ein Beispiel

Sei ϕ ∈ MSO(P, B) mit P = {p, q} und B = 1.
ϕ = ∃x∃y∃Z : (Qp!q(x) ∧ S(x , y)) → (Qq?p(y) ∧ Z (x) ∧ Z (y))

Interpretation I:

e1 e2

p q

msc

I(Z ) = {e1, e2}

I(x) = e1

I(y) = e2
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Syntax und Semantik

MSO(P , B) - ein Beispiel

Sei ϕ ∈ MSO(P, B) mit P = {p, q} und B = 1.
ϕ = ∃x∃y∃Z : (Qp!q(x) ∧ S(x , y)) → (Qq?p(y) ∧ Z (x) ∧ Z (y))

Interpretation I:

e1 e2

p q

msc

I(Z ) = {e1, e2}

I(x) = e1

I(y) = e2

⇒ M |=I ϕ
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MSO(P, B)− Sprachen

MSO(P , B)-Sprache

Definition (MSO(P, B)-Sprache)

Sei ϕ eine geschlossene Formel, d.h. ϕ enthält keine freien Einzel-
oder Mengenvariablen.
Die von ϕ erzeugte MSC Sprache ist wie folgt definiert:
L(ϕ) = {M ∈ M(P, B)|M |= ϕ}.

Definition (Büchi’s Theorem)

Eine Sprache L ist genau dann MSO-definierbar, wenn sie regulär
ist.
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MSO(P, B)− Sprachen

MSO(P , B) → MSC

Theorem

Sei ϕ eine geschlossene MSO(P, B)-Formel. Dann ist die von ϕ

erzeugte MSC Sprache Lϕ regulär und B-beschränkt.

Beweisidee:

B-Beschränktheit folgt direkt aus der Definition

erstelle Formel ϕ̂ aus MSO(Σ), die dieselbe Sprache wie ϕ

erzeugt:
(∃XK0)(∃XK1)...(∃XKn)(COMP ∧ B − BOUNDED ∧ ‖ϕ‖)

durch die Definition der Formel ist sichergestellt, dass Lϕ̂ nur
von gültigen, B-beschränkten MSCs erfüllt wird, die auch ϕ

erfüllen

mit Existenz von ϕ̂ folgt (Büchi’s Satz) direkt die Regularität
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MSO(P, B)− Sprachen

Kapazitätsfunktionen

Menge der Kapazitätsfunktionen:

{K0,K1, ...,Kn}

Kn ∈ N
Ch

K++c : K++c(c) = K(c) + 1 und K++c(d) = K(d) für c 6= d

wegen B-Beschränktheit gibt es nur endlich viele verschiedene
Kapazitätsfunktionen

XKi
ist Menge von Ereignissen, die bei Kanalkapazitäten Ki

ausgeführt werden können

Beispiel:

K0 = (n1, . . . , nn) mit n1 = . . . = nn = 0
Ki = (n1, . . . , nn) mit n1 = . . . = nn = 1
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MSO(P, B)− Sprachen

COMP

Der Formelteil COMP:

1 jedes Ereignis x kommt in genau einer Menge der Menge
{XK0 , ..., XKn} vor.

2 Wenn x das erste Ereignis darstellt, dann muss x ∈ XK0 gelten.

3 Wenn x das letzte Ereignis darstellt, dann gilt Qq?p(x) für ein
c = (p, q) und x ∈ XKm mit Km(c) = 1 und Km(d) = 0 für
alle c ≤ d

4 Wenn y das Folgeereignis von x ist, Qp!q(x), x ∈ XKi
und

y ∈ XKj
gilt, dann ist Kj = K++c

i mit c = (p, q).

5 Analog gilt wenn y das Folgeereignis von x ist, Qq?p(x),
x ∈ XKi

und y ∈ XKj
gilt, dann ist Ki (c) > 0 und Kj = K−−c

i

mit c = (p, q).
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MSO(P, B)− Sprachen
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MPA

Definition (Message-Passing Automat)

eine Struktur A = ({Ap}p∈P
, C , sin, F ) über dem Alphabet Σ

C : endliches Alphabet von Nachrichten

jede Komponente Ap mit p ∈ P aus der Menge {Ap}p∈P

endlicher Automaten hat die Form (Sp,−→p), wobei

Sp: endliche Menge von p-lokalen Zuständen
−→p⊆ Sp × Σp × C × Sp: p-lokale Transitionsrelation mit
Σp := {p!q|p 6= q} ∪ {p?q|p 6= q}

sin ∈
∏

p∈P Sp: globaler Anfangszustand

F ⊆
∏

p∈P Sp: Menge der globalen Endzustände
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Beispiel-MPA

s1 t1(p): (q):

p q

Kanalinhalte:

(p, q): ε

(q, p): ε
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Beispiel-MPA

s1

s2

t1

p!q

(p): (q):

p q

Kanalinhalte:

(p, q): a

(q, p): ε



Motivation (Reguläre) MSC Sprachen Monadische Logik zweiter Ordnung Message Passing Automaten Zusammenfassung

Beispiel-MPA

s1

s2

s3

t1

p!q

p!q

(p): (q):

p q

Kanalinhalte:

(p, q): a a

(q, p): ε
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Beispiel-MPA

s1

s2

s3

t1

t2

p!q

p!q

q?p

(p): (q):
p q

Kanalinhalte:

(p, q): a

(q, p): ε
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Beispiel-MPA

s1

s2

s3

t1

t2

t3

p!q

p!q

q?p

q!p

(p): (q):

p q

Kanalinhalte:

(p, q): a

(q, p): a
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Beispiel-MPA

s1

s2

s3

s4

t1

t2

t3

p!q

p!q
p?q

q?p

q!p

(p): (q):

p q

Kanalinhalte:

(p, q): a

(q, p): ε
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Beispiel-MPA

s1

s2

s3

s4

t1

t2

t3

t4

p!q

p!q
p?q

q?p

q!p
q?p

(p): (q):

p q

Kanalinhalte:

(p, q): ε

(q, p): ε
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Beispiel-MPA

s1

s2

s3

s4

t1

t2

t3

t4

p!q

p!q
p?q

p?q

q?p

q!p
q?p

q!p

(p): (q):

p q

MSC lässt sich beliebig verlängern!
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MPA

eine Konfiguration von A ist ein 2-Tupel (s, χ) mit s als
globalem Zustand und χ : Ch → ∆∗

(sin, χε) ist die Anfangskonfiguration von A
F × {χε} ist die Menge der Endkonfigurationen

⇒ bezeichnet die globale Transitionsrelation mit
⇒⊆ ConfA × Σ × ConfA

Beispiel Konfigurationsübergang:
(s, χ) ∈ ConfA und (sp, p!q, m, s ′p) ∈→p.

Dann ex. eine globale Transition (s, χ)
p!q(m)
⇒ (s ′, χ′).
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Sprache eines MPA

Definition (Sprache eines MPA)

Die Sprache L(A) eines Message-Passing Automaten ist definiert
als L(A) = {σ ∈ Σ∗|A akzeptiert σ}.

Bemerkung

Sprache L(A) ist MSC Sprache, aber nicht zwangsläufig regulär.

Denn: betrachte MPA mit nicht nach oben beschränkter Anzahl
von Konfigurationen ⇒ Sprache nicht regulär.
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B-Beschränktheit

Definition (B-Beschränktheit)

eine Konfiguration des Message-Passing Automaten A ist
B-beschränkt, wenn |χ(c)| ≤ B, ∀c ∈ Ch

ein Automat A ist B-beschränkt, wenn jede erreichbare
Konfiguration (s, χ) ∈ ConfA B-beschränkt ist

Aus den Definitionen folgt direkt:

Theorem

Sei A ein B-beschränkter Message-Passing Automat über dem
Alphabet Σ. Dann ist L(A) eine B-beschränkte reguläre MSC
Sprache.
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s1

s2

s3

s4

t1

t2

t3

t4

p!q

p!q
p?q

p?q

q?p

q!p
q?p

q!p

(p): (q):
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Zusammenfassung

Ergebnisse im Vortrag:
Sei L ⊆ Σ∗ mit Σ als Beschriftungsalphabet der Prozesse P eines
MSC M.

Sei A ein B-beschränkter Message-Passing Automat über
dem Alphabet Σ. Dann ist L(A) eine B-beschränkte reguläre
MSC Sprache.

Sei ϕ eine gültige MSO(P, B)-Formel. Dann ist die von ϕ

erzeugte MSC Sprache Lϕ regulär und B-beschränkt.
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Ergebnisse der Seminararbeit:
Sei L ⊆ Σ∗ mit Σ als Beschriftungsalphabet der Prozesse P eines
MSC M. Folgende Aussagen sind dann äquivalent:

1 L ist eine reguläre MSC Sprache.

2 L ist eine B-beschränkte reguläre MSC Sprache für ein
geeignetes B ∈ N.

3 Es existiert ein B-beschränkter Message Passing Automat A
mit L(A) = L.

4 L ist MSO(P, B)-definierbar für ein geeignetes B ∈ N.
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