Linear-invariant generation for
probabilistic programs

JP Katoen® AK Mclver® LA Meinicke® CC Morgan¢

® RWTH Aachen University, Germany
b Macquarie University, Australia

¢ University of New South Wales, Australia

Overview: Invariant generation
Inductive invariants may be used to verify iterative programs

(Floyd, 1967; Hoare 1969; Dijkstra, 1971).

Automatically generating these invariants is possible for invariants
of restricted forms for restricted types of programs.

Methods include

e iterative fixed-point methods like abstract interpretation
(Cousot and Cousot, 1977), and

e constraint-based approaches (e.g., Colén et al., 2003; Podelski and
Rybalchenko, 2004; Cousot, 2005; Monniaux, 2000; Gulwani et al., 2008).

Overview: Constraint-based approaches

Invariants are found by

e constructing verification conditions that are sufficient to show
that

e predicates of a given parameterised formula (containing only
first-order unknowns) are invariant, and then

e solving them for all possible parameters of the formula using
off-the-shelf constraint solvers.

Overview: Constraint-based approaches

In Colon et al. (2003) parameterised formulas are
e linear constraints on program variables,
and the programs themselves must be
e linear
e with real-valued variables.
Methods that require weaker restrictions on the form of the program

and invariant have been investigated.
(E.g., Sankaranarayanan et al., 2004; Cousot, 2005; Kapur, 2005.)

Overview: Probabilistic Programs

Choices may be made both qualitatively (S T) and quantitatively
(S,0T).

Inductive quantitative invariants can be used in probabilistic program
verification (Morgan, 1996; Mclver and Morgan, 2005).

No methods exist for automatically generating quantitative invari-
ants ...

Overview: Goals

The development of an automated assistant for quantitative invari-
ant discovery to augment interactive proofs.

Overview: Goals

So far we have defined a constraint-based method for automatically
generating quantitative invariants of

e linear probabilistic programs with
e real-valued variables, in which

e the parameterised invariants are structures built from linear
terms.

Outline

Qualitative and quantitative invariants.
Constraint-solving for qualitative and qualitative invariants.
An example.

Comparison to other automated approaches.

Qualitative invariants: notation and semantics

Programs are interpreted using a weakest-liberal-precondition se-
mantics:

e wWIp.S5.() denotes the largest set of states from which S is guar-
anteed to either not terminate or terminate in a state satisfying

Q.
e S satisfies specification [P,Q] when P = wip.5.Q).
e SCLT=2((VQ - wip.5.Q = wip.T.Q).

e Specifications are treated as programs.

Qualitative invariants: inductive invariants

An inductive invariant I of

loop = while G do S od |,

iIS a predicate on the state space of the program that is preserved
by iterations of the loop.

IL.e., GANI = wlip.5.1 .

If I is an inductive invariant of loop, we have that loop satisfies the
specification [I,-G A I].

Qualitative invariants: inductive invariant
maps

A valid inductive invariant map of a program
loop1 £ while G do S od

containing J program loops
loop; = while G; do S; od

is a set of predicates, {[; - j € [1..J]}, such that
I; is an invariant of while G; do S’ od

where S; is the same as S; except that each of its inner loops loop;
(if any) has been replaced by [I;,—G; A I;].

Qualitative invariants: inductive invariant
maps

For example, {I1, I2} is a valid inductive invariant map of

loopy while G1 do
S1;
loops while G»> do S5 od
od

(in which programs S; and S> do not contain loops) if

I» NGy = wip.S5>.1> and
I1 AN G1 = wip.(S1; [I2,~G2 A I2]) .11 .

Qualitative invariants: inductive invariant
maps

If {I; - j € [1..J]} is a valid inductive invariant map of a loop loop,
then each I; is an invariant of loop;.

Generating valid inductive invariant maps for a given qualitative loop

involves (by definition) finding solutions to a set of second-order
constraints.

Quantitative invariants: notation and

semantics

Probabilistic programs are given a meaning in terms of a weakest-
liberal-precondition semantics (Mclver and Morgan, 2005).

Predicates are generalised to non-negative, one-bounded, real-valued
functions, referred to as expectations.

o wip.S.expt.c denotes the least expected value of expt that may
be witnhessed by executing S from initial state o.

e S satisfies specification [expt;, expt,] when expt; < wip.S.expts.
e SLT= (Vexpt - wip.S.expt < wip.T.expt).

e Specifications are treated as programs.

Quantitative invariants

A quantitative invariant I of

loop = while G do S od |,

iIS an expectation whose expected value does not decrease after
iteration of the body of the loop.

ILe, [G]xI < wilp.S.I.

If I is a quantitative invariant of loop then loop satisfies the specifi-
cation [I, [-G] x I].

Quantitative invariants: Binomial update
example

We have that
I£[0<z<n<N]x(z/N—pn/N + p)

is an invariant of:

mit . x,m .= 0,0;

loop : while n < N do

body - (x:=z4+1,Pskip);n:=n-+1
od

since I < wip.body.I.

Quantitative invariants: Binomial update
example

So we can conclude that

wip.(init; loop).(x/N)

= wip.init.(wip.loop.(x/N)) {definition of sequential composition}

> wip.init.] {I is an invariant of loop}
= [0< N]xp {calculate}
= p. {assuming that N is positive}

And so pN < wip.(init; loop).x .

Quantitative invariants: inductive invariant
maps

We define a valid quantitative inductive invariant map to be a valid
qualitative inductive invariant map in which expectations take the
place of predicates.

If {I; - j € [1..J]} is a valid quantitative inductive invariant map of
a probabilistic loop loop1, then each I; is a quantitative invariant of
loop;.

Constraint-solving for qualitative invariants

An overview of how the constraint-solving method of Colon et al.
(2003) may be applied to find valid inductive invariant maps for any
“linear program”

loop1 £ while G do S od
with real-valued program variables x1,...,xx, containing J loops

loop; = while G; do S; od .

Constraint-solving for qualitative invariants:

parameterisation

Each I, is first parameterised using an (M, N)-linear predicate

/\ (\/ & (j,mn,1)L1 +...+ A(jmn,X)TX + /B(j,mn) ~ O))

me([l..M] ne[l..N]

with free real-valued variables o) and B¢ mn), Where = may be
instantiated with either comparison operator < or <.

Constraint-solving for qualitative invariants:

parameterisation

Parameterising each I; in the definition of an inductive invariant
map reduces each proof obligation

Gj AN Ij = wip.S.1;

to a first-order constraint on the free real-valued variables in the
parametric representations.

Constraint-solving for qualitative invariants:

simplification and solving

Next we:

e Evaluate the weakest-liberal precondition expressions, repre-
senting each proof obligation

Gj N\ Ij = W/,O.S}.Ij
as a finite Boolean expression on linear constraints.
e [ranslate these universally quantified Boolean expressions to

existentially quantified polynomial constraints using Motzkin's
Transposition Theorem (Motzkin, 1936).

e Solve the resulting constraints using off-the-shelf constraint
solvers.

Constraint-solving for quantitative invariants:
parameterisation

We parameterise each I; with an (M, N)-linear expression

Zme[l..M] [/\nE[l..N] (G mn, 1)1 F - AGmn, x)TX T Bmn) = O]
X (YGmnT1+ -+ VGmx)Tx + ¢ m))

containing free real-valued variables a; mn 2y, BG.mn)» V(im,az) aNd d¢m)-

We impose the additional constraint that, for each j € [1..J], I; is
bounded.

IlLe., 0<I; and I; <1.

Constraint-solving for quantitative invariants:

parameterisation

Parameterisation reduces the constraints on each inductive invari-
ant I; in the quantitative inductive invariant map to the following
universally quantified constraints on first-order unknowns:

0L I,

Ij <1 and
[G] x I; < wip.S}.I; .

Constraint-solving for quantitative invariants:

simplification and solving

Next we

e Evaluate the weakest-liberal precondition expressions, and trans-
late each constraint

0< 1, (1)
I; <1 and (2)
[Gj] X Ij < W/,O.S}.[j . (3)

to a finite Boolean expression on linear constraints

e Apply Motzkin's Transposition theorem (as for qualitative case).

e Solve the resulting constraints (as for qualitative case).

Constraint-solving for quantitative invariants:

simplification and solving

We have shown that the first of these steps is possible since:

(i) Conditions (1-3) may be written as inequalities between some
(M, N)-linear and (K, L)-linear expressions.

(ii) Each inequality between a (M, N)-linear and (K, L)-linear ex-
pression may be represented as a finite Boolean expression over
linear constraints.

Example: Binomial Update

Given that I1 £ [0 < z < n < N] is invariant, we search for quantita-
tive invariants

I=1 x(ax+6n+7) .

Example: Binomial Update

The constraints that any such I £ I; x (axz 4+ 8n 4+) must satisfy
are:

0 < Iix(az+pBn+7) (4)
I x(ax+pn+7v) < 1 (5)
[n < N] x Iy x (az+ pBn+v) < wip.body.(I1 x (ax + Bn + 7)) (6)

Example: Binomial Update

Using the fact that I; is invariant, these are equivalent to the fol-
lowing Boolean constraints

I = (0<az+pn+-7) (7)
I = (ax+pBn+~v<1) (8)
n<NANLIL = (ax—+ 6n+v) <wlpbody.(ax + Bn+) (9)

Example: Binomial Update

Evaluating wilp expression:

Ii = (0<az+pn+7) (10)
Ii = (az+pn+~v<1) (11)
n<NANLL = (ax+06n+7)<ax+pn+pa+ 3+~ (12)

Translating (12) to a set of existentially quantified constraints and
solving reveals that parameters «, 8 and v must satisfy

pa—+(3>0,

i.e., variable x grows at most p times the rate of n.

(The other constraints may be similarly solved.)

Alternative automated methods: comparison

Using proof-based methods in conjunction with automatic quanti-
tative invariant generation methods we can verify programs with
parameters.

(Such as the Binomial program with parameters p and N.)

Alternative automated methods: comparison

Probabilistic model checkers for MDP's, e.g.,

o PRISM:
PCTL model checking allowing calculation of, e.g., maximal
reachability probabilities.

o LiQuor:
Maximal probability that MDP M satisfies LTL formula ¢.

Can be applied to instances of probabilistic programs.
E.g., for the Binomial distribution program it can be checked:

“ whether or not the probability that = 0 is (1 — p)¥, for a fixed
value of p and N".

Alternative automated methods: comparison

Automated abstraction-refinement, e.qg.,

e PASS:
A SAT-based extension of PRISM. Can be used to check max-

imal reachability properities.

e SAT-based PRISM:
lower and upper bounds of maximal reachability probabilities or

of expected values.

can be used to verify properties of programs with unbounded un-
knowns.

Alternative automated methods: comparison

Other tools include

e APEX:
checks language equivalence between probabilistic programs
over finite integer datatypes but in addition allows open pro-
grams, i.e., programs in which the value of certain variables is
not fixed.

e Abstract interpretation methods for probabilistic programs:
As for non-probabilistic abstract interpretation methods, these
might only produce “approximate answers'’ .

None of these other methods produce quantitative invariants for
probabilistic programs.

Conclusion: what we've done

We have defined a sound constraint-based method for generating
linear quantitative invariants for linear probabilistic programs with
real-valued variables.

Conclusion: what we'd like to do

We would like to
e build tool support for this approach

e extend our approach to generate polynomial forms of quanti-
tative invariants (as in Sankaranarayanan et al. (2004), Cousot (2005)

and Kapur (2005)).

