
Linear-invariant generation for
probabilistic programs

JP Katoena AK McIverb LA Meinickeb CC Morganc

a RWTH Aachen University, Germany

b Macquarie University, Australia

c University of New South Wales, Australia



Overview: Invariant generation

Inductive invariants may be used to verify iterative programs

(Floyd, 1967; Hoare 1969; Dijkstra, 1971).

Automatically generating these invariants is possible for invariants

of restricted forms for restricted types of programs.

Methods include

• iterative fixed-point methods like abstract interpretation

(Cousot and Cousot, 1977), and

• constraint-based approaches (e.g., Colón et al., 2003; Podelski and

Rybalchenko, 2004; Cousot, 2005; Monniaux, 2000; Gulwani et al., 2008).



Overview: Constraint-based approaches

Invariants are found by

• constructing verification conditions that are sufficient to show

that

• predicates of a given parameterised formula (containing only

first-order unknowns) are invariant, and then

• solving them for all possible parameters of the formula using

off-the-shelf constraint solvers.



Overview: Constraint-based approaches

In Colón et al. (2003) parameterised formulas are

• linear constraints on program variables,

and the programs themselves must be

• linear

• with real-valued variables.

Methods that require weaker restrictions on the form of the program

and invariant have been investigated.

(E.g., Sankaranarayanan et al., 2004; Cousot, 2005; Kapur, 2005.)



Overview: Probabilistic Programs

Choices may be made both qualitatively (S ⊓ T) and quantitatively

(S p⊕ T).

Inductive quantitative invariants can be used in probabilistic program

verification (Morgan, 1996; McIver and Morgan, 2005).

No methods exist for automatically generating quantitative invari-

ants ...



Overview: Goals

The development of an automated assistant for quantitative invari-

ant discovery to augment interactive proofs.



Overview: Goals

So far we have defined a constraint-based method for automatically

generating quantitative invariants of

• linear probabilistic programs with

• real-valued variables, in which

• the parameterised invariants are structures built from linear

terms.



Outline

• Qualitative and quantitative invariants.

• Constraint-solving for qualitative and qualitative invariants.

• An example.

• Comparison to other automated approaches.



Qualitative invariants: notation and semantics

Programs are interpreted using a weakest-liberal-precondition se-

mantics:

• wlp.S.Q denotes the largest set of states from which S is guar-

anteed to either not terminate or terminate in a state satisfying

Q.

• S satisfies specification [P, Q] when P ⇒ wlp.S.Q.

• S ⊑ T , (∀Q • wlp.S.Q ⇒ wlp.T.Q).

• Specifications are treated as programs.



Qualitative invariants: inductive invariants

An inductive invariant I of

loop , while G do S od ,

is a predicate on the state space of the program that is preserved

by iterations of the loop.

I.e., G ∧ I ⇒ wlp.S.I .

If I is an inductive invariant of loop, we have that loop satisfies the

specification [I,¬G ∧ I].



Qualitative invariants: inductive invariant

maps

A valid inductive invariant map of a program

loop1 , while G1 do S1 od

containing J program loops

loopj , while Gj do Sj od

is a set of predicates, {Ij • j ∈ [1..J]}, such that

Ij is an invariant of while Gj do S′
j od

where Sj is the same as Sj except that each of its inner loops loopi

(if any) has been replaced by [Ii,¬Gi ∧ Ii].



Qualitative invariants: inductive invariant

maps

For example, {I1, I2} is a valid inductive invariant map of

loop1 : while G1 do
S1;

loop2 : while G2 do S2 od
od

(in which programs S1 and S2 do not contain loops) if

I2 ∧ G2 ⇒ wlp.S2.I2 and

I1 ∧ G1 ⇒ wlp.(S1; [I2,¬G2 ∧ I2]).I1 .



Qualitative invariants: inductive invariant

maps

If {Ij • j ∈ [1..J]} is a valid inductive invariant map of a loop loop1,

then each Ij is an invariant of loopj.

Generating valid inductive invariant maps for a given qualitative loop

involves (by definition) finding solutions to a set of second-order

constraints.



Quantitative invariants: notation and

semantics

Probabilistic programs are given a meaning in terms of a weakest-

liberal-precondition semantics (McIver and Morgan, 2005).

Predicates are generalised to non-negative, one-bounded, real-valued

functions, referred to as expectations.

• wlp.S.expt.σ denotes the least expected value of expt that may

be witnessed by executing S from initial state σ.

• S satisfies specification [expt1, expt2] when expt1 ≤ wlp.S.expt2.

• S ⊑ T , (∀expt • wlp.S.expt ≤ wlp.T.expt).

• Specifications are treated as programs.



Quantitative invariants

A quantitative invariant I of

loop , while G do S od ,

is an expectation whose expected value does not decrease after

iteration of the body of the loop.

I.e., [G]×I ≤ wlp.S.I .

If I is a quantitative invariant of loop then loop satisfies the specifi-

cation [I, [¬G]× I].



Quantitative invariants: Binomial update

example

We have that

I , [0 ≤ x ≤ n ≤ N ] × (x/N − pn/N + p)

is an invariant of:

init : x, n := 0,0;
loop : while n < N do
body : (x := x + 1 p⊕ skip);n := n + 1

od

since I ≤ wlp.body.I.



Quantitative invariants: Binomial update

example

So we can conclude that

wlp.(init; loop).(x/N)

= wlp.init.(wlp.loop.(x/N)) {definition of sequential composition}

≥ wlp.init.I {I is an invariant of loop}

= [0 ≤ N ] × p {calculate}

= p . {assuming that N is positive}

And so pN ≤ wlp.(init; loop).x .



Quantitative invariants: inductive invariant

maps

We define a valid quantitative inductive invariant map to be a valid

qualitative inductive invariant map in which expectations take the

place of predicates.

If {Ij • j ∈ [1..J]} is a valid quantitative inductive invariant map of

a probabilistic loop loop1, then each Ij is a quantitative invariant of

loopj.



Constraint-solving for qualitative invariants

An overview of how the constraint-solving method of Colón et al.

(2003) may be applied to find valid inductive invariant maps for any

“linear program”

loop1 , while G1 do S1 od

with real-valued program variables x1, . . . , xX, containing J loops

loopj , while Gj do Sj od .



Constraint-solving for qualitative invariants:

parameterisation

Each Ij is first parameterised using an (M, N)-linear predicate
∧

m∈[1..M ]

(
∨

n∈[1..N ]

α(j,mn,1)x1 + . . . + α(j,mn,X)xX + β(j,mn) ≈ 0) ,

with free real-valued variables α(j,mn,x) and β(j,mn), where ≈ may be

instantiated with either comparison operator ≤ or <.



Constraint-solving for qualitative invariants:

parameterisation

Parameterising each Ij in the definition of an inductive invariant

map reduces each proof obligation

Gj ∧ Ij ⇒ wlp.S′
j.Ij

to a first-order constraint on the free real-valued variables in the

parametric representations.



Constraint-solving for qualitative invariants:

simplification and solving

Next we:

• Evaluate the weakest-liberal precondition expressions, repre-

senting each proof obligation

Gj ∧ Ij ⇒ wlp.S′
j.Ij

as a finite Boolean expression on linear constraints.

• Translate these universally quantified Boolean expressions to

existentially quantified polynomial constraints using Motzkin’s

Transposition Theorem (Motzkin, 1936).



• Solve the resulting constraints using off-the-shelf constraint

solvers.



Constraint-solving for quantitative invariants:

parameterisation

We parameterise each Ij with an (M, N)-linear expression
∑

m∈[1..M ][
∧

n∈[1..N ] α(j,mn,1)x1 + . . . + α(j,mn,X)xX + β(j,mn) ≈ 0]

× (γ(j,m,1)x1 + . . . + γ(j,m,X)xX + δ(j,m))

containing free real-valued variables α(j,mn,x), β(j,mn), γ(j,m,x) and δ(j,m).

We impose the additional constraint that, for each j ∈ [1..J], Ij is

bounded.

I.e., 0 ≤ Ij and Ij ≤ 1.



Constraint-solving for quantitative invariants:

parameterisation

Parameterisation reduces the constraints on each inductive invari-

ant Ij in the quantitative inductive invariant map to the following

universally quantified constraints on first-order unknowns:

0 ≤ Ij ,

Ij ≤ 1 and

[Gj] × Ij ≤ wlp.S′
j.Ij .



Constraint-solving for quantitative invariants:

simplification and solving

Next we

• Evaluate the weakest-liberal precondition expressions, and trans-

late each constraint

0 ≤ Ij , (1)

Ij ≤ 1 and (2)

[Gj] × Ij ≤ wlp.S′
j.Ij . (3)

to a finite Boolean expression on linear constraints

• Apply Motzkin’s Transposition theorem (as for qualitative case).



• Solve the resulting constraints (as for qualitative case).



Constraint-solving for quantitative invariants:

simplification and solving

We have shown that the first of these steps is possible since:

(i) Conditions (1-3) may be written as inequalities between some

(M, N)-linear and (K, L)-linear expressions.

(ii) Each inequality between a (M, N)-linear and (K, L)-linear ex-

pression may be represented as a finite Boolean expression over

linear constraints.



Example: Binomial Update

Given that I1 , [0 ≤ x ≤ n ≤ N ] is invariant, we search for quantita-

tive invariants

I , I1 × (αx + βn + γ) .



Example: Binomial Update

The constraints that any such I , I1 × (αx + βn + γ) must satisfy

are:

0 ≤ I1 × (αx + βn + γ) (4)

I1 × (αx + βn + γ) ≤ 1 (5)

[n < N ] × I1 × (αx + βn + γ) ≤ wlp.body.(I1 × (αx + βn + γ)) (6)



Example: Binomial Update

Using the fact that I1 is invariant, these are equivalent to the fol-

lowing Boolean constraints

I1 ⇒ (0 ≤ αx + βn + γ) (7)

I1 ⇒ (αx + βn + γ ≤ 1) (8)

n < N ∧ I1 ⇒ (αx + βn + γ) ≤ wlp.body.(αx + βn + γ) (9)



Example: Binomial Update

Evaluating wlp expression:

I1 ⇒ (0 ≤ αx + βn + γ) (10)

I1 ⇒ (αx + βn + γ ≤ 1) (11)

n < N ∧ I1 ⇒ (αx + βn + γ) ≤ αx + βn + pα + β + γ (12)

Translating (12) to a set of existentially quantified constraints and

solving reveals that parameters α, β and γ must satisfy

pα + β ≥ 0 ,

i.e., variable x grows at most p times the rate of n.

(The other constraints may be similarly solved.)



Alternative automated methods: comparison

Using proof-based methods in conjunction with automatic quanti-

tative invariant generation methods we can verify programs with

parameters.

(Such as the Binomial program with parameters p and N .)



Alternative automated methods: comparison

Probabilistic model checkers for MDP’s, e.g.,

• PRISM:

PCTL model checking allowing calculation of, e.g., maximal

reachability probabilities.

• LiQuor:

Maximal probability that MDP M satisfies LTL formula ϕ.

Can be applied to instances of probabilistic programs.

E.g., for the Binomial distribution program it can be checked:

“ whether or not the probability that x = 0 is (1 − p)N, for a fixed

value of p and N”.



Alternative automated methods: comparison

Automated abstraction-refinement, e.g.,

• PASS:

A SAT-based extension of PRISM. Can be used to check max-

imal reachability properities.

• SAT-based PRISM:

lower and upper bounds of maximal reachability probabilities or

of expected values.

can be used to verify properties of programs with unbounded un-

knowns.



Alternative automated methods: comparison

Other tools include

• APEX:

checks language equivalence between probabilistic programs

over finite integer datatypes but in addition allows open pro-

grams, i.e., programs in which the value of certain variables is

not fixed.

• Abstract interpretation methods for probabilistic programs:

As for non-probabilistic abstract interpretation methods, these

might only produce “approximate answers”.

None of these other methods produce quantitative invariants for

probabilistic programs.



Conclusion: what we’ve done

We have defined a sound constraint-based method for generating

linear quantitative invariants for linear probabilistic programs with

real-valued variables.



Conclusion: what we’d like to do

We would like to

• build tool support for this approach

• extend our approach to generate polynomial forms of quanti-

tative invariants (as in Sankaranarayanan et al. (2004), Cousot (2005)

and Kapur (2005)).


