

Linear-invariant generation for probabilistic programs

JP Katoen^a AK McIver^b LA Meinicke^b CC Morgan^c

^a RWTH Aachen University, Germany

^b Macquarie University, Australia

^c University of New South Wales, Australia

Overview: Invariant generation

Inductive invariants may be used to verify iterative programs (Floyd, 1967; Hoare 1969; Dijkstra, 1971).

Automatically generating these invariants is possible for invariants of **restricted forms** for **restricted types** of programs.

Methods include

- **iterative fixed-point methods** like abstract interpretation (Cousot and Cousot, 1977), and
- **constraint-based approaches** (e.g., Colón et al., 2003; Podelski and Rybalchenko, 2004; Cousot, 2005; Monniaux, 2000; Gulwani et al., 2008).

Overview: Constraint-based approaches

Invariants are found by

- constructing verification conditions that are sufficient to show that
- predicates of a given parameterised formula (containing only first-order unknowns) are invariant, and then
- solving them for all possible parameters of the formula using off-the-shelf constraint solvers.

Overview: Constraint-based approaches

In Colón et al. (2003) parameterised formulas are

- linear constraints on program variables,

and the programs themselves must be

- linear
- with real-valued variables.

Methods that require weaker restrictions on the form of the program and invariant have been investigated.

(E.g., Sankaranarayanan et al., 2004; Cousot, 2005; Kapur, 2005.)

Overview: Probabilistic Programs

Choices may be made both qualitatively ($S \sqcap T$) and quantitatively ($S_p \oplus T$).

Inductive quantitative invariants can be used in probabilistic program verification (Morgan, 1996; McIver and Morgan, 2005).

No methods exist for automatically generating quantitative invariants ...

Overview: Goals

The development of an [automated assistant](#) for [quantitative invariant discovery](#) to augment interactive proofs.

Overview: Goals

So far we have defined a **constraint-based method** for automatically generating quantitative invariants of

- linear probabilistic programs with
- real-valued variables, in which
- the parameterised invariants are structures built from linear terms.

Outline

- Qualitative and quantitative invariants.
- Constraint-solving for qualitative and quantitative invariants.
- An example.
- Comparison to other automated approaches.

Qualitative invariants: notation and semantics

Programs are interpreted using a weakest-liberal-precondition semantics:

- $wlp.S.Q$ denotes the largest set of states from which S is guaranteed to either not terminate or terminate in a state satisfying Q .
- S satisfies specification $[P, Q]$ when $P \Rightarrow wlp.S.Q$.
- $S \sqsubseteq T \triangleq (\forall Q \cdot wlp.S.Q \Rightarrow wlp.T.Q)$.
- Specifications are treated as programs.

Qualitative invariants: inductive invariants

An **inductive invariant** I of

$loop \triangleq \text{while } G \text{ do } S \text{ od ,}$

is a **predicate on the state** space of the program that is **preserved by iterations** of the loop.

I.e., $G \wedge I \Rightarrow \text{wlp}.S.I$.

If I is an inductive invariant of $loop$, we have that $loop$ satisfies the specification $[I, \neg G \wedge I]$.

Qualitative invariants: inductive invariant maps

A *valid* inductive invariant map of a program

$loop_1 \triangleq \text{while } G_1 \text{ do } S_1 \text{ od}$

containing J program loops

$loop_j \triangleq \text{while } G_j \text{ do } S_j \text{ od}$

is a set of predicates, $\{I_j \cdot j \in [1..J]\}$, such that

I_j is an invariant of $\text{while } G_j \text{ do } S'_j \text{ od}$

where S'_j is the same as S_j except that each of its inner loops $loop_i$ (if any) has been replaced by $[I_i, \neg G_i \wedge I_i]$.

Qualitative invariants: inductive invariant maps

For example, $\{I_1, I_2\}$ is a valid inductive invariant map of

```
loop1 :      while  $G_1$  do
                   $S_1$ ;
loop2 :      while  $G_2$  do  $S_2$  od
                  od
```

(in which programs S_1 and S_2 do not contain loops) if

$$\begin{aligned} I_2 \wedge G_2 &\Rightarrow \text{wlp}.S_2.I_2 \text{ and} \\ I_1 \wedge G_1 &\Rightarrow \text{wlp}.(S_1; [I_2, \neg G_2 \wedge I_2]).I_1 . \end{aligned}$$

Qualitative invariants: inductive invariant maps

If $\{I_j \cdot j \in [1..J]\}$ is a valid inductive invariant map of a loop $loop_1$, then each I_j is an invariant of $loop_j$.

Generating valid inductive invariant maps for a given qualitative loop involves (by definition) finding solutions to a set of second-order constraints.

Quantitative invariants: notation and semantics

Probabilistic programs are given a meaning in terms of a [weakest-liberal-precondition](#) semantics (McIver and Morgan, 2005).

Predicates are generalised to non-negative, one-bounded, real-valued functions, referred to as [expectations](#).

- $wlp.S.expt.\sigma$ denotes the [least expected value](#) of $expt$ that may be witnessed by executing S from initial state σ .
- S satisfies specification $[expt_1, expt_2]$ when $expt_1 \leq wlp.S.expt_2$.
- $S \sqsubseteq T \triangleq (\forall expt \cdot wlp.S.expt \leq wlp.T.expt)$.
- Specifications are treated as programs.

Quantitative invariants

A quantitative invariant I of

$loop \triangleq \text{while } G \text{ do } S \text{ od ,}$

is an expectation whose expected value does not decrease after iteration of the body of the loop.

I.e., $[G] \times I \leq \text{wlp}.S.I$.

If I is a quantitative invariant of $loop$ then $loop$ satisfies the specification $[I, [\neg G] \times I]$.

Quantitative invariants: Binomial update example

We have that

$$I \triangleq [0 \leq x \leq n \leq N] \times (x/N - pn/N + p)$$

is an invariant of:

```
init :  x, n := 0, 0;  
loop :  while n < N do  
body :    (x := x + 1  $p \oplus$  skip); n := n + 1  
          od
```

since $I \leq \text{wlp}.\text{body}.I$.

Quantitative invariants: Binomial update example

So we can conclude that

$$\begin{aligned} & wlp.(init; loop).(x/N) \\ = & wlp.init.(wlp.loop.(x/N)) \quad \{\text{definition of sequential composition}\} \\ \geq & wlp.init.I \quad \{I \text{ is an invariant of } loop\} \\ = & [0 \leq N] \times p \quad \{\text{calculate}\} \\ = & p . \quad \{\text{assuming that } N \text{ is positive}\} \end{aligned}$$

And so $pN \leq wlp.(init; loop).x$.

Quantitative invariants: inductive invariant maps

We define a [valid quantitative inductive invariant map](#) to be a valid qualitative inductive invariant map in which expectations take the place of predicates.

If $\{I_j \cdot j \in [1..J]\}$ is a valid quantitative inductive invariant map of a probabilistic loop $loop_1$, then each I_j is a quantitative invariant of $loop_j$.

Constraint-solving for qualitative invariants

An overview of how the constraint-solving method of Colón et al. (2003) may be applied to find valid inductive invariant maps for any “linear program”

$loop_1 \triangleq \text{while } G_1 \text{ do } S_1 \text{ od}$

with real-valued program variables x_1, \dots, x_X , containing J loops

$loop_j \triangleq \text{while } G_j \text{ do } S_j \text{ od} .$

Constraint-solving for qualitative invariants: parameterisation

Each I_j is first parameterised using an (M, N) -linear predicate

$$\bigwedge_{m \in [1..M]} \left(\bigvee_{n \in [1..N]} \alpha_{(j,mn,1)} x_1 + \dots + \alpha_{(j,mn,X)} x_X + \beta_{(j,mn)} \approx 0 \right) ,$$

with free real-valued variables $\alpha_{(j,mn,x)}$ and $\beta_{(j,mn)}$, where \approx may be instantiated with either comparison operator \leq or $<$.

Constraint-solving for qualitative invariants: parameterisation

Parameterising each I_j in the definition of an inductive invariant map reduces each proof obligation

$$G_j \wedge I_j \Rightarrow \text{wlp}.S'_j.I_j$$

to a **first-order constraint** on the free real-valued variables in the parametric representations.

Constraint-solving for qualitative invariants: simplification and solving

Next we:

- Evaluate the weakest-liberal precondition expressions, representing each proof obligation

$$G_j \wedge I_j \Rightarrow \text{wlp}.S'_j.I_j$$

as a finite Boolean expression on linear constraints.

- Translate these universally quantified Boolean expressions to **existentially quantified polynomial constraints** using Motzkin's Transposition Theorem (Motzkin, 1936).

- Solve the resulting constraints using off-the-shelf constraint solvers.

Constraint-solving for quantitative invariants: parameterisation

We parameterise each I_j with an (M, N) -linear expression

$$\begin{aligned} \sum_{m \in [1..M]} [\wedge_{n \in [1..N]} \alpha_{(j,mn,1)} x_1 + \dots + \alpha_{(j,mn,X)} x_X + \beta_{(j,mn)} \approx 0] \\ \times (\gamma_{(j,m,1)} x_1 + \dots + \gamma_{(j,m,X)} x_X + \delta_{(j,m)}) \end{aligned}$$

containing free real-valued variables $\alpha_{(j,mn,x)}$, $\beta_{(j,mn)}$, $\gamma_{(j,m,x)}$ and $\delta_{(j,m)}$.

We impose the additional constraint that, for each $j \in [1..J]$, I_j is bounded.

I.e., $0 \leq I_j$ and $I_j \leq 1$.

Constraint-solving for quantitative invariants: parameterisation

Parameterisation reduces the constraints on each inductive invariant I_j in the quantitative inductive invariant map to the following universally quantified constraints on first-order unknowns:

$$\begin{aligned}0 &\leq I_j , \\I_j &\leq 1 \text{ and} \\[G_j] \times I_j &\leq \text{wlp}.S'_j.I_j .\end{aligned}$$

Constraint-solving for quantitative invariants: simplification and solving

Next we

- Evaluate the weakest-liberal precondition expressions, and translate each constraint

$$0 \leq I_j , \quad (1)$$

$$I_j \leq 1 \text{ and} \quad (2)$$

$$[G_j] \times I_j \leq \text{wlp}.S'_j.I_j . \quad (3)$$

to a finite Boolean expression on linear constraints

- Apply Motzkin's Transposition theorem (as for qualitative case).

- Solve the resulting constraints (as for qualitative case).

Constraint-solving for quantitative invariants: simplification and solving

We have shown that the first of these steps is possible since:

- (i) Conditions (1-3) may be written as inequalities between some (M, N) -linear and (K, L) -linear expressions.
- (ii) Each inequality between a (M, N) -linear and (K, L) -linear expression may be represented as a finite Boolean expression over linear constraints.

Example: Binomial Update

Given that $I_1 \triangleq [0 \leq x \leq n \leq N]$ is invariant, we search for quantitative invariants

$$I \triangleq I_1 \times (\alpha x + \beta n + \gamma) .$$

Example: Binomial Update

The constraints that any such $I \triangleq I_1 \times (\alpha x + \beta n + \gamma)$ must satisfy are:

$$0 \leq I_1 \times (\alpha x + \beta n + \gamma) \quad (4)$$

$$I_1 \times (\alpha x + \beta n + \gamma) \leq 1 \quad (5)$$

$$[n < N] \times I_1 \times (\alpha x + \beta n + \gamma) \leq \text{wlp.body.}(I_1 \times (\alpha x + \beta n + \gamma)) \quad (6)$$

Example: Binomial Update

Using the fact that I_1 is invariant, these are equivalent to the following Boolean constraints

$$I_1 \Rightarrow (0 \leq \alpha x + \beta n + \gamma) \quad (7)$$

$$I_1 \Rightarrow (\alpha x + \beta n + \gamma \leq 1) \quad (8)$$

$$n < N \wedge I_1 \Rightarrow (\alpha x + \beta n + \gamma) \leq \text{wlp.body.}(\alpha x + \beta n + \gamma) \quad (9)$$

Example: Binomial Update

Evaluating *wlp* expression:

$$I_1 \Rightarrow (0 \leq \alpha x + \beta n + \gamma) \quad (10)$$

$$I_1 \Rightarrow (\alpha x + \beta n + \gamma \leq 1) \quad (11)$$

$$n < N \wedge I_1 \Rightarrow (\alpha x + \beta n + \gamma) \leq \alpha x + \beta n + p\alpha + \beta + \gamma \quad (12)$$

Translating (12) to a set of existentially quantified constraints and solving reveals that parameters α , β and γ must satisfy

$$p\alpha + \beta \geq 0 ,$$

i.e., variable x grows at most p times the rate of n .

(The other constraints may be similarly solved.)

Alternative automated methods: comparison

Using proof-based methods in conjunction with automatic quantitative invariant generation methods we can verify programs with parameters.

(Such as the Binomial program with parameters p and N .)

Alternative automated methods: comparison

Probabilistic model checkers for MDP's, e.g.,

- [PRISM](#):
PCTL model checking allowing calculation of, e.g., maximal reachability probabilities.
- [LiQuor](#):
Maximal probability that MDP M satisfies LTL formula φ .

Can be applied to [instances](#) of probabilistic programs.

E.g., for the Binomial distribution program it can be checked:

“ whether or not the probability that $x = 0$ is $(1 - p)^N$, for a fixed value of p and N ” .

Alternative automated methods: comparison

Automated abstraction-refinement, e.g.,

- **PASS:**

A SAT-based extension of PRISM. Can be used to check maximal reachability properties.

- **SAT-based PRISM:**

lower and upper bounds of maximal reachability probabilities or of expected values.

can be used to verify properties of programs with unbounded unknowns.

Alternative automated methods: comparison

Other tools include

- **APEX:**
checks language equivalence between probabilistic programs over finite integer datatypes but in addition allows open programs, i.e., programs in which the value of certain variables is not fixed.
- **Abstract interpretation methods** for probabilistic programs:
As for non-probabilistic abstract interpretation methods, these might only produce “approximate answers” .

None of these other methods produce quantitative invariants for probabilistic programs.

Conclusion: what we've done

We have defined a **sound constraint-based method** for generating **linear quantitative invariants** for linear probabilistic programs with real-valued variables.

Conclusion: what we'd like to do

We would like to

- build tool support for this approach
- extend our approach to generate polynomial forms of quantitative invariants (as in Sankaranarayanan et al. (2004), Cousot (2005) and Kapur (2005)).