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Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Pointers

Pointers are indispensable and omnipresent

• object-oriented programming

• dynamic memory management and data structures

• data bases and index structures

• ...
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Pointers

Pointers are indispensable and omnipresent

• object-oriented programming

• dynamic memory management and data structures

• data bases and index structures

• ...

Difficulties

• aliasing creates dependencies

• destructive updates

• dereferencing invalid/null pointers

⇒ automatic verification desirable
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur; ←

9 cur := next;
10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur; ←

9 cur := next;
10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev; ←

8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur; ←

9 cur := next;
10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l; ←

6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur; ←

9 cur := next;
10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l; ←

6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev; ←

8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;
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6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
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root

l

v

r r

prev

S U

Stefan Rieger Verification of Pointer Programs 3/46



Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev; ←

8 prev := cur;
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11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

l

l

root

v

r r

S U

cur

Stefan Rieger Verification of Pointer Programs 3/46



Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
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Example: The Deutsch-Schorr-Waite Algorithm
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2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
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Verification of Pointer Structures

Problems

• handling inputs of arbitrary size
• dynamic memory allocation at runtime

⇒ possibly infinite state space
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Verification of Pointer Structures

Problems

• handling inputs of arbitrary size
• dynamic memory allocation at runtime

⇒ possibly infinite state space

Approach: Over-Approximation by Abstraction

• use HRGs to model data structures
• abstraction and concretization based on HRG rules

⇒ finite state spaces for e.g. model checking
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Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Verification of Pointer Structures

Problems

• handling inputs of arbitrary size
• dynamic memory allocation at runtime

⇒ possibly infinite state space

Approach: Over-Approximation by Abstraction

• use HRGs to model data structures
• abstraction and concretization based on HRG rules

⇒ finite state spaces for e.g. model checking

Simple Pointer Programming Language (only pointers as data)

• pointer assignment (x.a := y.b)
• creation of objects (new(x))
• limited dereferencing depth (no real restriction)
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Related Work

Shape Analysis represents unbounded heap graphs by three-valued
logical structures [Sagiv et al., 2002, Beyer et al., 2006]

Separation Logic is an extension of Hoare logic
[Reynolds, 2002, O’Hearn et al., 2004]

Graph Transformation is used in different approaches:

• abstraction and verification of graph transformation systems
[Baldan and König, 2002, Baldan et al., 2004,
Kastenberg and Rensink, 2006]

• model pointer assignments directly by graph transformations
[Rensink, 2004, Rensink and Distefano, 2006]

• graph reduction grammars [Bakewell et al., 2004a,
Bakewell et al., 2004b, Dodds and Plump, 2006]
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Alphabets and Hypergraphs

Ranked Alphabet Σ

• ranking function rk : Σ → N
• Σ consists of terminals and nonterminals: Σ = TΣ ⊎ NΣ

Hypergraphs

• hyperedges connect an arbitrary number of vertices

• hyperedges are labeled with symbols from Σ

• rank of label determines the arity of the edge

• external vertices are used for hyperedge replacements

1

n

p

1 2
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1 2
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1 2X
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Representing Heap States

Heapgraph → Hypergraph

Rank of Edges Type of Label

pointers 2 terminal
program variables 1 variable (terminal)
abstract subgraphs arbitrary nonterminal

1 2

34

x

s

X
1

2

x

l r

l r

P
T

T

program variable

nonterminal edge

pointer with selector s

omit tentacle numbers when order clear

l
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Concrete and Abstract Heaps

Abstract Heap

A heap configuration (=hypergraph) is abstract, if it contains at
least one nonterminal edge.
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Concrete and Abstract Heaps

Abstract Heap

A heap configuration (=hypergraph) is abstract, if it contains at
least one nonterminal edge.

Admissibility

A heap configuration is
admissible if nodes referred by
variables are not adjacent to
nonterminal edges.

Useful for abstract semantics
(“concrete assignment”).

Inadmissible
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Overview

1 Hyperedge Replacement

2 Abstraction and Concretization

3 Pointer Logic

4 Verification and Model Checking
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Hyperedge Replacement

Executing a hyperedge replacement

1 Hypergraph H with hyperedge e ∈ EH s.t. ℓ(e) ∈ NΣ

2 Hypergraph R with |extR| = rk(e)

Example
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Hyperedge Replacement Grammars

Definition

A HRG G is a set of productions of the form X → R with
X ∈ NΣ and hypergraph R where |extR| = rk(X).

Example: HRG for (fully branched) Binary Trees

l r l r
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l r l r

1
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Properties

Context-freeness

HRGs are context-free and confluent.

Applicability

A rule is applicable to a hypergraph if it contains a nonterminal
that matches the rule’s LHS.

Derivation

A derivation is a sequence H0

G
=⇒ H1

G
=⇒ H2

G
=⇒ ... where each

Hi

G
=⇒ Hi+1 is a application of a rule from G.
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Properties

Context-freeness

HRGs are context-free and confluent.

Applicability

A rule is applicable to a hypergraph if it contains a nonterminal
that matches the rule’s LHS.

Derivation

A derivation is a sequence H0

G
=⇒ H1

G
=⇒ H2

G
=⇒ ... where each

Hi

G
=⇒ Hi+1 is a application of a rule from G.

Graph Language of HRG G

L(G,H) = {K ∈ HGraphTΣ
| H

G
=⇒

⋆

K}
(= all terminal graphs which are derivable from H)
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Overview

1 Hyperedge Replacement

2 Abstraction and Concretization

3 Pointer Logic

4 Verification and Model Checking
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Abstracting the Heap

Abstraction

For HRG G and hypergraph H the set of abstractions of H is

Abstractions(H) = {K ∈ HGraphΣ | K
G

=⇒
+

H}

If LHS < RHS for all rules in G, Abstractions(H) is finite.

Idea

• Compute abstractions by reverse application of HRG rules
• Reverse application requires finding a subgraph isomorphism

• Reverse rule application is not confluent
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Abstraction Example - Binary Trees
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Path Abstraction
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Abstracting the Heap II

Correctness (but Over-Approximation)

By definition every concrete heap configuration can be regenerated
from its abstractions.

Abstractions(H) = {K ∈ HGraphΣ | K
G

=⇒
+

H}
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Abstracting the Heap II

Correctness (but Over-Approximation)

By definition every concrete heap configuration can be regenerated
from its abstractions.

Abstractions(H) = {K ∈ HGraphΣ | K
G

=⇒
+

H}

Abstraction alone insufficient

• Assignment easy since admissibility guarantees concrete edges
near variables.

• But: assignments may yield inadmissible configurations

• Idea: materialize concrete objects from nonterminals (partial
concretization)
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Partial Concretization by Forward Rule Application
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Resulting Hypergraphs
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Different Situation
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Inadmissible Results
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The Solution

Heap Abstraction Grammars

• introduce redundant rules allowing concretization “from
below”

• additional rules must guarantee completeness

Additional Rules
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Overview

1 Hyperedge Replacement

2 Abstraction and Concretization

3 Pointer Logic

4 Verification and Model Checking
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Temporal Pointer Logic

• Combination of LTL operators and pointer comparisons

• Arbitrarily deep dereferencing

Formal Definition

Let F be a set of flags (err, term, . . . ).

TPL(Σ,F) ::= true | F | DerefΣ = DerefΣ

| ¬TPL(Σ,F) | TPL(Σ,F) ∧ TPL(Σ,F)

| X TPL(Σ,F) | TPL(Σ,F)U TPL(Σ,F)

DerefΣ ::= null | VarΣ | DerefΣ . SelΣ

Fϕ = true U ϕ G ϕ = ¬F ¬ϕ
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Semantics of TPL

Interpretation

• Interpret TPL formulae on infinite and finite sequences of
heap configurations.

• Every trace of heap configurations has an associated trace of
(sets of) flags of equal length.

Finite Traces

Let t ∈ aHHCΣ
⋆ and u ∈ F⋆ be a finite traces of length n. Implicit

extension as follows:

t(1) t(2) . . . t(n) t(n) t(n) . . .

u(1) u(2) . . . u(n) u(n) ∪ {term} u(n) ∪ {term} . . .
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Formal Semantics of Pointer Comparisons

Concrete Semantics

CSat[[ξ = ζ,H ]] =

{

1 D[[ξ,H ]] = D[[ζ,H ]] 6= ⊥

0 otherwise

D[[ζ,H ]]: “intuitive” concrete expression semantics
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Formal Semantics of Pointer Comparisons

Concrete Semantics

CSat[[ξ = ζ,H ]] =

{

1 D[[ξ,H ]] = D[[ζ,H ]] 6= ⊥

0 otherwise

D[[ζ,H ]]: “intuitive” concrete expression semantics

Abstract Semantics – 3 cases

ASat[[γ,H ]] =











1 if ∀H ′ ∈ L(G,H) : CSat[[γ,H ′ ]] = 1

0 if ∀H ′ ∈ L(G,H) : CSat[[γ,H ′ ]] = 0
1

2
otherwise
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Overview

1 Hyperedge Replacement

2 Abstraction and Concretization

3 Pointer Logic

4 Verification and Model Checking
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Pointer Program TPL FormulaHRG

Abstract Transition System Pointer Comparisons

Partial Transition System
(labeled by 3-valued atomic propositions)

Interpret TPL Formula as LTL Formula

Standard LTL Model Checking

3-valued LTL Model Checking

Evaluation of Pointer Comparisons
on Abstract States

Completion of Partial Transition System
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Evaluating Pointer Comparisons

x.a1.a2...am = y.b1.b2...bn

• Use two auxiliary variables t1 and t2 to walk along “paths”

• Assignments followed (not preceeded) by concretization steps

• Check if in all concretizations t1 = t2
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Does ASat[[x.r.l.r = y.l.r, H ]] = 1 hold?
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Does ASat[[x.r.l.r = y.l.r, H ]] = 1 hold?
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Does ASat[[x.r.l.r = y.l.r, H ]] = 1 hold?
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Does ASat[[x.r.l.r = y.l.r, H ]] = 1 hold?
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Does ASat[[x.r.l.r = y.l.r, H ]] = 1 hold?
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Does ASat[[x.r.l.r = y.l.r, H ]] = 1 hold?

l r

l r

l r

x

y

t2

t1

T

T T

T

l r

l r

t1

l r

x

t2

y

T

T

T

l r

l r

t1

l r

x

y

t2

T

T

l r

l r

t1

l r

x

t2

y

T

T

T

Stefan Rieger Verification of Pointer Programs 30/46



Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Does ASat[[x.r.l.r = y.l.r, H ]] = 1 hold?
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∀K : CSat[[t1 = t2, H ]] = 1 ⇒ ASat[[... ]] = 1
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A Special Case

Limiting Dereferencing Depth

When dereferencing depth in pointer comparisons is limited to one,
we always get clearly determined results (0 or 1).

Reason: admissibility of heap configurations
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Pointer Program TPL FormulaHRG

Abstract Transition System Pointer Comparisons

Partial Transition System
(labeled by 3-valued atomic propositions)

Interpret TPL Formula as LTL Formula

Standard LTL Model Checking

3-valued LTL Model Checking

Evaluation of Pointer Comparisons
on Abstract States

Completion of Partial Transition System
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Three-valued LTL Model Checking

Setting

• Evaluation of pointer comparisons can result in either 0, 1 or 1

2

• Transition system has 3-valued labeling

Transformation

Transform transition system to represent all possibilities for
1

2
-valued predicates.

0,0 1
2,

1
2

1
2, 1

0, 1

1, 1

0, 1

0,1

1,1

0, 1

0, 1

1, 1

0, 0

0, 0

0, 1

1, 0

1, 1
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Pointer Program TPL FormulaHRG

Abstract Transition System Pointer Comparisons

Partial Transition System
(labeled by 3-valued atomic propositions)

Interpret TPL Formula as LTL Formula

Standard LTL Model Checking

3-valued LTL Model Checking

Evaluation of Pointer Comparisons
on Abstract States

Completion of Partial Transition System
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Quantifiers

Quantified TPL

Q1X1Q2X2 . . . QkXk : ϕ(X1,X2, . . . ,Xk)

• Quantification over heap objects present in the initial states

• Preservation of object identities between states by
nondeterministic marking with variables

• For every quantor an additional marking is necessary
(exponential blow-up of state space)
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Example: The Deutsch-Schorr-Waite Algorithm

Pointer Safety: No pointer errors / null dereferences

Shape Safety: Input structure is retained

Completeness: all vertices are visited at least once

∀X : ¬(cur 6= X U term)

Termination: finally X never points to cur anymore

∀X : FG(cur 6= X)

Correctness: for all vertices the left- and right successors are the
same after program termination

∀X ∀Xl ∀Xr : X.l = Xl ∧ X.r = Xr →

((X = root → G(X = root))

∧ G(term → (X.l = Xl ∧ X.r = Xr)))
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Experimental Results: Verifying the DSW Algorithm
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Experimental Results: Verifying the DSW Algorithm

no marking 1 marking 3 markings TVLA

Initial States 5 185 962

Number of States 20,678 6,220,798 35,983,627 > 80,000

Number of Transitions 23,359 7,078,257 40,909,648

State Space Gen. (h:min:sec) <0:01 10:14 1:18:03

Memory Consumption 41 MB 788 MB 3,900 MB 150 MB

Pointer Safety on-the-fly - -

Shape Safety on-the-fly - -

Completeness (min:sec) - 0:16 -

Termination (min:sec) - 0:39 -

Correctness (min:sec) - - 4:05

Total Time (State Space Gen. + all Properties) 1:28:35 <9:00:00
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Conclusion

• analysis and verification of complex data structures

• highly parametrized framework

• handling of inconsistencies wrt. the data structure

• more intuitive than other approaches

• promising experimental results
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Conclusion

• analysis and verification of complex data structures

• highly parametrized framework

• handling of inconsistencies wrt. the data structure

• more intuitive than other approaches

• promising experimental results

Additional Features

• abstraction-only grammars

• optimized concretization possible

• unbounded thread creation [Noll and Rieger, 2008]
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Conclusion

• analysis and verification of complex data structures

• highly parametrized framework

• handling of inconsistencies wrt. the data structure

• more intuitive than other approaches

• promising experimental results

Additional Features

• abstraction-only grammars

• optimized concretization possible

• unbounded thread creation [Noll and Rieger, 2008]

Outlook

• learning of HRGs

• typed/attributed HRGs
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(FM 2008) Thomas Noll and Stefan Rieger. Verifying Dynamic
Pointer-Manipulating Threads

(ICGT 2008) Stefan Rieger and Thomas Noll. Abstracting
Complex Data Structures by Hyperedge Replacement

(TTSS 2009) Jonathan Heinen, Thomas Noll, and Stefan Rieger.
Juggrnaut: Graph Grammar Abstraction for
Unbounded Heap Structures (to be published)

(ICTAC 2007) Thomas Noll and Stefan Rieger. Composing
Transformations to Optimize Linear Code
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Thank you for your attention!

(FM 2008) Thomas Noll and Stefan Rieger. Verifying Dynamic
Pointer-Manipulating Threads

(ICGT 2008) Stefan Rieger and Thomas Noll. Abstracting
Complex Data Structures by Hyperedge Replacement

(TTSS 2009) Jonathan Heinen, Thomas Noll, and Stefan Rieger.
Juggrnaut: Graph Grammar Abstraction for
Unbounded Heap Structures (to be published)

(ICTAC 2007) Thomas Noll and Stefan Rieger. Composing
Transformations to Optimize Linear Code
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Development of HRGs

Optimization phase
Add abstraction-only rules

failure

success

Program / Data Structure

Construct HRG generating DS

Check for problems +
develop abstraction idea

Add new rules to HRG
(+ abstraction-only rules)

Transform HRG to
heap abstraction grammar

Test HRG with program
/ suitability check

HRG suitable for DS
/ usable to verify program
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Partial Concretization II

Solving the Problem

• Enforcing HRGs to be in apex form (for all X → H, the
nodes extH are only adjacent to terminals)
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Partial Concretization II

Solving the Problem

• Enforcing HRGs to be in apex form (for all X → H, the
nodes extH are only adjacent to terminals)

⇒ impractical [Engelfriet, 1992]
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Partial Concretization II

Solving the Problem

• Enforcing HRGs to be in apex form (for all X → H, the
nodes extH are only adjacent to terminals)

⇒ impractical [Engelfriet, 1992]

⇒ Introducing additional redundant grammar-rules that do not
modify the language
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Partial Concretization II

Solving the Problem

• Enforcing HRGs to be in apex form (for all X → H, the
nodes extH are only adjacent to terminals)

⇒ impractical [Engelfriet, 1992]

⇒ Introducing additional redundant grammar-rules that do not
modify the language

Additional Rules
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All P -Rules
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Again the Example
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Admissible Results
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Entire Grammar
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