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Pointers

Pointers are indispensable and omnipresent

e object-oriented programming
e dynamic memory management and data structures
e data bases and index structures
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Pointers

Pointers are indispensable and omnipresent
e object-oriented programming
e dynamic memory management and data structures

e data bases and index structures

aliasing creates dependencies

e destructive updates
e dereferencing invalid/null pointers

= automatic verification desirable
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Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r; <

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r;

7 CUL.T = prev;  <—

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r;

7 CUr.T = prev;

8 prev := cur; —

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r; <

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

root

6 cur.l := cur.r;

7 CUr.T = prev;

8 prev := cur; —

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r; <

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

root

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r; <

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

root

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

root

6 cur.l := cur.r;

7 CUL.T = prev;  <—

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

root

6 cur.l := cur.r;

7 CUr.T = prev;

8 prev := cur; —

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r; <

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

root

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l; —

root

6 cur.l := cur.r;

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r; <

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

root

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r;

7 CUr.T = prev;

8 prev := cur; —

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

s next := cur.l; <

6 cur.l := cur.r;

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r; <

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

root

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r;

7 CUL.T = prev;  <—

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

root

6 cur.l := cur.r;

7 CUr.T = prev;

8 prev := cur; —

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r; <

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

root

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

root

6 cur.l := cur.r;

7 CUr.T = prev;

8 prev := cur; —

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r; <

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r; <

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

root

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

root

6 cur.l := cur.r;

7 CUL.T = prev;  <—

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

root

6 cur.l := cur.r;

7 CUr.T = prev;

8 prev := cur; —

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r; <

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r; <

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

root

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

root

6 cur.l := cur.r;

7 CUr.T = prev;

8 prev := cur; —

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r; <

7 CUr.T = prev;

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

6 cur.l := cur.r;

7 CUL.T = prev;  <—

8 prev := cur;

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);

3 prev := sen;

4 cur := root;

5 next := cur.l;

root

6 cur.l := cur.r;

7 CUr.T = prev;

8 prev := cur; —

9 cur := next;

10 if (cur = sen) goto 15;
u if (cur # null) goto 5;
12 CUr := prev;

13 prev := null;

14 goto b;

Stefan Rieger Verification of Pointer Programs



Verification of Pointer Structures

Problems
e handling inputs of arbitrary size
e dynamic memory allocation at runtime
= possibly infinite state space
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4

Approach: Over-Approximation by Abstraction

e use HRGs to model data structures
e abstraction and concretization based on HRG rules
= finite state spaces for e.g. model checking
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Verification of Pointer Structures

e handling inputs of arbitrary size
e dynamic memory allocation at runtime
= possibly infinite state space

Approach: Over-Approximation by Abstraction

e use HRGs to model data structures
e abstraction and concretization based on HRG rules
= finite state spaces for e.g. model checking

Simple Pointer Programming Language (only pointers as data)

e pointer assignment (z.a := y.b)
e creation of objects (new(z))
e limited dereferencing depth (no real restriction)
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Related Work

Shape Analysis represents unbounded heap graphs by three-valued
logical structures [Sagiv et al., 2002, Beyer et al., 2006]

Separation Logic is an extension of Hoare logic
[Reynolds, 2002, O'Hearn et al., 2004]

Graph Transformation is used in different approaches:

e abstraction and verification of graph transformation systems
[Baldan and Konig, 2002, Baldan et al., 2004,
Kastenberg and Rensink, 2006]

e model pointer assignments directly by graph transformations
[Rensink, 2004, Rensink and Distefano, 2006]

e graph reduction grammars [Bakewell et al., 2004a,
Bakewell et al., 2004b, Dodds and Plump, 2006]
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Alphabets and Hypergraphs

Ranked Alphabet X
e ranking function 7k : ¥ — N

e Y consists of terminals and nonterminals: ¥ = 75, W Ny,

Hypergraphs

e hyperedges connect an arbitrary number of vertices

hyperedges are labeled with symbols from X

rank of label determines the arity of the edge

external vertices are used for hyperedge replacements

Stefan Rieger Verification of Pointer Programs 6/46



Representing Heap States

Heapgraph — Hypergraph
| Rank of Edges | Type of Label

pointers 2 terminal
program variables | 1 variable (terminal)
abstract subgraphs | arbitrary nonterminal

pointer with selector s
program variable

1 2
K nonterminal edge
4 3

omit tentacle numbers when order clear
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Concrete and Abstract Heaps

Abstract Heap

A heap configuration (=hypergraph) is abstract, if it contains at
least one nonterminal edge.

Stefan Rieger Verification of Pointer Programs 8/46



Concrete and Abstract Heaps

Abstract Heap

A heap configuration (=hypergraph) is abstract, if it contains at
least one nonterminal edge.

Admissibility ezl

A heap configuration is
admissible if nodes referred by
variables are not adjacent to
nonterminal edges.

Useful for abstract semantics
(“concrete assignment”).

o
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Hyperedge Replacement

Overview

@ Hyperedge Replacement
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Hyperedge Replacement
@00

Hyperedge Replacement

Executing a hyperedge replacement

@ Hypergraph H with hyperedge ¢ € Ey s.t. l(e) € Ny,
@® Hypergraph R with |extr| = rk(e)
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Hyperedge Replacement
(o] le}

Hyperedge Replacement Grammars

Definition
A HRG G is a set of productions of the form X — R with
X € Ny and hypergraph R where |extr| = rk(X).

Example: HRG for (fully branched) Binary Trees

ot
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Hyperedge Replacement
[efe] ]

Properties

Context-freeness
HRGs are context-free and confluent.
Applicability

A rule is applicable to a hypergraph if it contains a nonterminal
that matches the rule’s LHS.

v
Derivation

A derivation is a sequence H = Hy = Ho =~ ... where each
H; == H;, is a application of a rule from G.

Stefan Rieger Verification of Pointer Programs



Hyperedge Replacement
[efe] ]

Properties

Context-freeness
HRGs are context-free and confluent.

Applicability

A rule is applicable to a hypergraph if it contains a nonterminal
that matches the rule's LHS. )
A derivation is a sequence H = Hy = Hos =~ ... where each
H; == H;, is a application of a rule from G.

A\

Graph Language of HRG G

£(G, H) = {K € HGraph,. | H =" K}
(= all terminal graphs which are derivable from H)
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Abstraction and Concretization

Overview

@® Abstraction and Concretization
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Abstraction and Concretization
@00000000

Abstracting the Heap

Abstraction

For HRG G and hypergraph H the set of abstractions of H is
Abstractions(H) = {K € HGraphy, | K == H}

If LHS < RHS for all rules in G, Abstractions(H ) is finite.

A\

e Compute abstractions by reverse application of HRG rules
e Reverse application requires finding a subgraph isomorphism

e Reverse rule application is not confluent

Stefan Rieger Verification of Pointer Programs



Abstraction and Concretization
000000000

Abstraction Example - Binary Trees
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Abstraction and Concretization
[e]e] lelele]ele]e)

Path Abstraction

Stefan Rieger Verification of Poi 16/46



Abstraction and Concretization
[e]e]e] leleele]e)

Abstracting the Heap Il

Correctness (but Over-Approximation)

By definition every concrete heap configuration can be regenerated
from its abstractions.

Abstractions(H ) = {K € HGraphy, | K <" H}

Stefan Rieger Verification of Pointer Programs 17/46



Abstraction and Concretization
[e]e]e] leleele]e)

Abstracting the Heap Il

Correctness (but Over-Approximation)

By definition every concrete heap configuration can be regenerated
from its abstractions.

Abstractions(H ) = {K € HGraphy, | K <" H}

Abstraction alone insufficient

e Assignment easy since admissibility guarantees concrete edges
near variables.

e But: assignments may yield inadmissible configurations

e |dea: materialize concrete objects from nonterminals (partial
concretization)
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Abstraction and Concretization
0000e0000

Partial Concretization by Forward Rule Application

Stefan Rieg Verification of Pointer Programs 18/46



Abstraction and Concretization
[e]e]ele]e] lelele)

Resulting Hypergraphs
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Abstraction and Concretization
000000800

Different Situation

Verification of Pointer Programs



Abstraction and Concretization
000000080

Inadmissible Results

Stefan Rieger Verification of Pointer Programs 21/46



Abstraction and Concretization
00000000 e

The Solution

Heap Abstraction Grammars

e introduce redundant rules allowing concretization “from
below"

e additional rules must guarantee completeness

Additional Rules

Stefan Rieger Verification of Pointer Programs 22/46



Pointer Logic

Overview

© Pointer Logic
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Pointer Logic
[ ele}
Temporal Pointer Logic

e Combination of LTL operators and pointer comparisons

e Arbitrarily deep dereferencing

Formal Definition

Let § be a set of flags (err, term,...).

TPL(X, ) ::= TRUE | § | DEREFy, = DEREFy,
| -TPL(Z, ) | TPL(Z, §) A TPL(E, §)
| X TPL(X, ) | TPL(Z, §)U TPL(Z, §)

DEREFy, ::= null | Vary | DEREFy, . Sely

Fo=TRUE U ¢ Gy=-Fp

Stefan Rieger Verification of Pointer Programs 24/46



Pointer Logic

oeo

Semantics of TPL

Interpretation

o Interpret TPL formulae on infinite and finite sequences of
heap configurations.

e Every trace of heap configurations has an associated trace of
(sets of) flags of equal length.

o

Let t € aHHCy* and u € §* be a finite traces of length n. Implicit
extension as follows:

t(1) t(2) ... t(n) t(n) t(n)
w(l) w(2) ... u(n) u(n)U{term} wu(n)U {term}

A\
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Pointer Logic
ooe

Formal Semantics of Pointer Comparisons

Concrete Semantics

1 Dl¢,H] =DI¢, H] # L

0 otherwise

CSar[¢ =(, H] = {

D[¢, H]: “intuitive” concrete expression semantics
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Pointer Logic
ooe

Formal Semantics of Pointer Comparisons

0 otherwise

D[¢, H]: “intuitive” concrete expression semantics

Abstract Semantics — 3 cases

if VH' € £(G,H) : CSaT[v,H'] =1
if VH € £(G,H) : CSaT[v,H'] =0
otherwise

ASaT[y,H] =

o= O =

Stefan Rieger Verification of Pointer Programs 26/46



Verification and Model Checking

Overview

@ Verification and Model Checking
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Verification and Model Checking
00000000000

! ! !

Abstract Transition System Pointer Comparisons

!

Evaluation of Pointer Comparisons
on Abstract States

}
Partial Transition .System . Interpret TPL Formula as LTL Formula
(labeled by 3-valued atomic propositions)

3-valued LTL Model Checking

Completion of Partial Transition System

LTL Model Checking
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Verification and Model Checking
(o] JeleleleJelelele]e)

Evaluating Pointer Comparisons

T.01.02...0p = Yy.b1.ba...by,
e Use two auxiliary variables ¢; and ¢35 to walk along “paths”
¢ Assignments followed (not preceeded) by concretization steps

e Check if in all concretizations t; = o

Stefan Rieger Verification of Pointer Programs 29/46



Verification and Model Checking
[e]e] leleleJelele]e]e)

Does ASAT[z.r.l.r = y.l.r, H] =1 hold?
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Verification and Model Checking
[e]e] leleleJelele]e]e)

VK : CSAT[t; =ty, H] =1 = ASaT[...] =1

Stefan Rieger Verification of Poi



Verification and Model Checking
[e]e]e] leleJelelele]e)

A Special Case

Limiting Dereferencing Depth
When dereferencing depth in pointer comparisons is limited to one,
we always get clearly determined results (0 or 1).

Reason: admissibility of heap configurations

Stefan Rieger Verification of Pointer Programs 31/46




Verification and Model Checking
0000e000000

! ! !

Abstract Transition System Pointer Comparisons

}

Evaluation of Pointer Comparisons
on Abstract States

}
Partial Transition .System . Interpret TPL Formula as LTL Formula
(labeled by 3-valued atomic propositions)

3-valued LTL Model Checking

Completion of Partial Transition System

Sta LTL Model Checking
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Verification and Model Checking
00000e00000

Three-valued LTL Model Checking

e Evaluation of pointer comparisons can result in either 0,1 or %
e Transition system has 3-valued labeling

Transformation

Transform transition system to represent all possibilities for
%—valued predicates.

N

Stefan Rieger = Verifi
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Verification and Model Checking
00000080000

! ! !

Abstract Transition System Pointer Comparisons

}

Evaluation of Pointer Comparisons
on Abstract States

}
Partial Transition .System . Interpret TPL Formula as LTL Formula
(labeled by 3-valued atomic propositions)

3-valued LTL Model Checking

Completion of Partial Transition System

Sta LTL Model Checking
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Verification and Model Checking
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Quantifiers

Quantified TPL

N X1Q2Xs ... Qp Xy 1 (X1, Xo,..., X})

e Quantification over heap objects present in the initial states

e Preservation of object identities between states by
nondeterministic marking with variables

e For every quantor an additional marking is necessary
(exponential blow-up of state space)
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Verification and Model Checking
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Example: The Deutsch-Schorr-Waite Algorithm

Pointer Safety: No pointer errors / null dereferences
Shape Safety: Input structure is retained

Completeness: all vertices are visited at least once

VX :=(cur # X U term)

Termination: finally X never points to cur anymore

VX : FG(cur # X)
Correctness: for all vertices the left- and right successors are the
same after program termination

VX VX VX,: Xi=X, N Xor=X, —
((X =root — G(X = root))
A G(term — (X.I=X; A Xor=X,)))

Stefan Rieger Verification of Pointer Programs 36/46



Verification and Model Checking
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Experimental Results: Verifying the DSW Algorithm

a final heap an intermediate heap state
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Verification and Model Checking
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Experimental Results: Verifying the DSW Algorithm

no marking | 1 marking | 3 markings TVLA
Initial States 5 185 962
Number of States 20,678 | 6,220,798 | 35,983,627 || > 80,000
Number of Transitions 23,359 | 7,078,257 | 40,909,648
State Space Gen. (h:min:sec) <0:01 10:14 1:18:03
Memory Consumption 41 MB 788 MB | 3,900 MB 150 MB
Pointer Safety on-the-fly - -
Shape Safety on-the-fly - -
Completeness (min:sec) - 0:16 -
Termination (min:sec) - 0:39 -
Correctness (min:sec) - - 4:05
Total Time (State Space Gen. + all Properties) 1:28:35 || <9:00:00
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Conclusion

e analysis and verification of complex data structures

e highly parametrized framework

handling of inconsistencies wrt. the data structure
e more intuitive than other approaches

e promising experimental results
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Conclusion

analysis and verification of complex data structures

highly parametrized framework

handling of inconsistencies wrt. the data structure
e more intuitive than other approaches

e promising experimental results

Additional Features

e abstraction-only grammars

e optimized concretization possible
e unbounded thread creation [Noll and Rieger, 2008]

e learning of HRGs
e typed/attributed HRGs

v
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Development of HRGs

Check for problems +

P Data Struct S
rogram / Data Structure develop abstraction idea

Add new rules to HRG

Construct HRG generating DS
! & e (+ abstraction-only rules)

Transform HRG to
heap abstraction grammar

Test HRG with program failure
/ suitability check

success

HRG suitable for DS
/ usable to verify program

Stefan Rieger Verification of Pointer Programs 41/46



Partial Concretization |l

Solving the Problem

e Enforcing HRGs to be in apex form (for all X — H, the
nodes exty are only adjacent to terminals)
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Solving the Problem

e Enforcing HRGs to be in apex form (for all X — H, the
nodes exty are only adjacent to terminals)

= impractical [Engelfriet, 1992]

= Introducing additional redundant grammar-rules that do not
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Partial Concretization |l

Solving the Problem

e Enforcing HRGs to be in apex form (for all X — H, the
nodes exty are only adjacent to terminals)

= impractical [Engelfriet, 1992]

= Introducing additional redundant grammar-rules that do not
modify the language

o

Additional Rules
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Again the Example
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Admissible Results
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Entire Grammar
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