

Verification of Pointer Programs

Stefan Rieger

MOVES: Software Modeling and Verification
RWTH Aachen University, Germany

23.09.2009

Pointers

Pointers are indispensable and omnipresent

- object-oriented programming
- dynamic memory management and data structures
- data bases and index structures
- ...

Pointers

Pointers are indispensable and omnipresent

- object-oriented programming
- dynamic memory management and data structures
- data bases and index structures
- ...

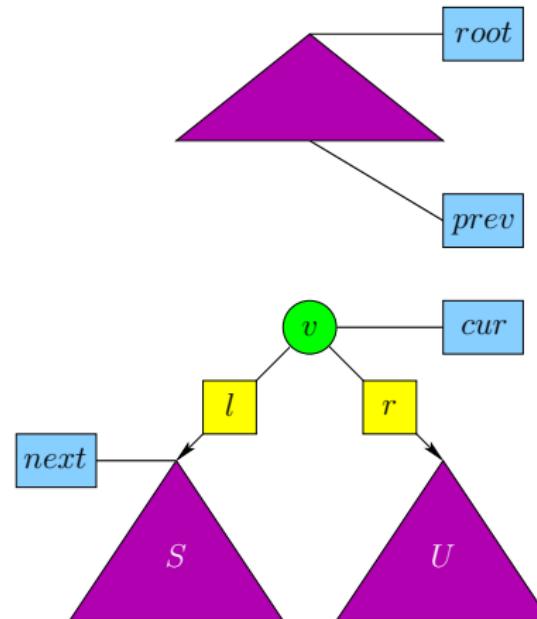
Difficulties

- aliasing creates dependencies
- destructive updates
- dereferencing invalid/null pointers

⇒ automatic verification desirable

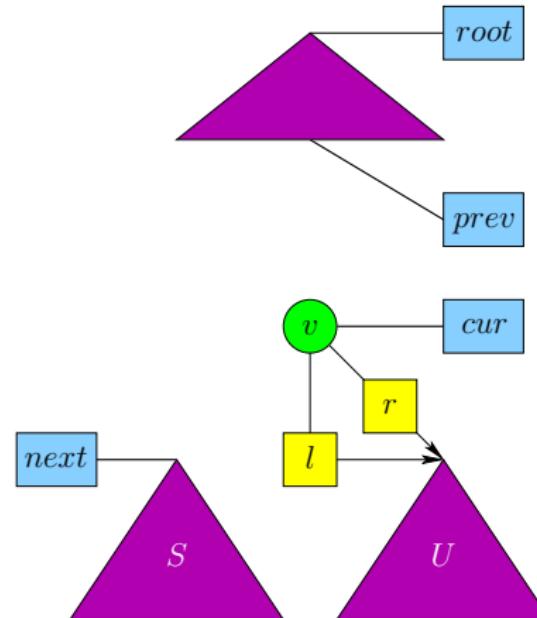
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;    ←  
7 cur.r := prev;  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



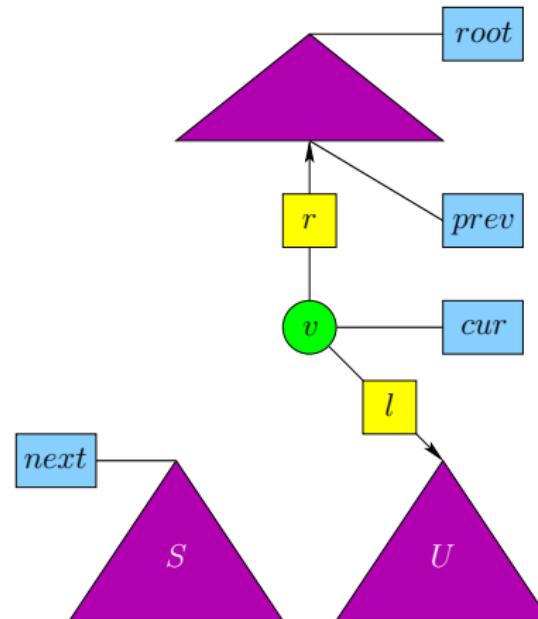
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;  
7 cur.r := prev; ←  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



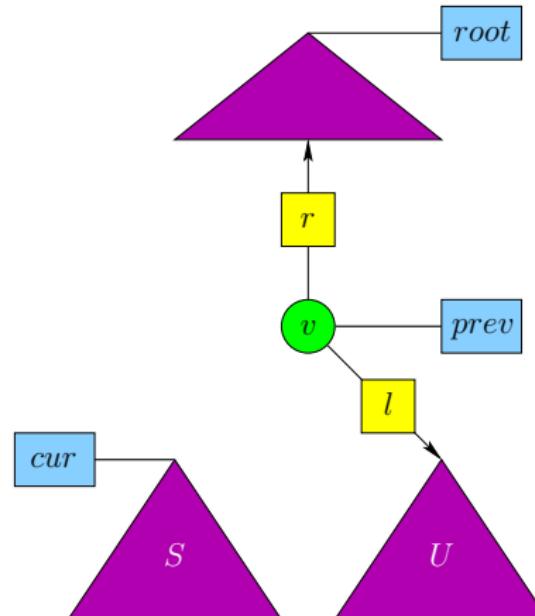
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;  
7 cur.r := prev;  
8 prev := cur;      ←  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



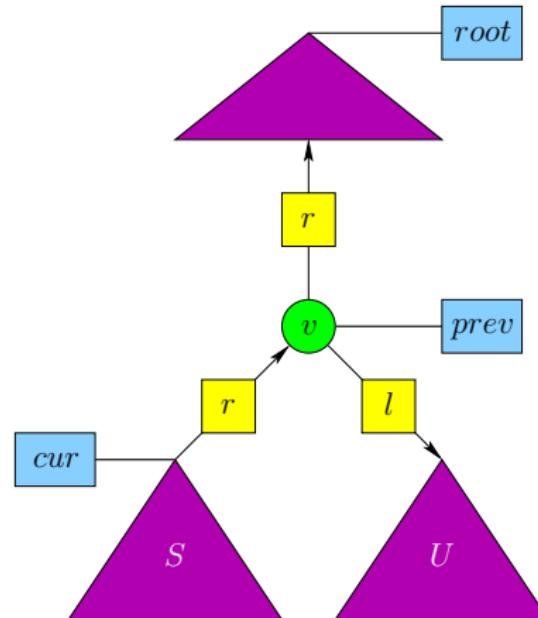
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;    ←  
7 cur.r := prev;  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



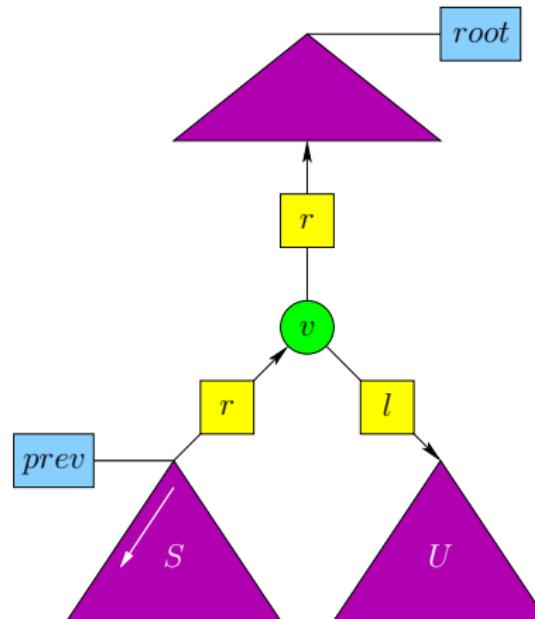
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;  
7 cur.r := prev;  
8 prev := cur;      ←  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



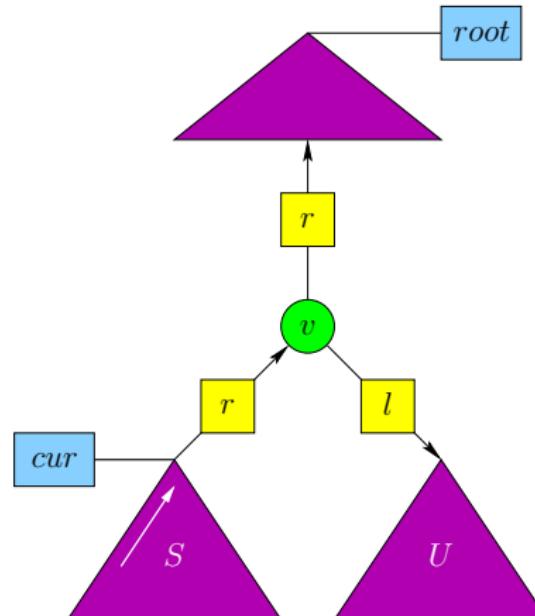
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;    ←  
7 cur.r := prev;  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



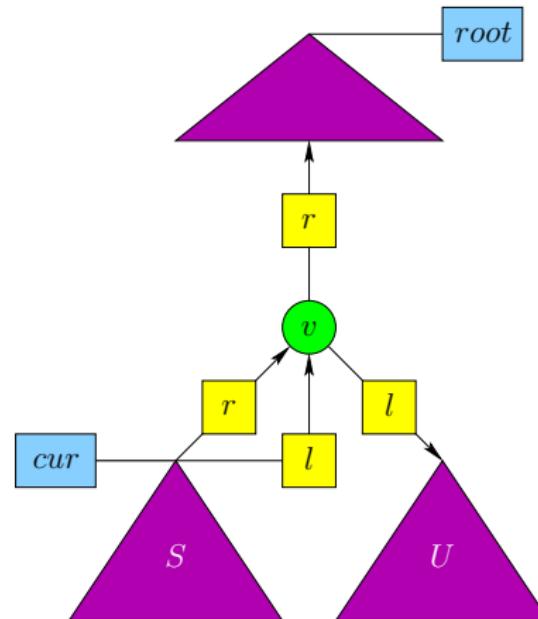
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;    ←  
7 cur.r := prev;  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



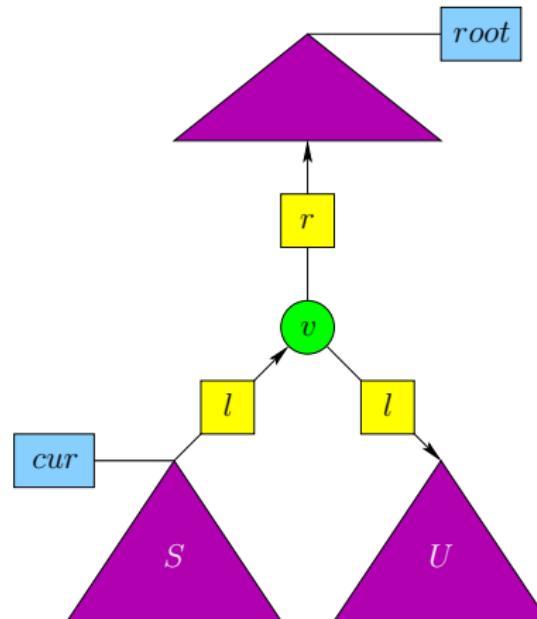
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;  
7 cur.r := prev; ←  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



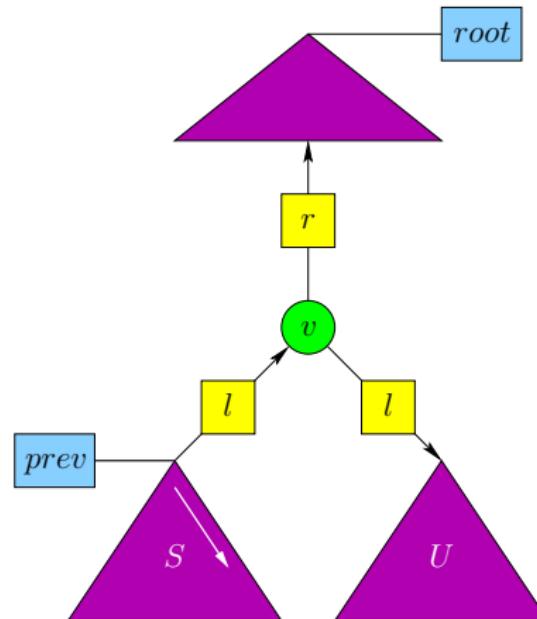
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;  
7 cur.r := prev;  
8 prev := cur;      ←  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



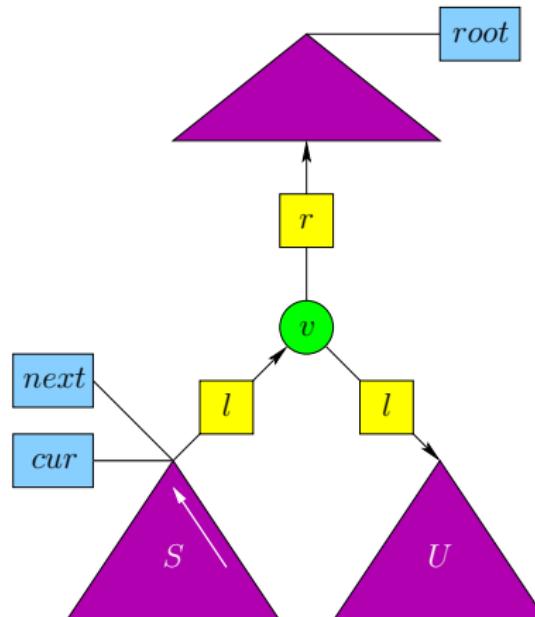
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;    ←  
7 cur.r := prev;  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



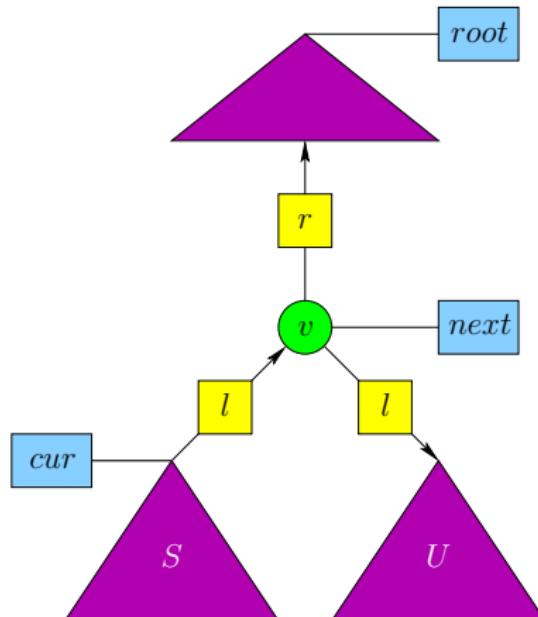
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;    ←  
6 cur.l := cur.r;  
7 cur.r := prev;  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



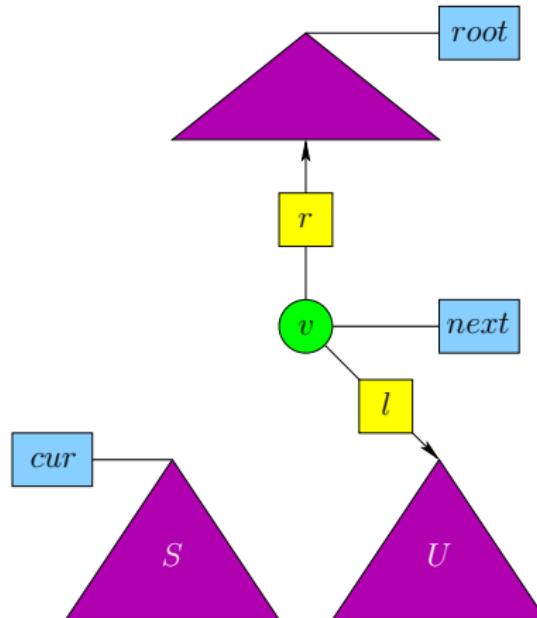
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;    ←  
7 cur.r := prev;  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



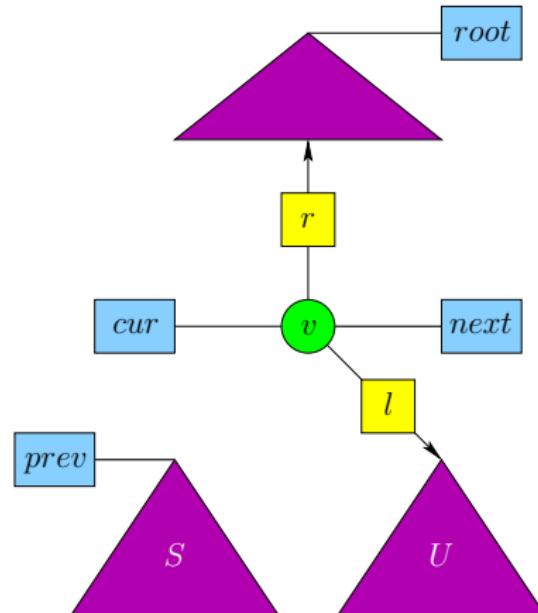
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;  
7 cur.r := prev;  
8 prev := cur;      ←  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



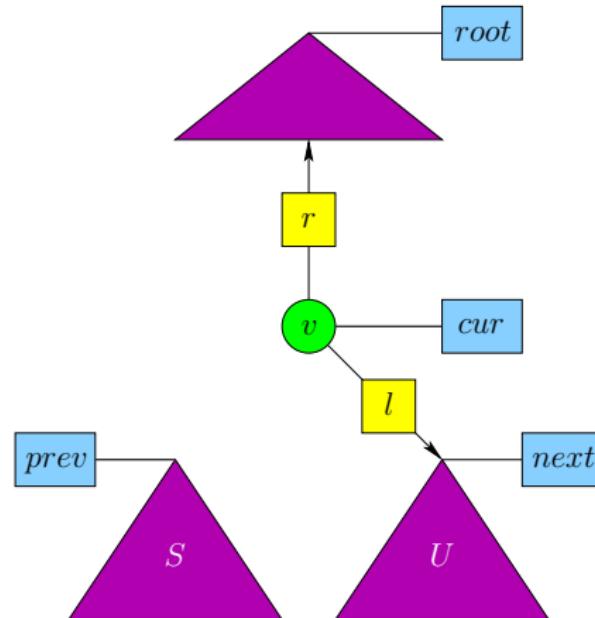
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;    ←  
6 cur.l := cur.r;  
7 cur.r := prev;  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



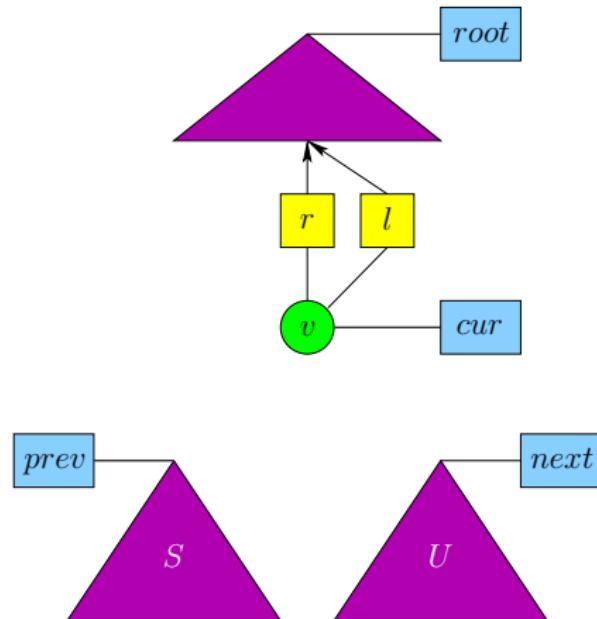
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;    ←  
7 cur.r := prev;  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



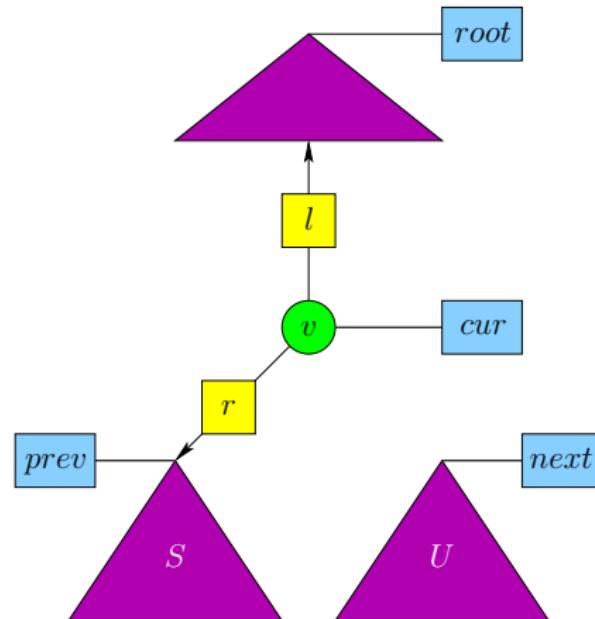
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;  
7 cur.r := prev; ←  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



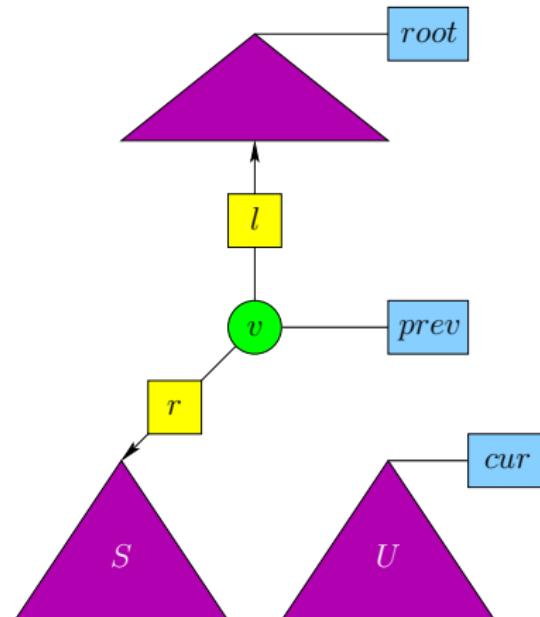
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;  
7 cur.r := prev;  
8 prev := cur;      ←  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



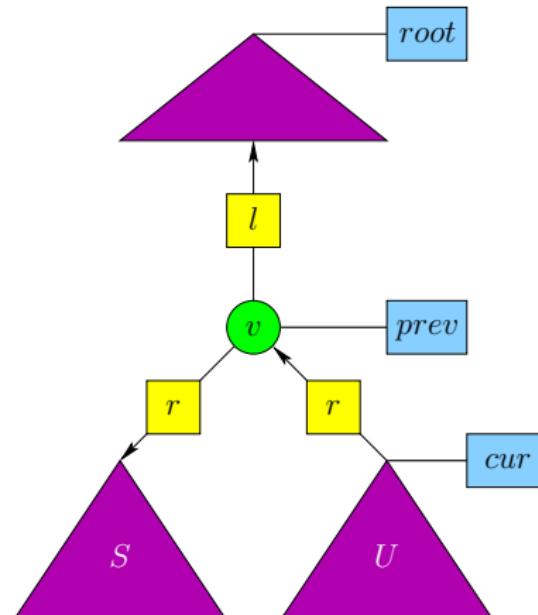
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r; ←  
7 cur.r := prev;  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;  
7 cur.r := prev;  
8 prev := cur;      ←  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```

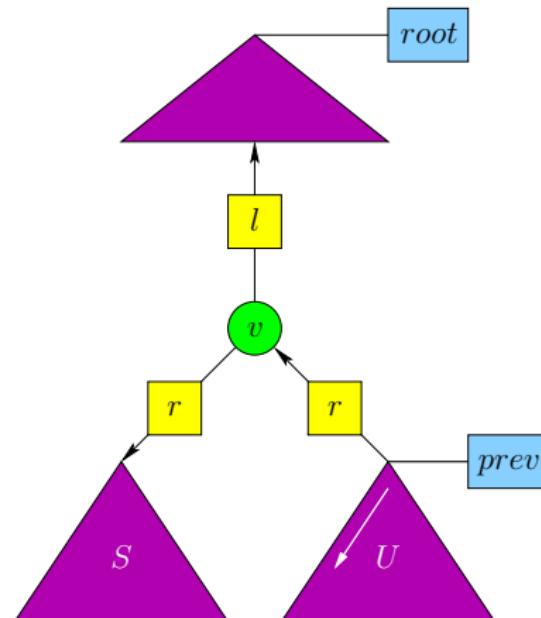


Example: The Deutsch-Schorr-Waite Algorithm

```

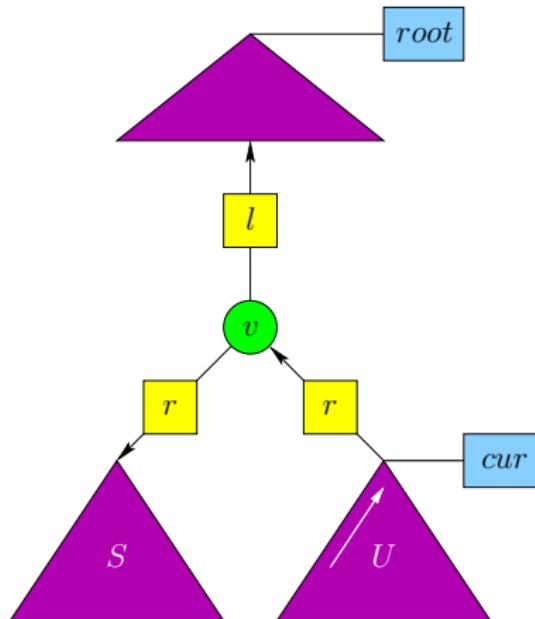
1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;    ←
7 cur.r := prev;
8 prev := cur;
9 cur := next;
10 if (cur = sen) goto 15;
11 if (cur ≠ null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

```



Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r; ←  
7 cur.r := prev;  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



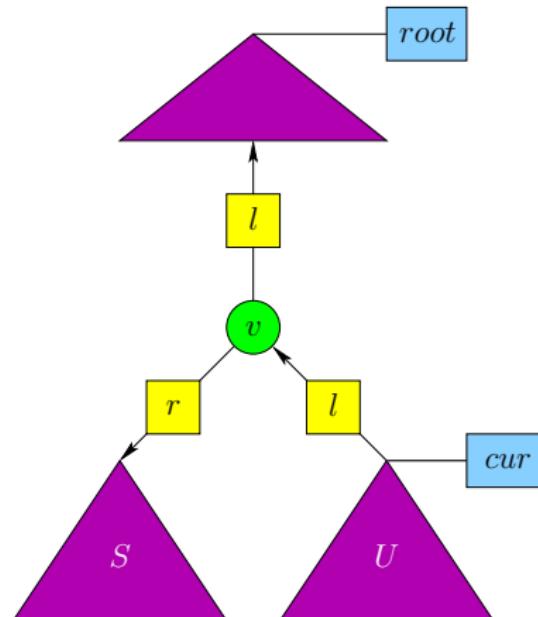
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;  
7 cur.r := prev; ←  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



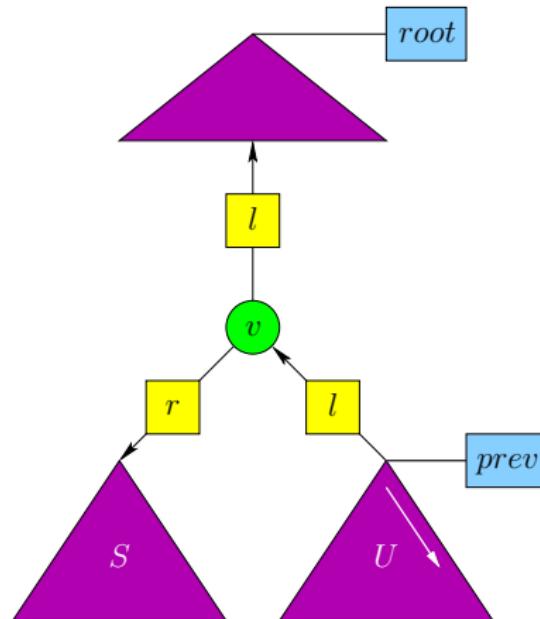
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;  
7 cur.r := prev;  
8 prev := cur;      ←  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



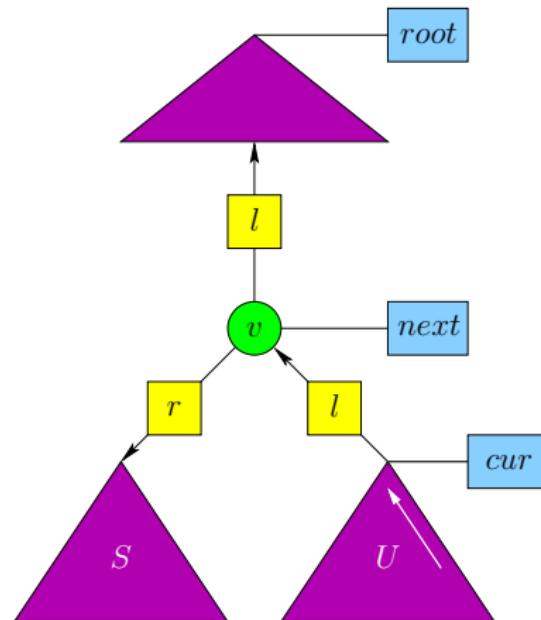
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;    ←  
7 cur.r := prev;  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



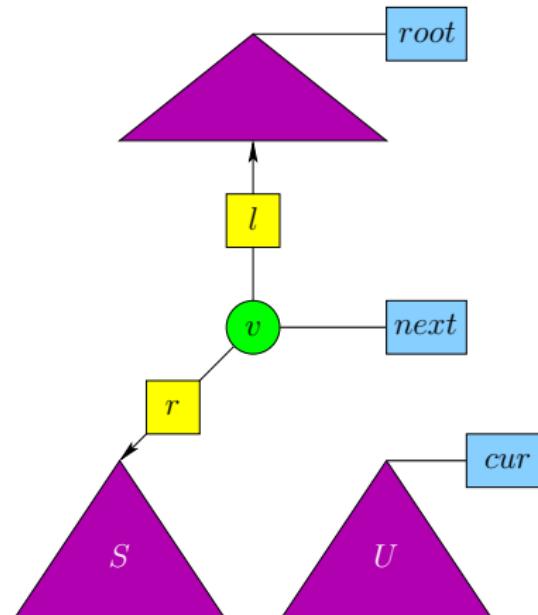
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;    ←  
7 cur.r := prev;  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



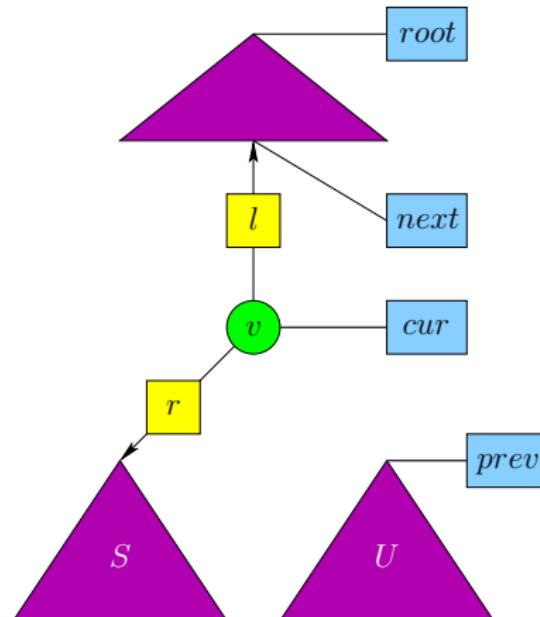
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;  
7 cur.r := prev;  
8 prev := cur;      ←  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



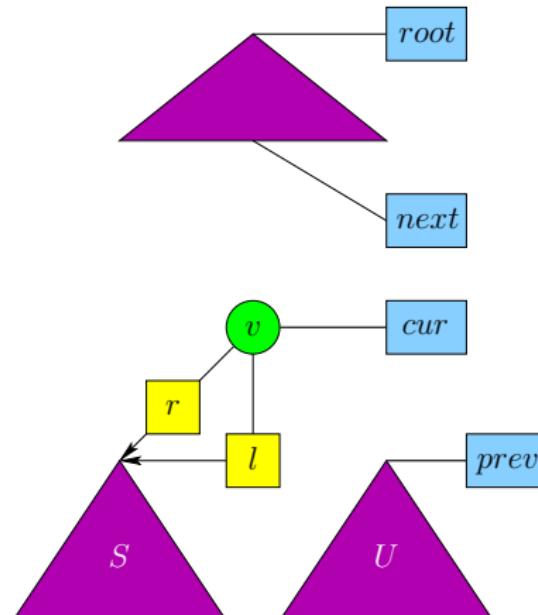
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;    ←  
7 cur.r := prev;  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



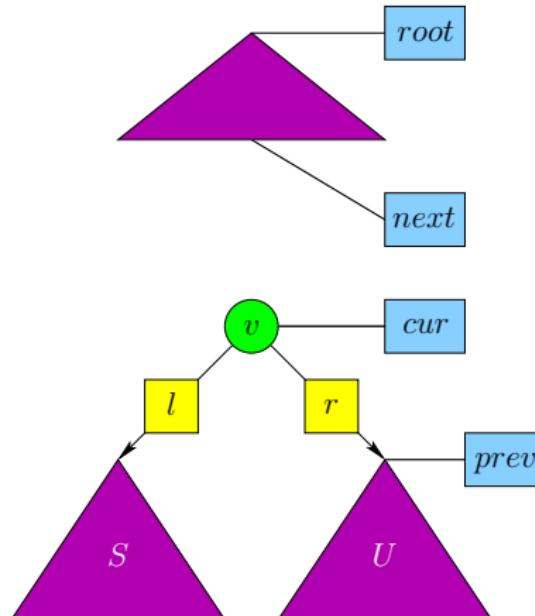
Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;  
7 cur.r := prev; ←  
8 prev := cur;  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



Example: The Deutsch-Schorr-Waite Algorithm

```
1 if root = null goto 15;  
2 new(sen);  
3 prev := sen;  
4 cur := root;  
5 next := cur.l;  
6 cur.l := cur.r;  
7 cur.r := prev;  
8 prev := cur;      ←  
9 cur := next;  
10 if (cur = sen) goto 15;  
11 if (cur ≠ null) goto 5;  
12 cur := prev;  
13 prev := null;  
14 goto 5;
```



Verification of Pointer Structures

Problems

- handling inputs of arbitrary size
- dynamic memory allocation at runtime

⇒ possibly **infinite state space**

Verification of Pointer Structures

Problems

- handling inputs of arbitrary size
- dynamic memory allocation at runtime

⇒ possibly **infinite state space**

Approach: Over-Approximation by Abstraction

- use **HRGs** to model data structures
- **abstraction** and **concretization** based on HRG rules

⇒ **finite state spaces** for e.g. model checking

Verification of Pointer Structures

Problems

- handling inputs of arbitrary size
- dynamic memory allocation at runtime

⇒ possibly **infinite state space**

Approach: Over-Approximation by Abstraction

- use **HRGs** to model data structures
- **abstraction** and **concretization** based on HRG rules

⇒ **finite state spaces** for e.g. model checking

Simple Pointer Programming Language (only pointers as data)

- pointer assignment ($x.a := y.b$)
- creation of objects ($\text{new}(x)$)
- **limited dereferencing depth** (no real restriction)

Related Work

Shape Analysis represents unbounded heap graphs by three-valued logical structures [Sagiv et al., 2002, Beyer et al., 2006]

Separation Logic is an extension of Hoare logic [Reynolds, 2002, O'Hearn et al., 2004]

Graph Transformation is used in different approaches:

- abstraction and verification of graph transformation systems [Baldan and König, 2002, Baldan et al., 2004, Kastenberg and Rensink, 2006]
- model pointer assignments directly by graph transformations [Rensink, 2004, Rensink and Distefano, 2006]
- graph reduction grammars [Bakewell et al., 2004a, Bakewell et al., 2004b, Dodds and Plump, 2006]

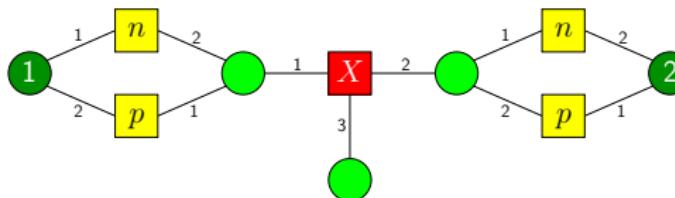
Alphabets and Hypergraphs

Ranked Alphabet Σ

- ranking function $rk : \Sigma \rightarrow \mathbb{N}$
- Σ consists of terminals and nonterminals: $\Sigma = T_\Sigma \uplus N_\Sigma$

Hypergraphs

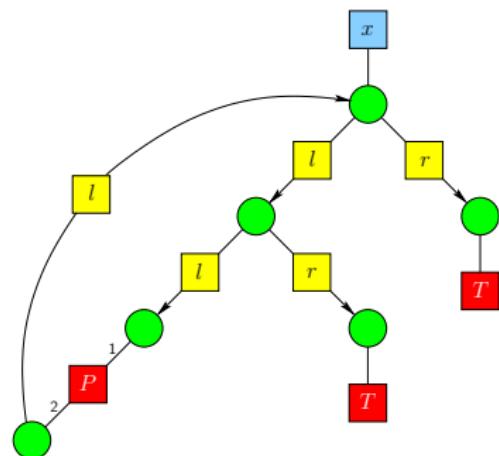
- hyperedges connect an arbitrary number of vertices
- hyperedges are labeled with symbols from Σ
- rank of label determines the arity of the edge
- external vertices are used for hyperedge replacements



Representing Heap States

Heapgraph \rightarrow Hypergraph

	Rank of Edges	Type of Label
pointers	2	terminal
program variables	1	variable (terminal)
abstract subgraphs	arbitrary	nonterminal



s \rightarrow pointer with selector s

x \rightarrow program variable

X \rightarrow nonterminal edge

omit tentacle numbers when order clear

Concrete and Abstract Heaps

Abstract Heap

A heap configuration (=hypergraph) is **abstract**, if it contains at least one nonterminal edge.

Concrete and Abstract Heaps

Abstract Heap

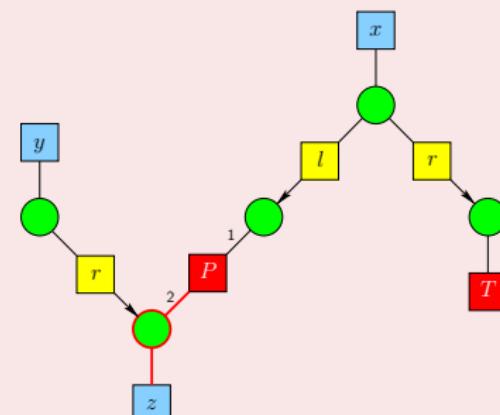
A heap configuration (=hypergraph) is **abstract**, if it contains at least one nonterminal edge.

Admissibility

A heap configuration is **admissible** if nodes referred by variables are not adjacent to nonterminal edges.

Useful for abstract semantics (“**concrete** assignment”).

Inadmissible



Overview

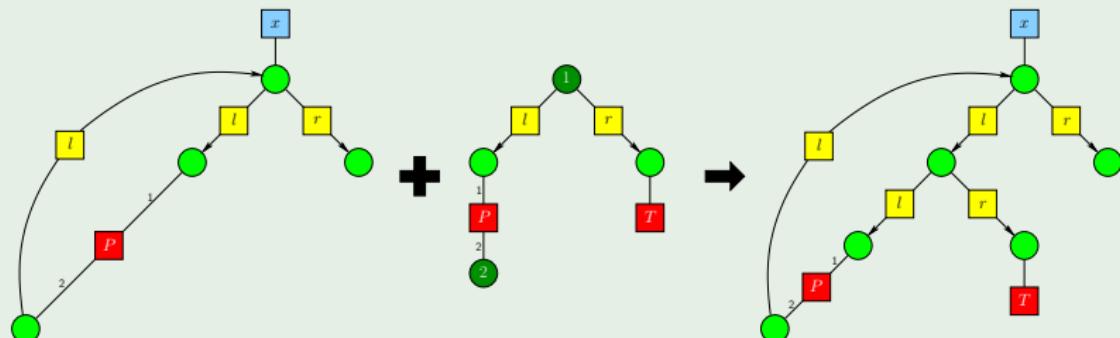
- ① Hyperedge Replacement
- ② Abstraction and Concretization
- ③ Pointer Logic
- ④ Verification and Model Checking

Hyperedge Replacement

Executing a hyperedge replacement

- 1 Hypergraph H with hyperedge $e \in E_H$ s.t. $\ell(e) \in N_\Sigma$
- 2 Hypergraph R with $|ext_R| = rk(e)$

Example

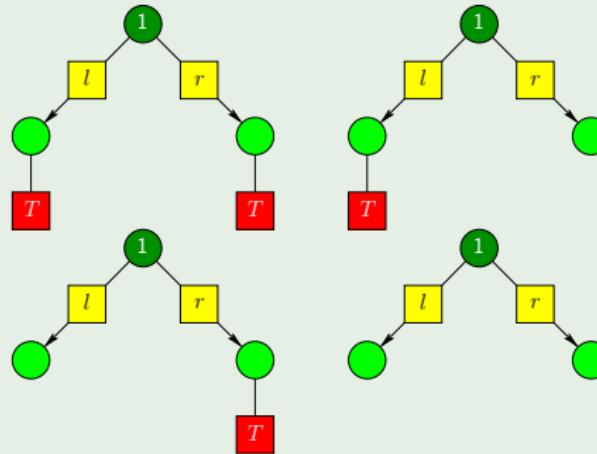


Hyperedge Replacement Grammars

Definition

A **HRG** G is a set of productions of the form $X \rightarrow R$ with $X \in N_\Sigma$ and hypergraph R where $|ext_R| = rk(X)$.

Example: HRG for (fully branched) Binary Trees



Properties

Context-freeness

HRGs are **context-free** and **confluent**.

Applicability

A rule is **applicable** to a hypergraph if it contains a nonterminal that matches the rule's LHS.

Derivation

A **derivation** is a sequence $H_0 \xrightarrow{G} H_1 \xrightarrow{G} H_2 \xrightarrow{G} \dots$ where each $H_i \xrightarrow{G} H_{i+1}$ is an application of a rule from G .

Properties

Context-freeness

HRGs are context-free and confluent.

Applicability

A rule is **applicable** to a hypergraph if it contains a nonterminal that matches the rule's LHS.

Derivation

A **derivation** is a sequence $H_0 \xrightarrow{G} H_1 \xrightarrow{G} H_2 \xrightarrow{G} \dots$ where each $H_i \xrightarrow{G} H_{i+1}$ is an application of a rule from G .

Graph Language of HRG G

$$\mathfrak{L}(G, H) = \{K \in \text{HGraph}_{\textcolor{brown}{T}_\Sigma} \mid H \xrightarrow{G} {}^\star K\}$$

(= all **terminal** graphs which are derivable from H)

Overview

① Hyperedge Replacement

② Abstraction and Concretization

③ Pointer Logic

④ Verification and Model Checking

Abstracting the Heap

Abstraction

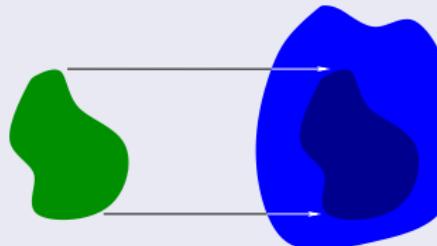
For HRG G and hypergraph H the set of **abstractions** of H is

$$\text{Abstractions}(H) = \{K \in \text{HGraph}_\Sigma \mid K \xrightarrow{G}^+ H\}$$

If $\text{LHS} < \text{RHS}$ for all rules in G , $\text{Abstractions}(H)$ is finite.

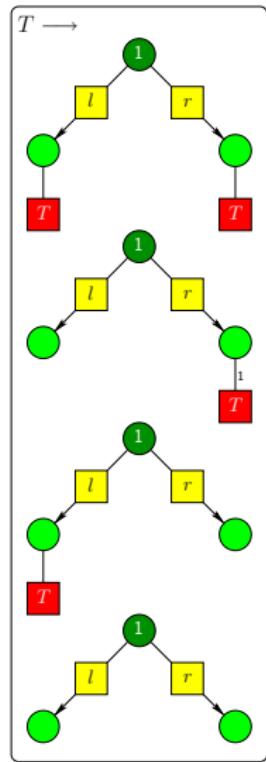
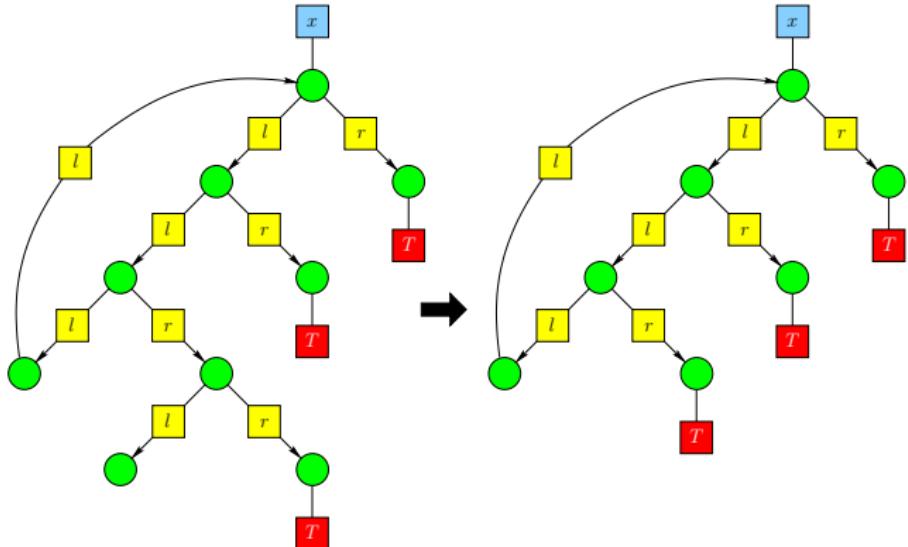
Idea

- Compute abstractions by **reverse application** of HRG rules
- Reverse application requires finding a **subgraph isomorphism**

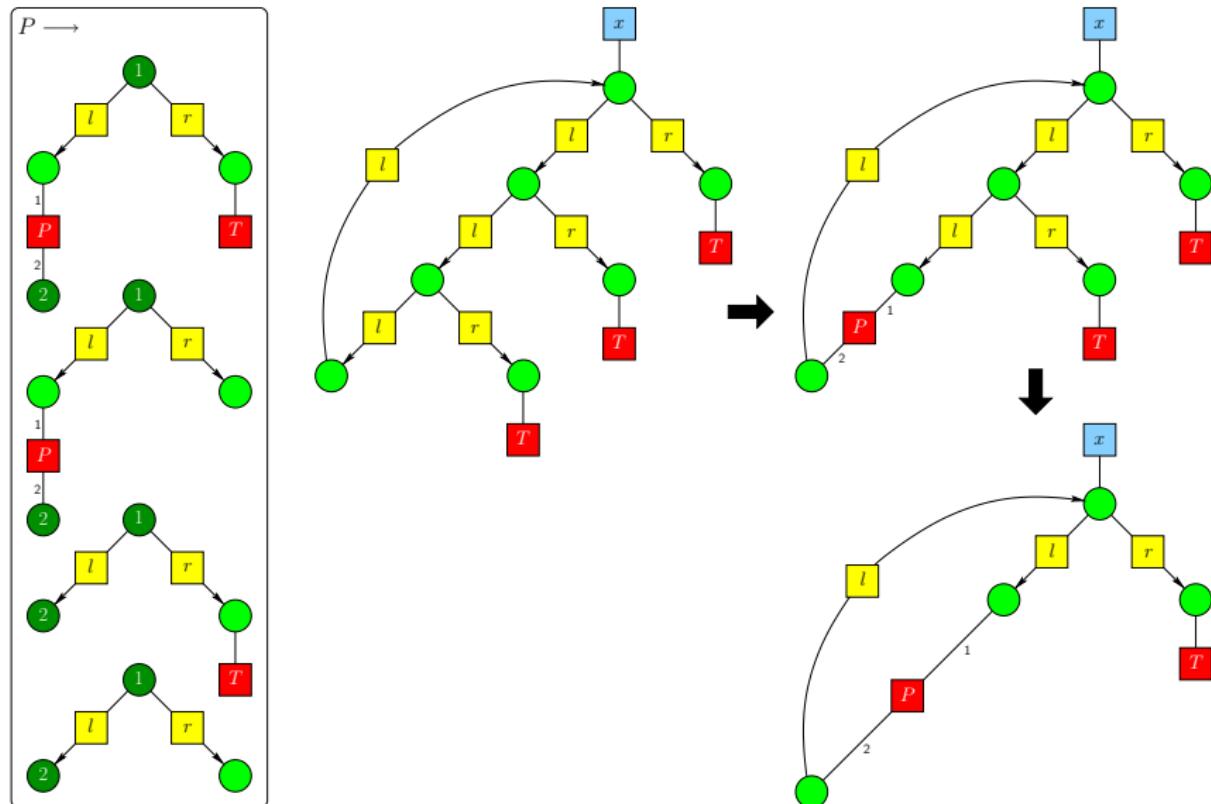


- Reverse rule application is **not confluent**

Abstraction Example - Binary Trees



Path Abstraction



Abstracting the Heap II

Correctness (but Over-Approximation)

By definition every concrete heap configuration can be regenerated from its abstractions.

$$\text{Abstractions}(H) = \{K \in \text{HGraph}_{\Sigma} \mid K \xrightarrow{g}^+ H\}$$

Abstracting the Heap II

Correctness (but Over-Approximation)

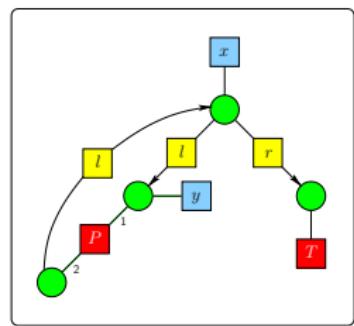
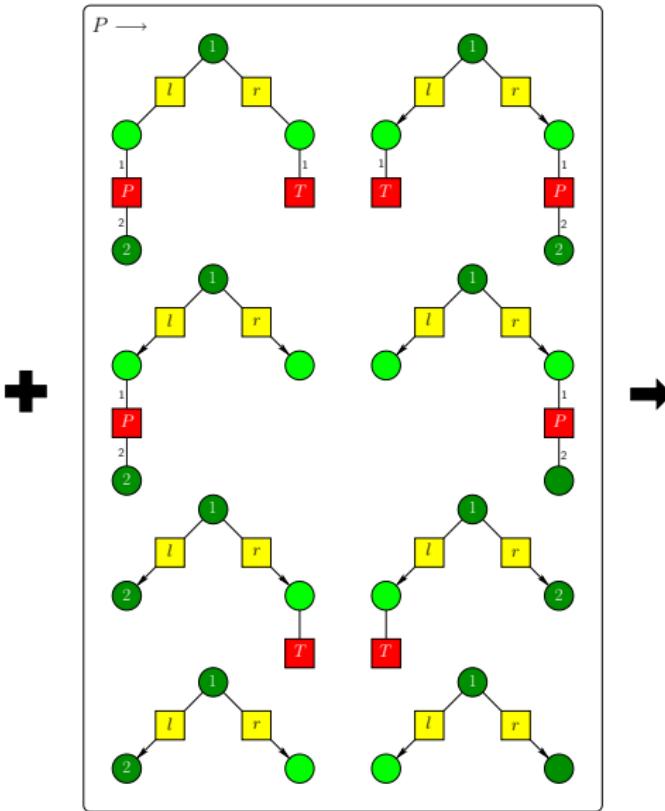
By definition every concrete heap configuration can be regenerated from its abstractions.

$$\text{Abstractions}(H) = \{K \in \text{HGraph}_{\Sigma} \mid K \xrightarrow{g}^+ H\}$$

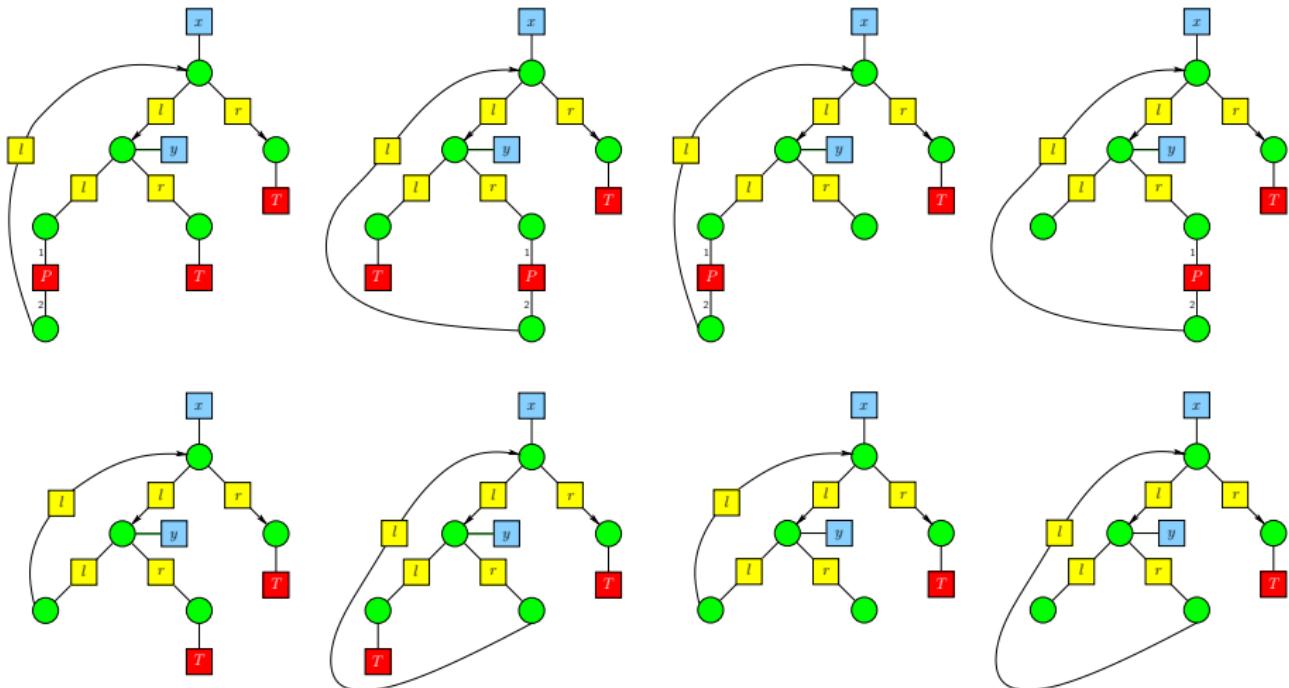
Abstraction alone insufficient

- Assignment easy since admissibility guarantees concrete edges near variables.
- **But:** assignments may yield inadmissible configurations
- **Idea:** materialize concrete objects from nonterminals (partial concretization)

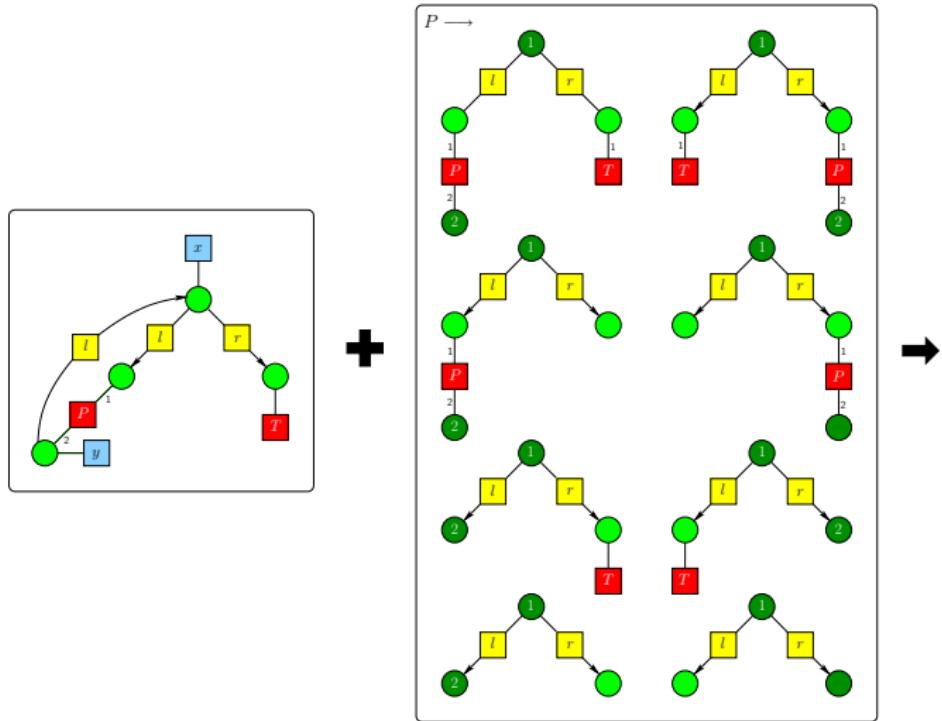
Partial Concretization by Forward Rule Application



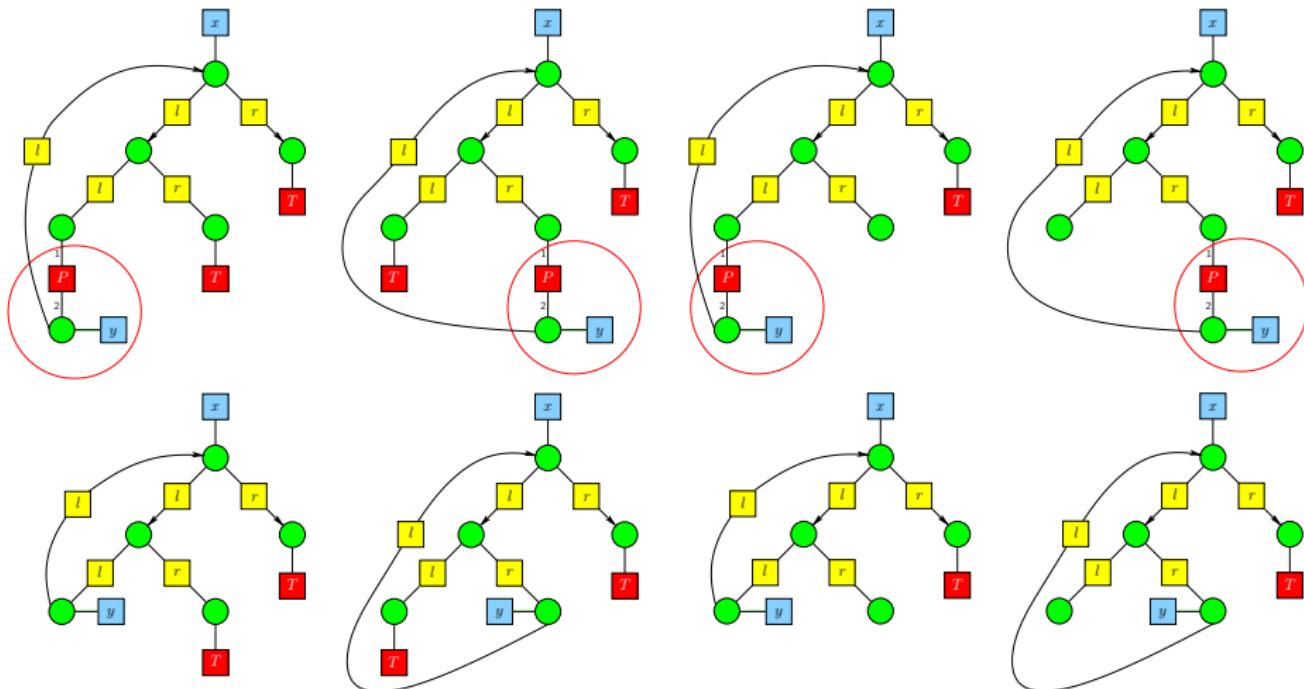
Resulting Hypergraphs



Different Situation



Inadmissible Results

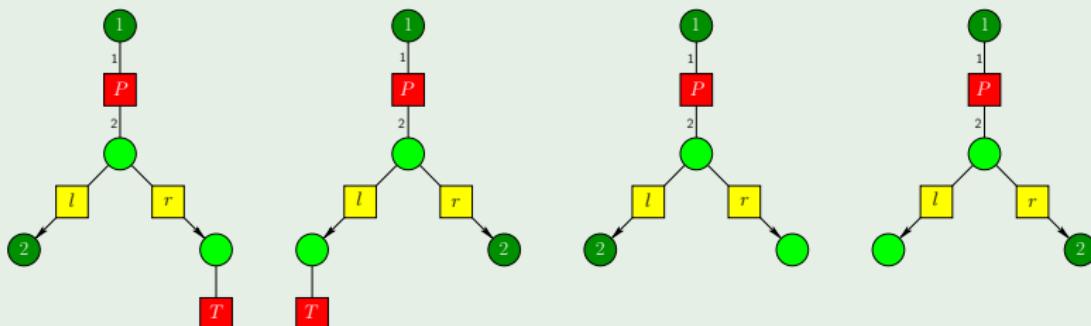


The Solution

Heap Abstraction Grammars

- introduce **redundant** rules allowing concretization “from below”
- additional rules must guarantee **completeness**

Additional Rules



Overview

- ① Hyperedge Replacement
- ② Abstraction and Concretization
- ③ Pointer Logic
- ④ Verification and Model Checking

Temporal Pointer Logic

- Combination of LTL operators and pointer comparisons
- Arbitrarily deep dereferencing

Formal Definition

Let \mathfrak{F} be a set of flags (err, term, ...).

$$\begin{aligned}
 \text{TPL}(\Sigma, \mathfrak{F}) ::= & \text{ TRUE } | \mathfrak{F} | \text{ DEREF}_\Sigma = \text{ DEREF}_\Sigma \\
 & | \neg \text{TPL}(\Sigma, \mathfrak{F}) | \text{TPL}(\Sigma, \mathfrak{F}) \wedge \text{TPL}(\Sigma, \mathfrak{F}) \\
 & | \mathbf{X} \text{TPL}(\Sigma, \mathfrak{F}) | \text{TPL}(\Sigma, \mathfrak{F}) \mathbf{U} \text{TPL}(\Sigma, \mathfrak{F})
 \end{aligned}$$

$\text{DEREF}_{\Sigma} ::= \text{null} \mid \text{Var}_{\Sigma} \mid \text{DEREF}_{\Sigma} . \text{Sel}_{\Sigma}$

$$\mathbf{F}\varphi \equiv \text{TRUE} \quad \mathbf{U}\varphi \quad \mathbf{G}\varphi \equiv \neg \mathbf{F}\neg\varphi$$

Semantics of TPL

Interpretation

- Interpret TPL formulae on infinite **and finite** sequences of **heap configurations**.
- Every trace of heap configurations has an associated trace of (sets of) **flags** of equal length.

Finite Traces

Let $t \in \text{aHHC}_{\Sigma}^*$ and $u \in \mathfrak{F}^*$ be a finite traces of length n . Implicit extension as follows:

$$\begin{array}{ccccccccc}
 t(1) & t(2) & \dots & t(n) & & t(n) & & t(n) & \dots \\
 u(1) & u(2) & \dots & u(n) & u(n) \cup \{\text{term}\} & u(n) \cup \{\text{term}\} & & & \dots
 \end{array}$$

Formal Semantics of Pointer Comparisons

Concrete Semantics

$$\text{CSAT}[\xi = \zeta, H] = \begin{cases} 1 & \mathcal{D}[\xi, H] = \mathcal{D}[\zeta, H] \neq \perp \\ 0 & \text{otherwise} \end{cases}$$

$\mathcal{D}[\zeta, H]$: “intuitive” concrete expression semantics

Formal Semantics of Pointer Comparisons

Concrete Semantics

$$\text{CSAT}[\xi = \zeta, H] = \begin{cases} 1 & \mathcal{D}[\xi, H] = \mathcal{D}[\zeta, H] \neq \perp \\ 0 & \text{otherwise} \end{cases}$$

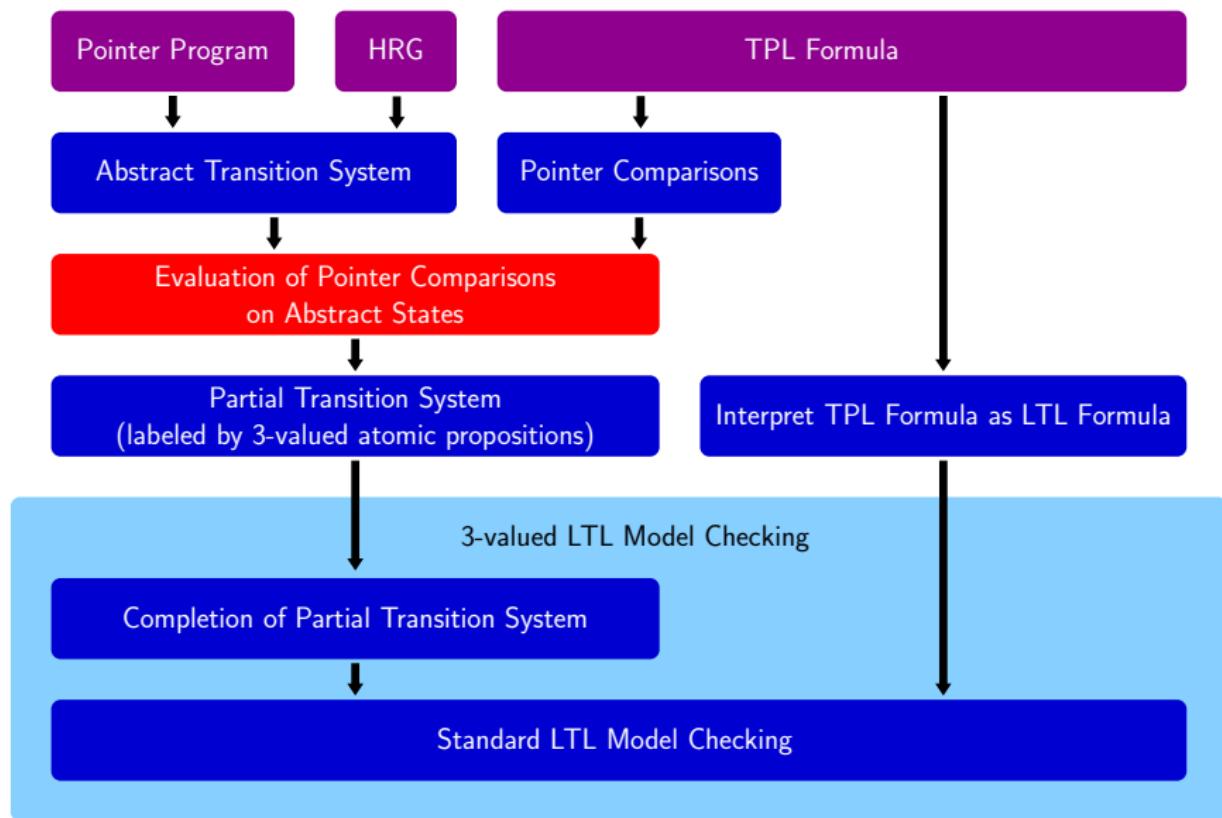
$\mathcal{D}[\zeta, H]$: “intuitive” concrete expression semantics

Abstract Semantics – 3 cases

$$\text{ASAT}[\gamma, H] = \begin{cases} 1 & \text{if } \forall H' \in \mathfrak{L}(G, H) : \text{CSAT}[\gamma, H'] = 1 \\ 0 & \text{if } \forall H' \in \mathfrak{L}(G, H) : \text{CSAT}[\gamma, H'] = 0 \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

Overview

- ① Hyperedge Replacement
- ② Abstraction and Concretization
- ③ Pointer Logic
- ④ Verification and Model Checking

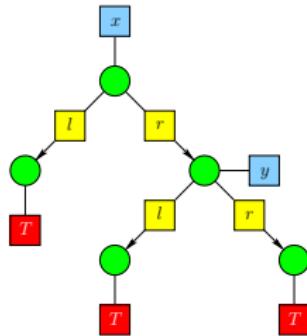


Evaluating Pointer Comparisons

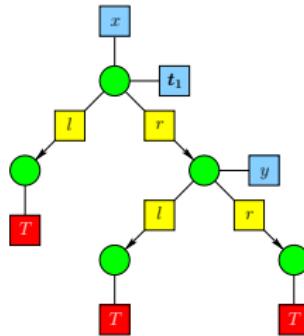
$$x.a_1.a_2...a_m = y.b_1.b_2...b_n$$

- Use two auxiliary variables t_1 and t_2 to walk along “paths”
- Assignments followed (not preceded) by concretization steps
- Check if in all concretizations $t_1 = t_2$

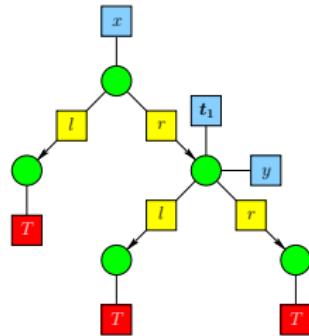
Does ASAT $\llbracket x.r.l.r = y.l.r, H \rrbracket = 1$ hold?



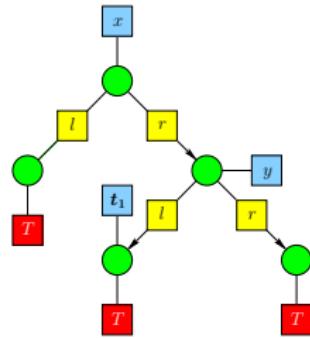
Does ASAT $\llbracket x.r.l.r = y.l.r, H \rrbracket = 1$ hold?

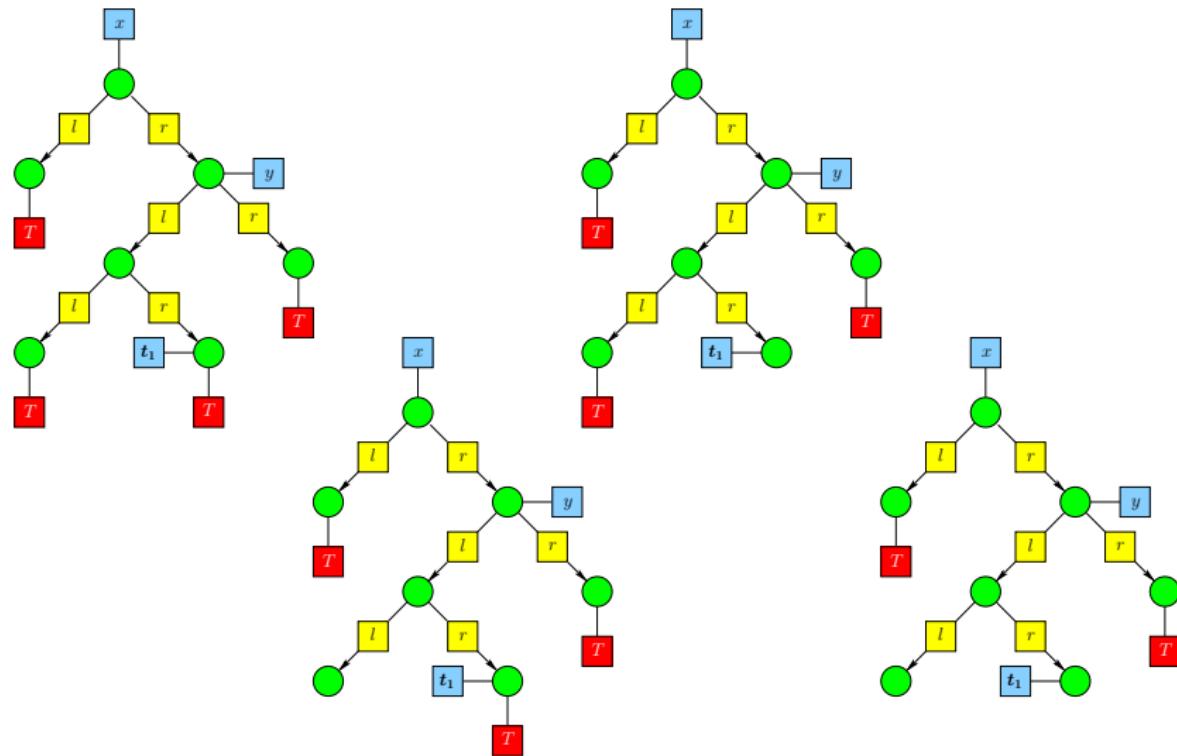


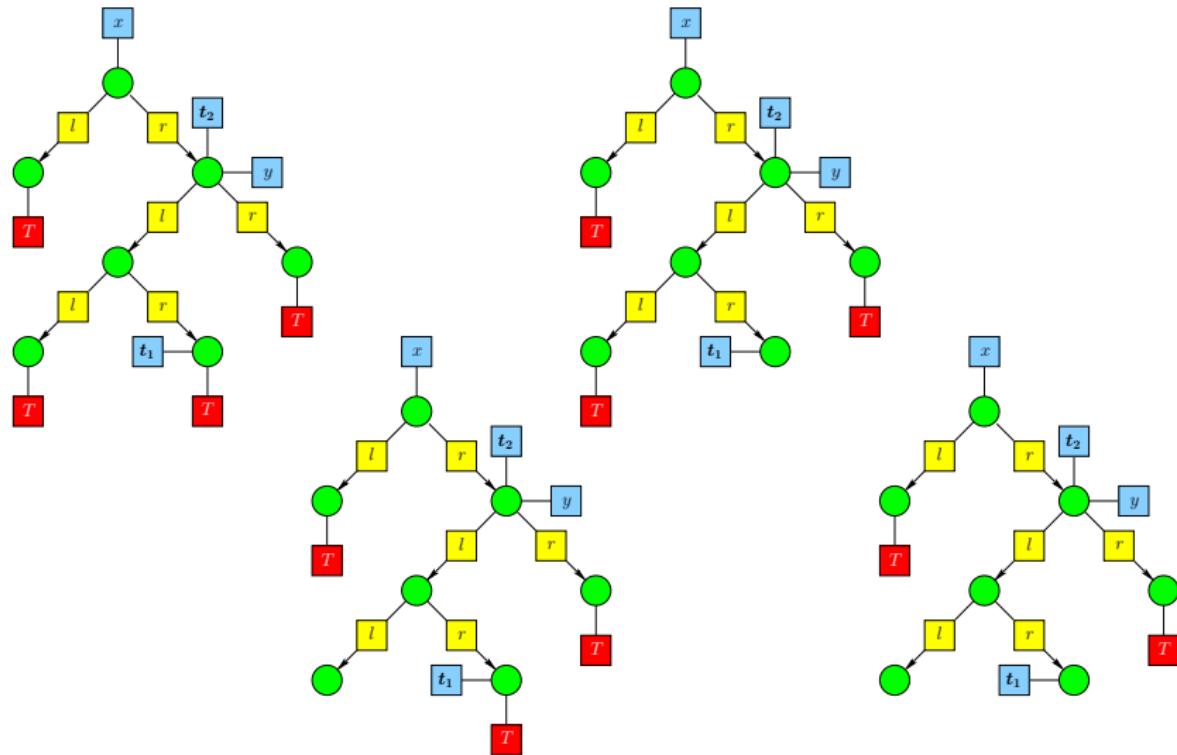
Does $\text{ASAT}[\![x.r.l.r = y.l.r, H]\!] = 1$ hold?

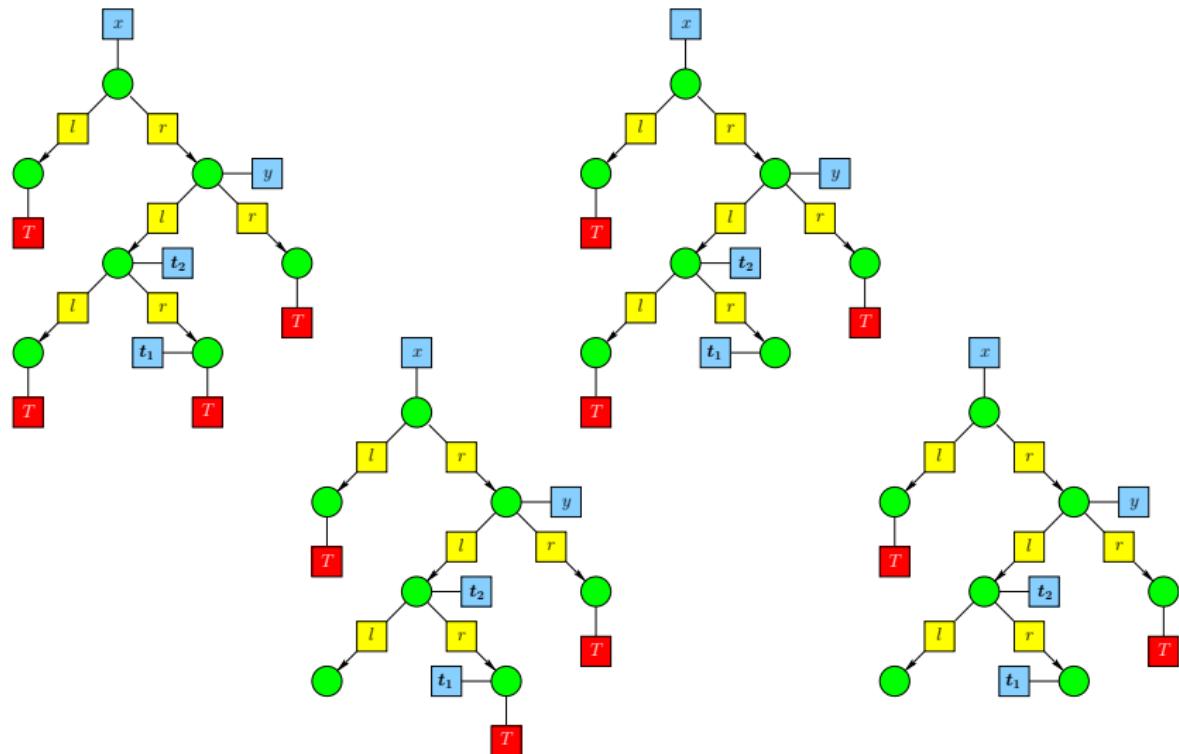


Does ASAT $\llbracket x.r.l.r = y.l.r, H \rrbracket = 1$ hold?

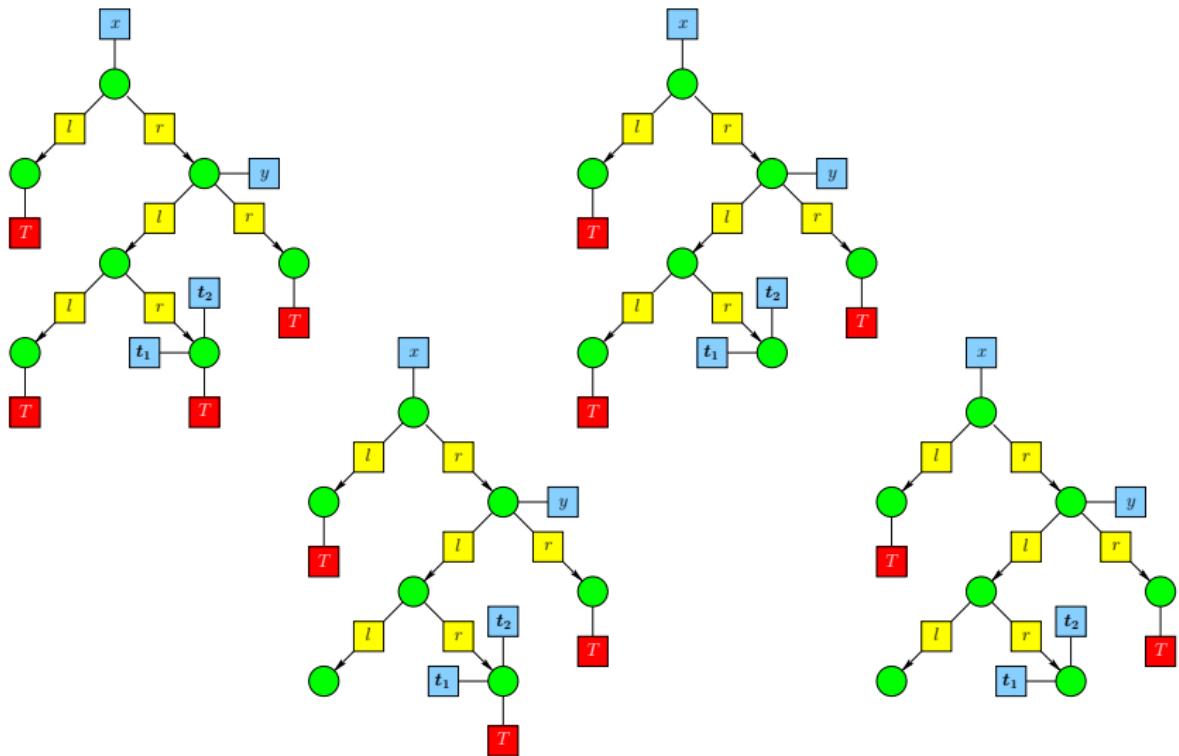


Does ASAT $\llbracket x.r.l.r = y.l.r, H \rrbracket = 1$ hold?

Does ASAT $\llbracket x.r.l.r = y.l.r, H \rrbracket = 1$ hold?

Does ASAT $\llbracket x.r.l.r = y.l.r, H \rrbracket = 1$ hold?

$$\forall K : \text{CSAT}[\![t_1 = t_2, H]\!] = 1 \Rightarrow \text{ASAT}[\![\dots]\!] = 1$$

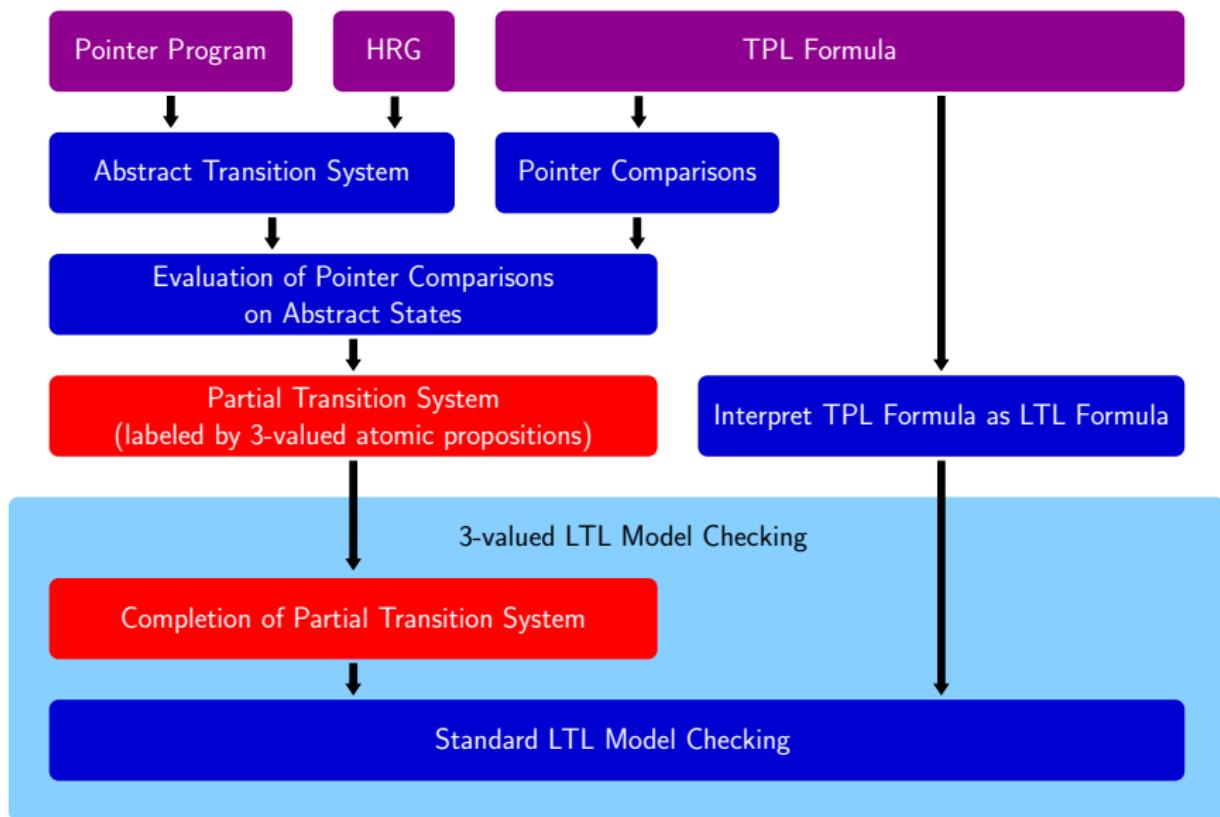


A Special Case

Limiting Dereferencing Depth

When dereferencing depth in pointer comparisons is limited to one, we **always** get clearly determined results (0 or 1).

Reason: admissibility of heap configurations



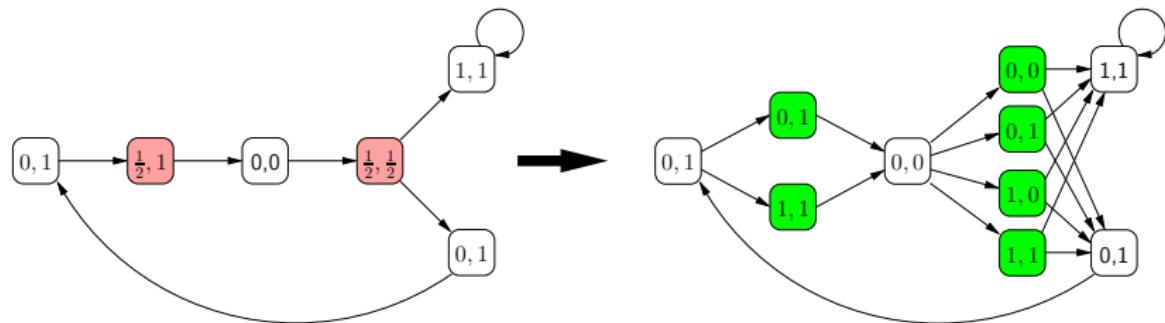
Three-valued LTL Model Checking

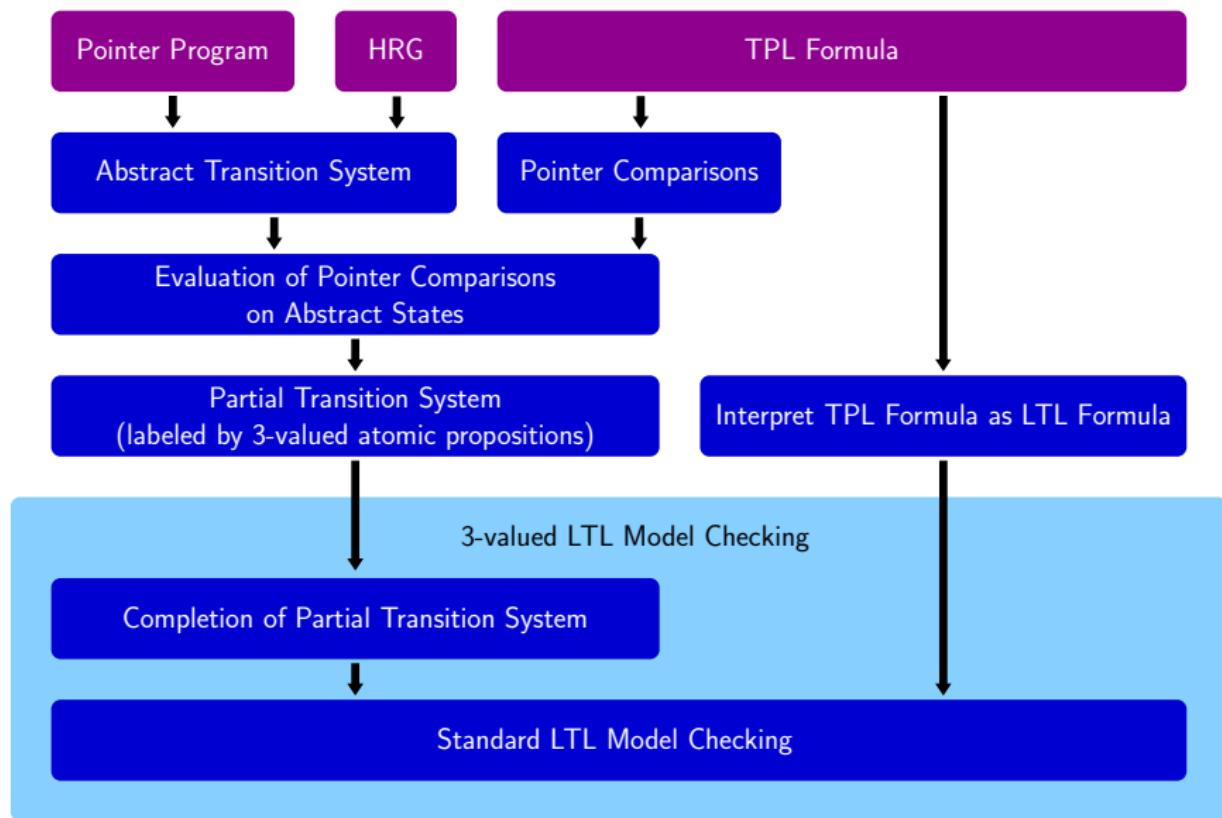
Setting

- Evaluation of pointer comparisons can result in either $0, 1$ or $\frac{1}{2}$
- Transition system has **3-valued** labeling

Transformation

Transform transition system to represent all possibilities for $\frac{1}{2}$ -valued predicates.





Quantifiers

Quantified TPL

$$Q_1 X_1 Q_2 X_2 \dots Q_k X_k : \varphi(X_1, X_2, \dots, X_k)$$

- Quantification over heap objects present in the initial states
- Preservation of object identities between states by **nondeterministic marking** with variables
- For every quantor an additional marking is necessary (exponential blow-up of state space)

Example: The Deutsch-Schorr-Waite Algorithm

Pointer Safety: No pointer errors / null dereferences

Shape Safety: Input structure is retained

Completeness: all vertices are visited at least once

$$\forall \textcolor{red}{X} : \neg (cur \neq \textcolor{red}{X} \text{ } \mathbf{U} \text{ } \text{term})$$

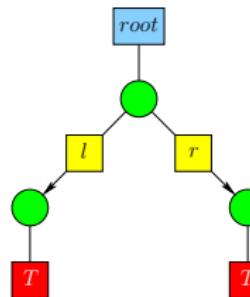
Termination: finally X never points to cur anymore

$$\forall \textcolor{red}{X} : \mathbf{FG}(cur \neq \textcolor{red}{X})$$

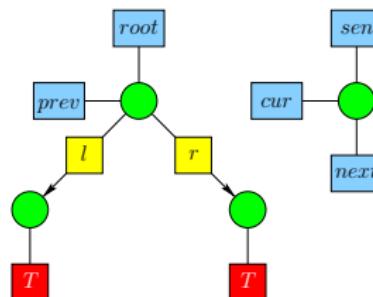
Correctness: for all vertices the left- and right successors are the same after program termination

$$\begin{aligned} \forall \textcolor{red}{X} \forall \textcolor{green}{X}_l \forall \textcolor{blue}{X}_r : \textcolor{red}{X}.l = \textcolor{green}{X}_l \wedge \textcolor{red}{X}.r = \textcolor{blue}{X}_r \rightarrow \\ ((\textcolor{red}{X} = \text{root} \rightarrow \mathbf{G}(\textcolor{red}{X} = \text{root})) \\ \wedge \mathbf{G}(\text{term} \rightarrow (\textcolor{red}{X}.l = \textcolor{green}{X}_l \wedge \textcolor{red}{X}.r = \textcolor{blue}{X}_r))) \end{aligned}$$

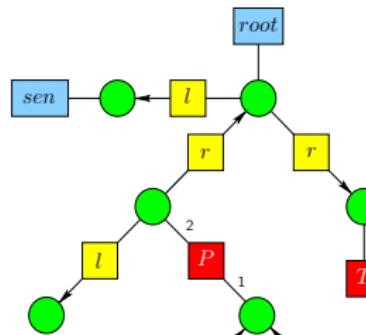
Experimental Results: Verifying the DSW Algorithm



an initial heap



a final heap



an intermediate heap state

Experimental Results: Verifying the DSW Algorithm

	no marking	1 marking	3 markings	TVLA
Initial States	5	185	962	
Number of States	20,678	6,220,798	35,983,627	> 80,000
Number of Transitions	23,359	7,078,257	40,909,648	
State Space Gen. (h:min:sec)	<0:01	10:14	1:18:03	
Memory Consumption	41 MB	788 MB	3,900 MB	150 MB
Pointer Safety	on-the-fly	-	-	
Shape Safety	on-the-fly	-	-	
Completeness (min:sec)	-	0:16	-	
Termination (min:sec)	-	0:39	-	
Correctness (min:sec)	-	-	4:05	
Total Time (State Space Gen. + all Properties)			1:28:35	<9:00:00

Conclusion

- analysis and verification of **complex** data structures
- **highly parametrized** framework
- **handling of inconsistencies** wrt. the data structure
- more **intuitive** than other approaches
- promising experimental results

Conclusion

- analysis and verification of **complex** data structures
- **highly parametrized** framework
- **handling of inconsistencies** wrt. the data structure
- more **intuitive** than other approaches
- promising experimental results

Additional Features

- abstraction-only grammars
- optimized concretization possible
- unbounded thread creation [Noll and Rieger, 2008]

Conclusion

- analysis and verification of **complex** data structures
- **highly parametrized** framework
- **handling of inconsistencies** wrt. the data structure
- more **intuitive** than other approaches
- promising experimental results

Additional Features

- abstraction-only grammars
- optimized concretization possible
- unbounded thread creation [Noll and Rieger, 2008]

Outlook

- **learning** of HRGs
- **typed/attributed** HRGs

(FM 2008) Thomas Noll and Stefan Rieger. **Verifying Dynamic Pointer-Manipulating Threads**

(ICGT 2008) Stefan Rieger and Thomas Noll. **Abstracting Complex Data Structures by Hyperedge Replacement**

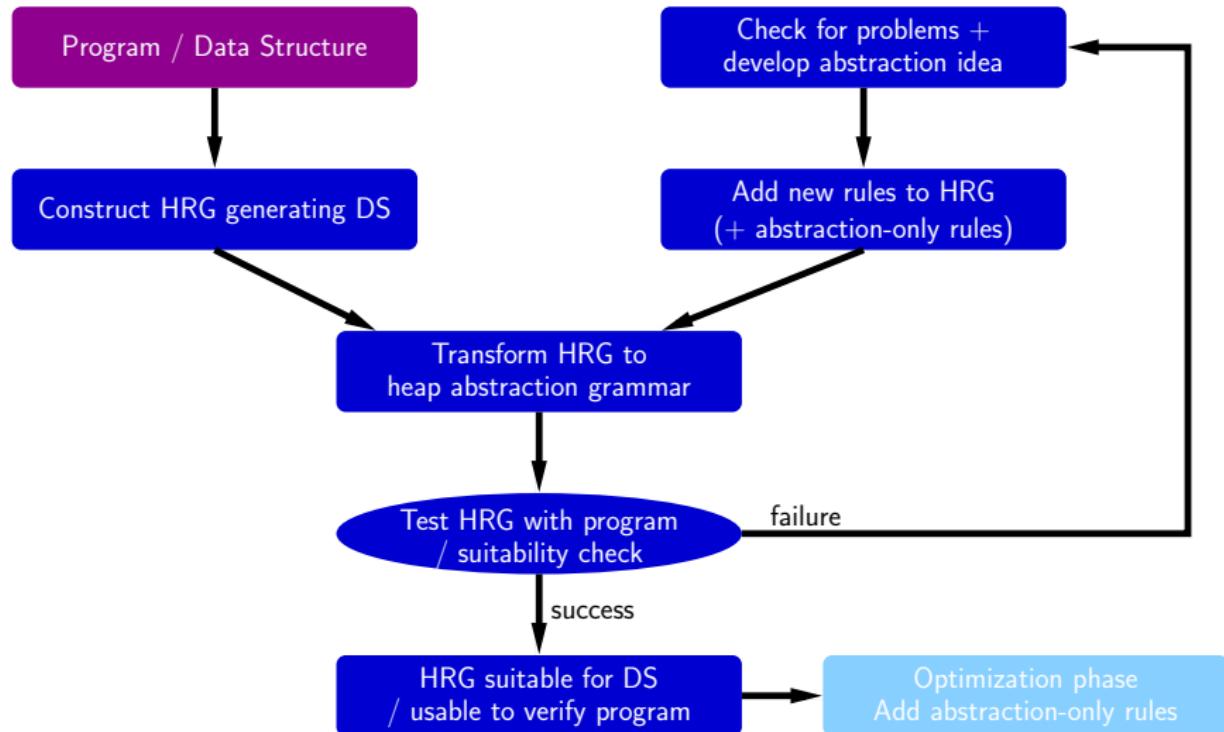
(TTSS 2009) Jonathan Heinen, Thomas Noll, and Stefan Rieger. **Juggrnaut: Graph Grammar Abstraction for Unbounded Heap Structures (to be published)**

(ICTAC 2007) Thomas Noll and Stefan Rieger. **Composing Transformations to Optimize Linear Code**

Thank you for your attention!

- (FM 2008) Thomas Noll and Stefan Rieger. **Verifying Dynamic Pointer-Manipulating Threads**
- (ICGT 2008) Stefan Rieger and Thomas Noll. **Abstracting Complex Data Structures by Hyperedge Replacement**
- (TTSS 2009) Jonathan Heinen, Thomas Noll, and Stefan Rieger. **Juggrnaut: Graph Grammar Abstraction for Unbounded Heap Structures (to be published)**
- (ICTAC 2007) Thomas Noll and Stefan Rieger. **Composing Transformations to Optimize Linear Code**

Development of HRGs



Partial Concretization II

Solving the Problem

- Enforcing HRGs to be in **apex form** (for all $X \rightarrow H$, the nodes ext_H are only adjacent to terminals)

Partial Concretization II

Solving the Problem

- Enforcing HRGs to be in **apex form** (for all $X \rightarrow H$, the nodes ext_H are only adjacent to terminals)
⇒ **impractical** [Engelfriet, 1992]

Partial Concretization II

Solving the Problem

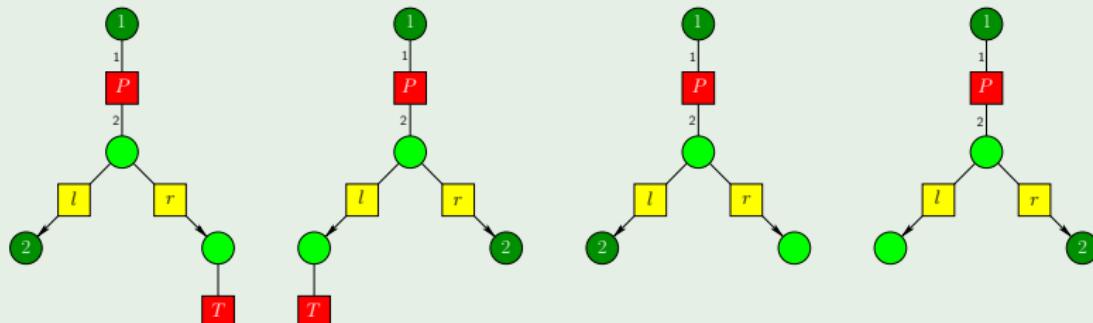
- Enforcing HRGs to be in **apex form** (for all $X \rightarrow H$, the nodes ext_H are only adjacent to terminals)
 - ⇒ **impractical** [Engelfriet, 1992]
 - ⇒ Introducing **additional redundant** grammar-rules that do not modify the language

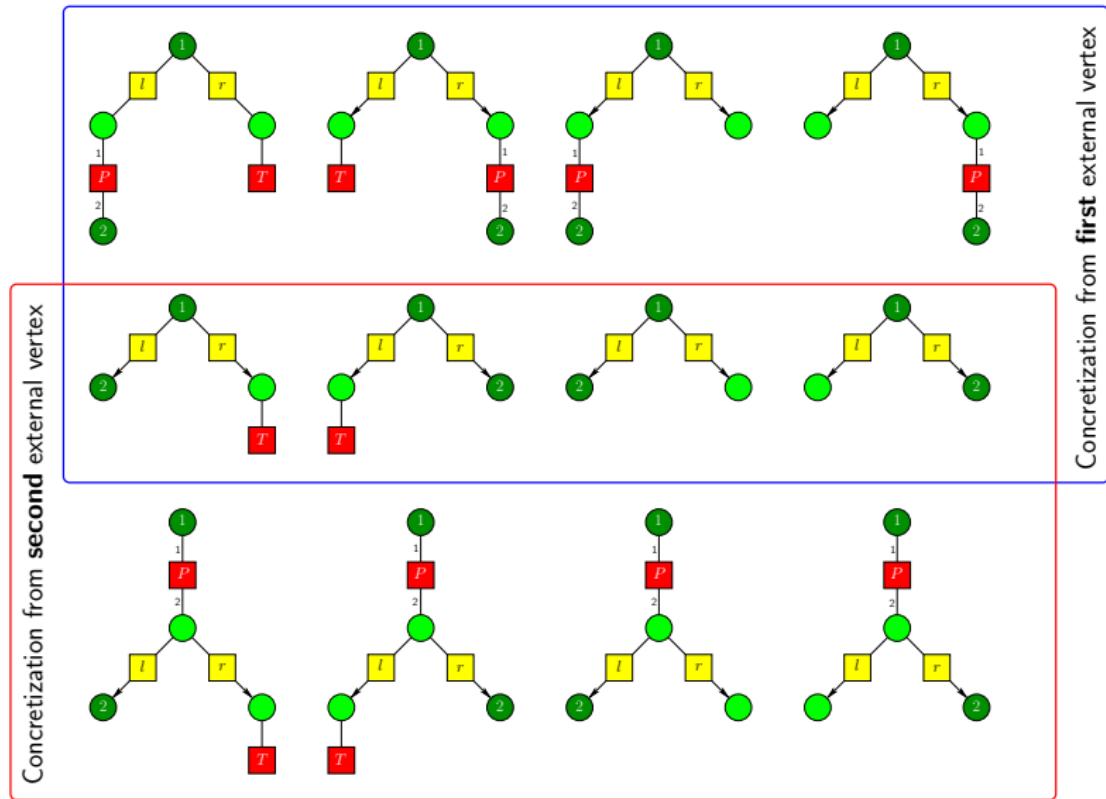
Partial Concretization II

Solving the Problem

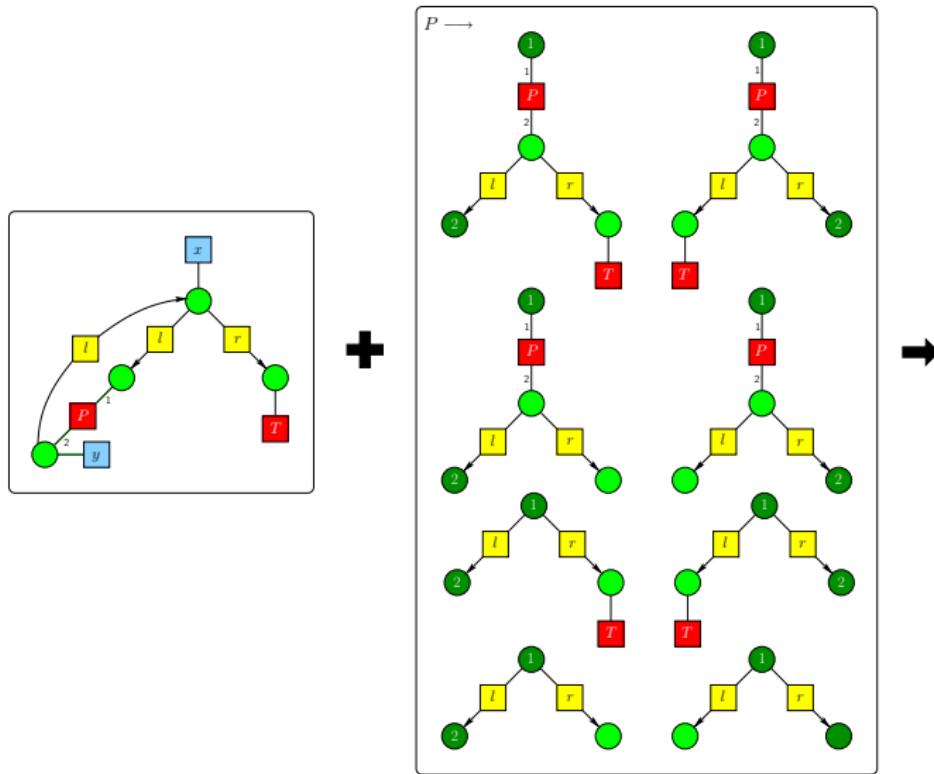
- Enforcing HRGs to be in **apex form** (for all $X \rightarrow H$, the nodes ext_H are only adjacent to terminals)
- ⇒ **impractical** [Engelfriet, 1992]
- ⇒ Introducing **additional redundant** grammar-rules that do not modify the language

Additional Rules

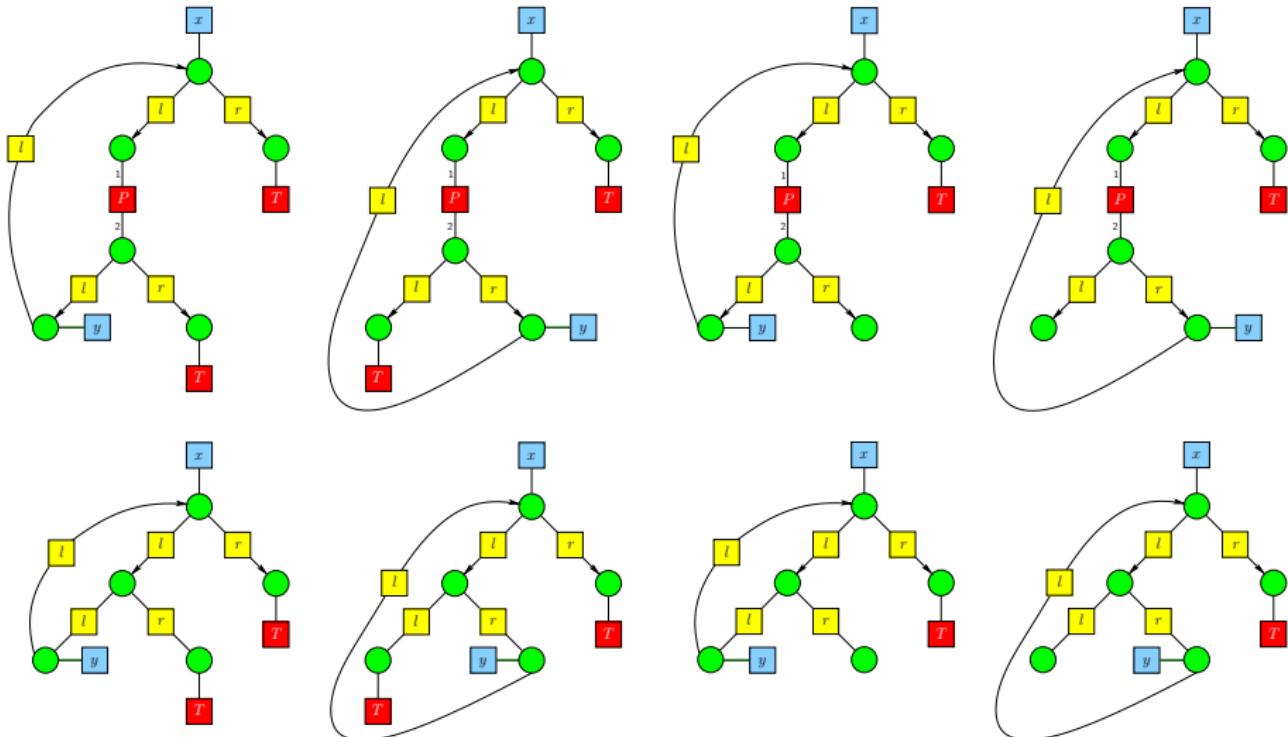


All P -Rules

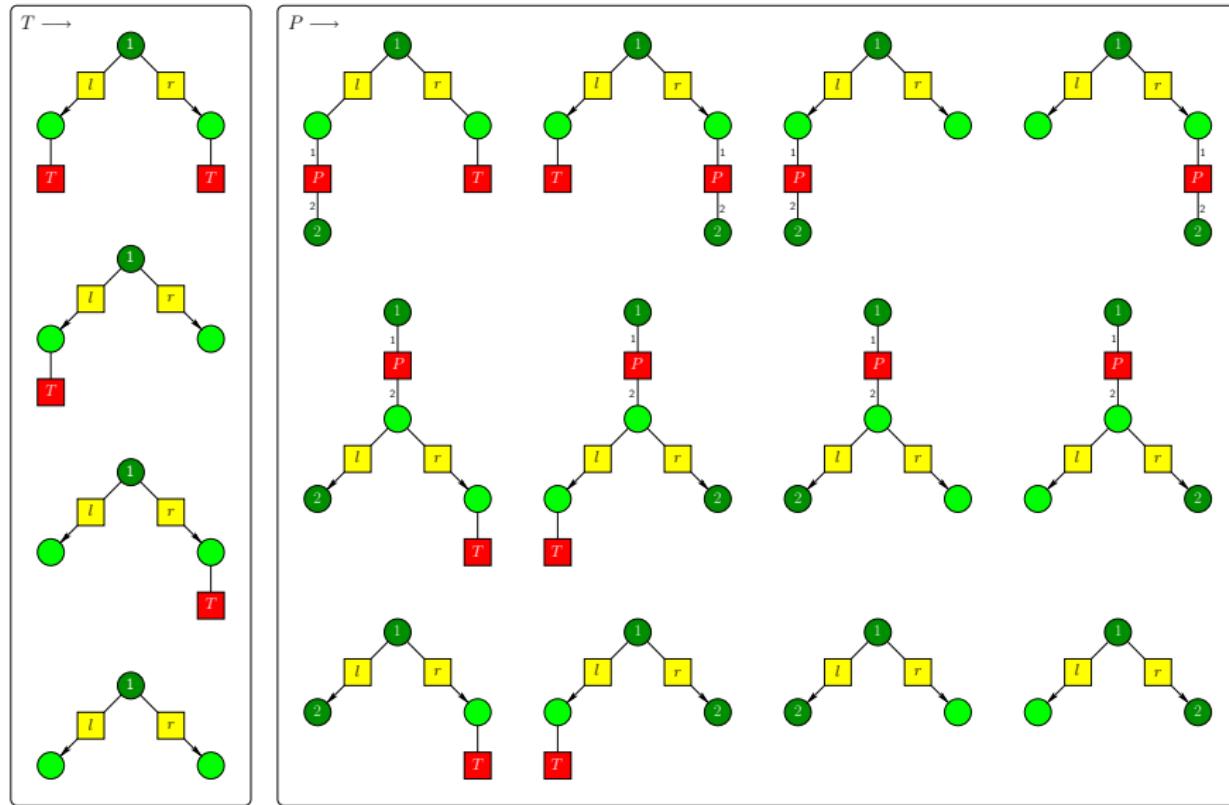
Again the Example



Admissible Results



Entire Grammar



- Bakewell, A., Plump, D., and Runciman, C. (2004a).
Checking the shape safety of pointer manipulations.
In *Relational and Kleene-Algebraic Methods in Computer Science '03*, volume 3051 of *Lecture Notes in Computer Science*, pages 48–61. Springer.
- Bakewell, A., Plump, D., and Runciman, C. (2004b).
Specifying pointer structures by graph reduction.
In *Applications of Graph Transformations with Industrial Relevance '03*, volume 3062 of *Lecture Notes in Computer Science*, pages 30–44. Springer.
- Baldan, P., Corradini, A., and König, B. (2004).
Verifying Finite-State Graph Grammars: An Unfolding-Based Approach.
In *CONCUR '04*, volume 3170 of *Lecture Notes in Computer Science*, pages 83–98. Springer.
- Baldan, P. and König, B. (2002).

Approximating the behaviour of graph transformation systems.
In *1st International Conference on Graph Transformations, ICGT 2002*, volume 2505 of *Lecture Notes in Computer Science*, pages 14–29. Springer.

- Beyer, D., Henzinger, T. A., and Théoduloz, G. (2006).
Lazy shape analysis.
In *Computer Aided Verification, 18th International Conference, CAV '06*, volume 4144 of *Lecture Notes in Computer Science*, pages 532–546. Springer.
- Dodds, M. and Plump, D. (2006).
Extending C for checking shape safety.
In *Graph Transformation for Verification and Concurrency '05*, volume 154(2) of *ENTCS*, pages 95–112. Elsevier.
- Engelfriet, J. (1992).
A Greibach Normal Form for Context-Free Graph Grammars.

In *19th International Colloquium on Automata, Languages and Programming, ICALP 1992*, volume 623 of *Lecture Notes in Computer Science*, pages 138–149. Springer.

- Kastenberg, H. and Rensink, A. (2006).
Model checking dynamic states in GROOVE.
In *Model Checking Software (SPIN '06)*, volume 3925 of *Lecture Notes in Computer Science*, pages 299–305. Springer.
- Noll, T. and Rieger, S. (2008).
Verifying dynamic pointer-manipulating threads.
In *15th International Symposium on Formal Methods (FM '08)*, volume 5014 of *Lecture Notes in Computer Science*, pages 84–99. Springer.
- O'Hearn, P. W., Yang, H., and Reynolds, J. C. (2004).
Separation and information hiding.

In *Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004*, pages 268–280. ACM Press.

- Rensink, A. (2004).
Canonical graph shapes.
In *Proc. of 13th European Symposium on Programming (ESOP '04)*, volume 2986 of *Lecture Notes in Computer Science*, pages 401–415. Springer.
- Rensink, A. and Distefano, D. (2006).
Abstract graph transformation.
In *Proc. of Int. Workshop on Software Verification and Validation (SVV '05)*, volume 157(1) of *Electr. Notes Theor. Comput. Sci.*
- Reynolds, J. C. (2002).
Separation logic: A logic for shared mutable data structures.

In *IEEE Symposium on Logic in Computer Science, LICS 2002*,
pages 55–74. IEEE Computer Society.

Sagiv, M., Reps, T., and Wilhelm, R. (2002).
Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems,
24(3):217–298.