
Verification of Pointer Programs

Stefan Rieger

MOVES: Software Modeling and Verification
RWTH Aachen University, Germany

23.09.2009

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Pointers

Pointers are indispensable and omnipresent

• object-oriented programming

• dynamic memory management and data structures

• data bases and index structures

• ...

Stefan Rieger Verification of Pointer Programs 2/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Pointers

Pointers are indispensable and omnipresent

• object-oriented programming

• dynamic memory management and data structures

• data bases and index structures

• ...

Difficulties

• aliasing creates dependencies

• destructive updates

• dereferencing invalid/null pointers

⇒ automatic verification desirable

Stefan Rieger Verification of Pointer Programs 2/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

prev

curv

l

next

r

S U

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev; ←

8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

l

root

prev

curv

next

r

S U

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur; ←

9 cur := next;
10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

next

l

v cur

prevr

root

S U

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

l

v

r

root

S U

prev

cur

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur; ←

9 cur := next;
10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

r

v prev

r l

cur

S U

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

r

v

lr

prev

S U

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

r

v

lr

S U

cur

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev; ←

8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

l

l

root

r

v

r

S U

cur

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur; ←

9 cur := next;
10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

r

v

ll

cur

S U

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

r

v

ll

S U

prev

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l; ←

6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

cur

root

r

v

ll

S U

next

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

cur

root

r

v

ll

S U

next

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur; ←

9 cur := next;
10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

r

v next

l

cur

S U

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l; ←

6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

prev

root

r

v

l

S U

cur next

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

prev

root

r

v

l

S U

cur

next

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev; ←

8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

prev

l

root

r

v

S U

cur

next

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur; ←

9 cur := next;
10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

next

curv

l

r

prev

S U

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

v

l

r

S U

prev

cur

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur; ←

9 cur := next;
10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

l

prevv

r r

cur

S U

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

l

v

r r

prev

S U

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

l

v

r r

S U

cur

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev; ←

8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

l

l

root

v

r r

S U

cur

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur; ←

9 cur := next;
10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

l

v

l

cur

r

S U

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

l

v

lr

S U

prev

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

cur

root

l

v

lr

S U

next

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur; ←

9 cur := next;
10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

next

cur

root

l

v

r

S U

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r; ←

7 cur.r := prev;
8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

next

root

l

v

r

S U

cur

prev

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev; ←

8 prev := cur;
9 cur := next;

10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

next

l

root

v

r

S U

cur

prev

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

1 if root = null goto 15;
2 new(sen);
3 prev := sen;
4 cur := root;
5 next := cur.l;
6 cur.l := cur.r;
7 cur.r := prev;
8 prev := cur; ←

9 cur := next;
10 if (cur = sen) goto 15;
11 if (cur 6= null) goto 5;
12 cur := prev;
13 prev := null;
14 goto 5;

root

next

curv

r

prev

l

S U

Stefan Rieger Verification of Pointer Programs 3/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Verification of Pointer Structures

Problems

• handling inputs of arbitrary size
• dynamic memory allocation at runtime

⇒ possibly infinite state space

Stefan Rieger Verification of Pointer Programs 4/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Verification of Pointer Structures

Problems

• handling inputs of arbitrary size
• dynamic memory allocation at runtime

⇒ possibly infinite state space

Approach: Over-Approximation by Abstraction

• use HRGs to model data structures
• abstraction and concretization based on HRG rules

⇒ finite state spaces for e.g. model checking

Stefan Rieger Verification of Pointer Programs 4/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Verification of Pointer Structures

Problems

• handling inputs of arbitrary size
• dynamic memory allocation at runtime

⇒ possibly infinite state space

Approach: Over-Approximation by Abstraction

• use HRGs to model data structures
• abstraction and concretization based on HRG rules

⇒ finite state spaces for e.g. model checking

Simple Pointer Programming Language (only pointers as data)

• pointer assignment (x.a := y.b)
• creation of objects (new(x))
• limited dereferencing depth (no real restriction)

Stefan Rieger Verification of Pointer Programs 4/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Related Work

Shape Analysis represents unbounded heap graphs by three-valued
logical structures [Sagiv et al., 2002, Beyer et al., 2006]

Separation Logic is an extension of Hoare logic
[Reynolds, 2002, O’Hearn et al., 2004]

Graph Transformation is used in different approaches:

• abstraction and verification of graph transformation systems
[Baldan and König, 2002, Baldan et al., 2004,
Kastenberg and Rensink, 2006]

• model pointer assignments directly by graph transformations
[Rensink, 2004, Rensink and Distefano, 2006]

• graph reduction grammars [Bakewell et al., 2004a,
Bakewell et al., 2004b, Dodds and Plump, 2006]

Stefan Rieger Verification of Pointer Programs 5/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Alphabets and Hypergraphs

Ranked Alphabet Σ

• ranking function rk : Σ → N
• Σ consists of terminals and nonterminals: Σ = TΣ ⊎ NΣ

Hypergraphs

• hyperedges connect an arbitrary number of vertices

• hyperedges are labeled with symbols from Σ

• rank of label determines the arity of the edge

• external vertices are used for hyperedge replacements

1

n

p

1 2

12

n

p

1 2

12

1 2X

3

2

Stefan Rieger Verification of Pointer Programs 6/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Representing Heap States

Heapgraph → Hypergraph

Rank of Edges Type of Label

pointers 2 terminal
program variables 1 variable (terminal)
abstract subgraphs arbitrary nonterminal

1 2

34

x

s

X
1

2

x

l r

l r

P
T

T

program variable

nonterminal edge

pointer with selector s

omit tentacle numbers when order clear

l

Stefan Rieger Verification of Pointer Programs 7/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Concrete and Abstract Heaps

Abstract Heap

A heap configuration (=hypergraph) is abstract, if it contains at
least one nonterminal edge.

Stefan Rieger Verification of Pointer Programs 8/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Concrete and Abstract Heaps

Abstract Heap

A heap configuration (=hypergraph) is abstract, if it contains at
least one nonterminal edge.

Admissibility

A heap configuration is
admissible if nodes referred by
variables are not adjacent to
nonterminal edges.

Useful for abstract semantics
(“concrete assignment”).

Inadmissible

1

2

r

z

y

x

rl

P
T

Stefan Rieger Verification of Pointer Programs 8/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Overview

1 Hyperedge Replacement

2 Abstraction and Concretization

3 Pointer Logic

4 Verification and Model Checking

Stefan Rieger Verification of Pointer Programs 9/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Hyperedge Replacement

Executing a hyperedge replacement

1 Hypergraph H with hyperedge e ∈ EH s.t. ℓ(e) ∈ NΣ

2 Hypergraph R with |extR| = rk(e)

Example

r

1

2

x

l

P

l r

1

2

P T

2

1

1

2

x

l r

l r

P
T

l l

Stefan Rieger Verification of Pointer Programs 10/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Hyperedge Replacement Grammars

Definition

A HRG G is a set of productions of the form X → R with
X ∈ NΣ and hypergraph R where |extR| = rk(X).

Example: HRG for (fully branched) Binary Trees

l r l r

1

T T T

1

l r l r

1

T

1

Stefan Rieger Verification of Pointer Programs 11/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Properties

Context-freeness

HRGs are context-free and confluent.

Applicability

A rule is applicable to a hypergraph if it contains a nonterminal
that matches the rule’s LHS.

Derivation

A derivation is a sequence H0

G
=⇒ H1

G
=⇒ H2

G
=⇒ ... where each

Hi

G
=⇒ Hi+1 is a application of a rule from G.

Stefan Rieger Verification of Pointer Programs 12/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Properties

Context-freeness

HRGs are context-free and confluent.

Applicability

A rule is applicable to a hypergraph if it contains a nonterminal
that matches the rule’s LHS.

Derivation

A derivation is a sequence H0

G
=⇒ H1

G
=⇒ H2

G
=⇒ ... where each

Hi

G
=⇒ Hi+1 is a application of a rule from G.

Graph Language of HRG G

L(G,H) = {K ∈ HGraphTΣ
| H

G
=⇒

⋆

K}
(= all terminal graphs which are derivable from H)

Stefan Rieger Verification of Pointer Programs 12/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Overview

1 Hyperedge Replacement

2 Abstraction and Concretization

3 Pointer Logic

4 Verification and Model Checking

Stefan Rieger Verification of Pointer Programs 13/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Abstracting the Heap

Abstraction

For HRG G and hypergraph H the set of abstractions of H is

Abstractions(H) = {K ∈ HGraphΣ | K
G

=⇒
+

H}

If LHS < RHS for all rules in G, Abstractions(H) is finite.

Idea

• Compute abstractions by reverse application of HRG rules
• Reverse application requires finding a subgraph isomorphism

• Reverse rule application is not confluent

Stefan Rieger Verification of Pointer Programs 14/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Abstraction Example - Binary Trees

T

l r

1

l r

1

T

x

l r

T
l

l
T

r

r

x

l r

T
l

l

T

l r

T
r

r

T −→

l r

1

T T

l r

1

1

T

ll

Stefan Rieger Verification of Pointer Programs 15/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Path Abstraction

T

l r

1

2

l r

1

2

l r

l r

1

TP

2 1

P

2 1

2

T1

2

P −→ x

l r

T
l

l
T

r

r

x

l r

T
1

2

x

l r

T
l

T

r

2

1

P

P

l

l

l

Stefan Rieger Verification of Pointer Programs 16/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Abstracting the Heap II

Correctness (but Over-Approximation)

By definition every concrete heap configuration can be regenerated
from its abstractions.

Abstractions(H) = {K ∈ HGraphΣ | K
G

=⇒
+

H}

Stefan Rieger Verification of Pointer Programs 17/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Abstracting the Heap II

Correctness (but Over-Approximation)

By definition every concrete heap configuration can be regenerated
from its abstractions.

Abstractions(H) = {K ∈ HGraphΣ | K
G

=⇒
+

H}

Abstraction alone insufficient

• Assignment easy since admissibility guarantees concrete edges
near variables.

• But: assignments may yield inadmissible configurations

• Idea: materialize concrete objects from nonterminals (partial
concretization)

Stefan Rieger Verification of Pointer Programs 17/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Partial Concretization by Forward Rule Application

l rl r

2

1 1

P

x

l r

T
2

1

y

T

PP

P

l r

11

2

l r

1 1

2

1

2 2

1

TP

P −→

l r

1

2

l r

1

2

2

1 1

l r l r

1

2

1

2

T T

l

Stefan Rieger Verification of Pointer Programs 18/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Resulting Hypergraphs

xx

1

2

x

1

2

x

l r

T

y

l r

PT

l r

T

y

l r

1

2

TP

xx

l r

T

y

l r

T

l r

T

y

l r

T

xx

l r

T

y

l r

l r

T

y

l r

1

2

P P

l r

T

y

l r

l r

T

y

l r

l lll

l

l

l

l

Stefan Rieger Verification of Pointer Programs 19/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Different Situation

l r

1

2

l r

1

2

2

P

1 1

l r l r

1

2

1

2

T T

l rl r

2

1 1

P

x

y

l r

11

2

l r

1 1

2

1

2 2

1

TTP P

P −→

l r

T
2

1

P

l

Stefan Rieger Verification of Pointer Programs 20/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Inadmissible Results

xx

1

2

xx

x

1

2

x

xx

y y y y

y yyy

l r

T
l r

l r

T
l r

1

2

P P

l r

T
l r

l r

T
l r

l r

T
l r

PT

l r

T
l r

1

2

TP

l r

T
l r

T

l r

T
l r

T

l l

l

l

ll

l

l

Stefan Rieger Verification of Pointer Programs 21/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

The Solution

Heap Abstraction Grammars

• introduce redundant rules allowing concretization “from
below”

• additional rules must guarantee completeness

Additional Rules

1

2

rl l rl r

1

2

1

2

1

2

rl

1 1

22

P

T T

P

11

P P

22

Stefan Rieger Verification of Pointer Programs 22/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Overview

1 Hyperedge Replacement

2 Abstraction and Concretization

3 Pointer Logic

4 Verification and Model Checking

Stefan Rieger Verification of Pointer Programs 23/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Temporal Pointer Logic

• Combination of LTL operators and pointer comparisons

• Arbitrarily deep dereferencing

Formal Definition

Let F be a set of flags (err, term, . . .).

TPL(Σ,F) ::= true | F | DerefΣ = DerefΣ

| ¬TPL(Σ,F) | TPL(Σ,F) ∧ TPL(Σ,F)

| X TPL(Σ,F) | TPL(Σ,F)U TPL(Σ,F)

DerefΣ ::= null | VarΣ | DerefΣ . SelΣ

Fϕ = true U ϕ G ϕ = ¬F ¬ϕ

Stefan Rieger Verification of Pointer Programs 24/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Semantics of TPL

Interpretation

• Interpret TPL formulae on infinite and finite sequences of
heap configurations.

• Every trace of heap configurations has an associated trace of
(sets of) flags of equal length.

Finite Traces

Let t ∈ aHHCΣ
⋆ and u ∈ F⋆ be a finite traces of length n. Implicit

extension as follows:

t(1) t(2) . . . t(n) t(n) t(n) . . .

u(1) u(2) . . . u(n) u(n) ∪ {term} u(n) ∪ {term} . . .

Stefan Rieger Verification of Pointer Programs 25/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Formal Semantics of Pointer Comparisons

Concrete Semantics

CSat[[ξ = ζ,H]] =

{

1 D[[ξ,H]] = D[[ζ,H]] 6= ⊥

0 otherwise

D[[ζ,H]]: “intuitive” concrete expression semantics

Stefan Rieger Verification of Pointer Programs 26/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Formal Semantics of Pointer Comparisons

Concrete Semantics

CSat[[ξ = ζ,H]] =

{

1 D[[ξ,H]] = D[[ζ,H]] 6= ⊥

0 otherwise

D[[ζ,H]]: “intuitive” concrete expression semantics

Abstract Semantics – 3 cases

ASat[[γ,H]] =











1 if ∀H ′ ∈ L(G,H) : CSat[[γ,H ′]] = 1

0 if ∀H ′ ∈ L(G,H) : CSat[[γ,H ′]] = 0
1

2
otherwise

Stefan Rieger Verification of Pointer Programs 26/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Overview

1 Hyperedge Replacement

2 Abstraction and Concretization

3 Pointer Logic

4 Verification and Model Checking

Stefan Rieger Verification of Pointer Programs 27/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Pointer Program TPL FormulaHRG

Abstract Transition System Pointer Comparisons

Partial Transition System
(labeled by 3-valued atomic propositions)

Interpret TPL Formula as LTL Formula

Standard LTL Model Checking

3-valued LTL Model Checking

Evaluation of Pointer Comparisons
on Abstract States

Completion of Partial Transition System

Stefan Rieger Verification of Pointer Programs 28/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Evaluating Pointer Comparisons

x.a1.a2...am = y.b1.b2...bn

• Use two auxiliary variables t1 and t2 to walk along “paths”

• Assignments followed (not preceeded) by concretization steps

• Check if in all concretizations t1 = t2

Stefan Rieger Verification of Pointer Programs 29/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Does ASat[[x.r.l.r = y.l.r, H]] = 1 hold?

l r

l r

x

y

T

T T

Stefan Rieger Verification of Pointer Programs 30/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Does ASat[[x.r.l.r = y.l.r, H]] = 1 hold?

t1

l r

l r

x

y

T

T T

Stefan Rieger Verification of Pointer Programs 30/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Does ASat[[x.r.l.r = y.l.r, H]] = 1 hold?

l r

l r

x

t1

y

T

T T

Stefan Rieger Verification of Pointer Programs 30/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Does ASat[[x.r.l.r = y.l.r, H]] = 1 hold?

l r

l r

x

t1

y

T

T T

Stefan Rieger Verification of Pointer Programs 30/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Does ASat[[x.r.l.r = y.l.r, H]] = 1 hold?

l r

l r

x

t1

l r

y

T

T T

T

l r

l r

t1

l r

y

x

T

T

T

l r

l r

t1

l r

x

y

T

T

T

l r

l r

t1

l r

x

y

T

T

Stefan Rieger Verification of Pointer Programs 30/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Does ASat[[x.r.l.r = y.l.r, H]] = 1 hold?

l r

l r

l r

x

y

t2

t1

T

T T

T

l r

l r

t1

l r

x

t2

y

T

T

T

l r

l r

t1

l r

x

y

t2

T

T

l r

l r

t1

l r

x

t2

y

T

T

T

Stefan Rieger Verification of Pointer Programs 30/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Does ASat[[x.r.l.r = y.l.r, H]] = 1 hold?

l r

r

x

l

l r

t2

t1

y

T

T

T

l r

r

x

l

l r

t2

t1

y

T

T

T

l r

r

x

l

l r

t2

t1

y

T

T

l r

r

x

y

l

l r

t2

t1

T

T

T

T

Stefan Rieger Verification of Pointer Programs 30/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

∀K : CSat[[t1 = t2, H]] = 1 ⇒ ASat[[...]] = 1

l r

r

x

l

l r

t1

y

t2

T

T T

T

l r

r

x

l

l r

t1

y

t2

T

T

T

l r

r

x

l

l r

t1

y

t2

T

T

T

l r

r

x

l

l r

t1

y

t2

T

T

Stefan Rieger Verification of Pointer Programs 30/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

A Special Case

Limiting Dereferencing Depth

When dereferencing depth in pointer comparisons is limited to one,
we always get clearly determined results (0 or 1).

Reason: admissibility of heap configurations

Stefan Rieger Verification of Pointer Programs 31/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Pointer Program TPL FormulaHRG

Abstract Transition System Pointer Comparisons

Partial Transition System
(labeled by 3-valued atomic propositions)

Interpret TPL Formula as LTL Formula

Standard LTL Model Checking

3-valued LTL Model Checking

Evaluation of Pointer Comparisons
on Abstract States

Completion of Partial Transition System

Stefan Rieger Verification of Pointer Programs 32/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Three-valued LTL Model Checking

Setting

• Evaluation of pointer comparisons can result in either 0, 1 or 1

2

• Transition system has 3-valued labeling

Transformation

Transform transition system to represent all possibilities for
1

2
-valued predicates.

0,0 1
2,

1
2

1
2, 1

0, 1

1, 1

0, 1

0,1

1,1

0, 1

0, 1

1, 1

0, 0

0, 0

0, 1

1, 0

1, 1

Stefan Rieger Verification of Pointer Programs 33/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Pointer Program TPL FormulaHRG

Abstract Transition System Pointer Comparisons

Partial Transition System
(labeled by 3-valued atomic propositions)

Interpret TPL Formula as LTL Formula

Standard LTL Model Checking

3-valued LTL Model Checking

Evaluation of Pointer Comparisons
on Abstract States

Completion of Partial Transition System

Stefan Rieger Verification of Pointer Programs 34/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Quantifiers

Quantified TPL

Q1X1Q2X2 . . . QkXk : ϕ(X1,X2, . . . ,Xk)

• Quantification over heap objects present in the initial states

• Preservation of object identities between states by
nondeterministic marking with variables

• For every quantor an additional marking is necessary
(exponential blow-up of state space)

Stefan Rieger Verification of Pointer Programs 35/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Example: The Deutsch-Schorr-Waite Algorithm

Pointer Safety: No pointer errors / null dereferences

Shape Safety: Input structure is retained

Completeness: all vertices are visited at least once

∀X : ¬(cur 6= X U term)

Termination: finally X never points to cur anymore

∀X : FG(cur 6= X)

Correctness: for all vertices the left- and right successors are the
same after program termination

∀X ∀Xl ∀Xr : X.l = Xl ∧ X.r = Xr →

((X = root → G(X = root))

∧ G(term → (X.l = Xl ∧ X.r = Xr)))

Stefan Rieger Verification of Pointer Programs 36/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Experimental Results: Verifying the DSW Algorithm

root

r

rr rr

prev

cur

next

r

l

r

l

r

root

next

cur

sen

prev

r

root

l

l

l

T T

T T
T

1

2

a final heap

an initial heap

an intermediate heap state

sen

T
P

T T

Stefan Rieger Verification of Pointer Programs 37/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Experimental Results: Verifying the DSW Algorithm

no marking 1 marking 3 markings TVLA

Initial States 5 185 962

Number of States 20,678 6,220,798 35,983,627 > 80,000

Number of Transitions 23,359 7,078,257 40,909,648

State Space Gen. (h:min:sec) <0:01 10:14 1:18:03

Memory Consumption 41 MB 788 MB 3,900 MB 150 MB

Pointer Safety on-the-fly - -

Shape Safety on-the-fly - -

Completeness (min:sec) - 0:16 -

Termination (min:sec) - 0:39 -

Correctness (min:sec) - - 4:05

Total Time (State Space Gen. + all Properties) 1:28:35 <9:00:00

Stefan Rieger Verification of Pointer Programs 38/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Conclusion

• analysis and verification of complex data structures

• highly parametrized framework

• handling of inconsistencies wrt. the data structure

• more intuitive than other approaches

• promising experimental results

Stefan Rieger Verification of Pointer Programs 39/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Conclusion

• analysis and verification of complex data structures

• highly parametrized framework

• handling of inconsistencies wrt. the data structure

• more intuitive than other approaches

• promising experimental results

Additional Features

• abstraction-only grammars

• optimized concretization possible

• unbounded thread creation [Noll and Rieger, 2008]

Stefan Rieger Verification of Pointer Programs 39/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Conclusion

• analysis and verification of complex data structures

• highly parametrized framework

• handling of inconsistencies wrt. the data structure

• more intuitive than other approaches

• promising experimental results

Additional Features

• abstraction-only grammars

• optimized concretization possible

• unbounded thread creation [Noll and Rieger, 2008]

Outlook

• learning of HRGs

• typed/attributed HRGs

Stefan Rieger Verification of Pointer Programs 39/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

(FM 2008) Thomas Noll and Stefan Rieger. Verifying Dynamic
Pointer-Manipulating Threads

(ICGT 2008) Stefan Rieger and Thomas Noll. Abstracting
Complex Data Structures by Hyperedge Replacement

(TTSS 2009) Jonathan Heinen, Thomas Noll, and Stefan Rieger.
Juggrnaut: Graph Grammar Abstraction for
Unbounded Heap Structures (to be published)

(ICTAC 2007) Thomas Noll and Stefan Rieger. Composing
Transformations to Optimize Linear Code

Stefan Rieger Verification of Pointer Programs 40/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Thank you for your attention!

(FM 2008) Thomas Noll and Stefan Rieger. Verifying Dynamic
Pointer-Manipulating Threads

(ICGT 2008) Stefan Rieger and Thomas Noll. Abstracting
Complex Data Structures by Hyperedge Replacement

(TTSS 2009) Jonathan Heinen, Thomas Noll, and Stefan Rieger.
Juggrnaut: Graph Grammar Abstraction for
Unbounded Heap Structures (to be published)

(ICTAC 2007) Thomas Noll and Stefan Rieger. Composing
Transformations to Optimize Linear Code

Stefan Rieger Verification of Pointer Programs 40/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Development of HRGs

Optimization phase
Add abstraction-only rules

failure

success

Program / Data Structure

Construct HRG generating DS

Check for problems +
develop abstraction idea

Add new rules to HRG
(+ abstraction-only rules)

Transform HRG to
heap abstraction grammar

Test HRG with program
/ suitability check

HRG suitable for DS
/ usable to verify program

Stefan Rieger Verification of Pointer Programs 41/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Partial Concretization II

Solving the Problem

• Enforcing HRGs to be in apex form (for all X → H, the
nodes extH are only adjacent to terminals)

Stefan Rieger Verification of Pointer Programs 42/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Partial Concretization II

Solving the Problem

• Enforcing HRGs to be in apex form (for all X → H, the
nodes extH are only adjacent to terminals)

⇒ impractical [Engelfriet, 1992]

Stefan Rieger Verification of Pointer Programs 42/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Partial Concretization II

Solving the Problem

• Enforcing HRGs to be in apex form (for all X → H, the
nodes extH are only adjacent to terminals)

⇒ impractical [Engelfriet, 1992]

⇒ Introducing additional redundant grammar-rules that do not
modify the language

Stefan Rieger Verification of Pointer Programs 42/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Partial Concretization II

Solving the Problem

• Enforcing HRGs to be in apex form (for all X → H, the
nodes extH are only adjacent to terminals)

⇒ impractical [Engelfriet, 1992]

⇒ Introducing additional redundant grammar-rules that do not
modify the language

Additional Rules

1

2

rl l rl r

1

2

1

2

1

2

rl

1 1

22

P

T T

P

11

P P

22

Stefan Rieger Verification of Pointer Programs 42/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

All P -Rules

l r l r l rl r

1

2

1

2

T T

2

1 1

2

1

2

rl l rl r

1

2

1

2

1

2

rl

1 1

22

P

T T

P

11

P P

22

l r

1

2

l r

1

2

l r

1

2

l r

1

2

1

2 2

1

TTP P

2

P

1 1

P

2

C
on

cr
et

iz
at

io
n

fr
om

fi
rs

t
ex

te
rn

al
ve

rt
ex

C
on

cr
et

iz
at

io
n

fr
om

se
c
o
n
d

ex
te

rn
al

ve
rt

ex

Stefan Rieger Verification of Pointer Programs 43/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Again the Example

P

x

y

l r

1

2

1

2

rl

1 1

22

P

T T

P

l r l r

1

2

1

2

T T

1

2

rl l r

1

2

11

P P

22

l rl r

2

1 1

P −→

l r

T
2

1

l

Stefan Rieger Verification of Pointer Programs 44/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Admissible Results

xx

y y

xx

y y

1

2

rl

P

T

l r

1

2

T

P

l r

T

l r

T

xxxx

y yyy

l r

T
l r

l r

T
l r

l r

T
l r

T

l r

T
l r

T

l r

T

l r

T

1

2

rl

P

l r

1

2

P

l

l

l

l

l

l

l

l

Stefan Rieger Verification of Pointer Programs 45/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Entire Grammar

l r

l r

l r

l r

l r l r

1

2

rl l rl r

1

2

1

2

1

2

rl

l r

1

2

l r

1

2

l r

1

2

l r

1

2

l rl r

1 1

2

1

1

1

1

2

1

1

2

1

2

2

1

TTPTT

T

T

T T

2

P

T T

P

P

2

P

1 1

P

2

11

P P

22

2

1 1

2

T −→ P −→

Stefan Rieger Verification of Pointer Programs 46/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Bakewell, A., Plump, D., and Runciman, C. (2004a).
Checking the shape safety of pointer manipulations.
In Relational and Kleene-Algebraic Methods in Computer
Science ’03, volume 3051 of Lecture Notes in Computer
Science, pages 48–61. Springer.

Bakewell, A., Plump, D., and Runciman, C. (2004b).
Specifying pointer structures by graph reduction.
In Applications of Graph Transformations with Industrial
Relevance ’03, volume 3062 of Lecture Notes in Computer
Science, pages 30–44. Springer.

Baldan, P., Corradini, A., and König, B. (2004).
Verifying Finite-State Graph Grammars: An Unfolding-Based
Approach.
In CONCUR ’04, volume 3170 of Lecture Notes in Computer
Science, pages 83–98. Springer.

Baldan, P. and König, B. (2002).

Stefan Rieger Verification of Pointer Programs 46/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

Approximating the behaviour of graph transformation systems.
In 1st International Conference on Graph Transformations,
ICGT 2002, volume 2505 of Lecture Notes in Computer
Science, pages 14–29. Springer.

Beyer, D., Henzinger, T. A., and Théoduloz, G. (2006).
Lazy shape analysis.
In Computer Aided Verification, 18th International Conference,
CAV ’06, volume 4144 of Lecture Notes in Computer Science,
pages 532–546. Springer.

Dodds, M. and Plump, D. (2006).
Extending C for checking shape safety.
In Graph Transformation for Verification and Concurrency ’05,
volume 154(2) of ENTCS, pages 95–112. Elsevier.

Engelfriet, J. (1992).
A Greibach Normal Form for Context-Free Graph Grammars.

Stefan Rieger Verification of Pointer Programs 46/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

In 19th International Colloquium on Automata, Languages and
Programming, ICALP 1992, volume 623 of Lecture Notes in
Computer Science, pages 138–149. Springer.

Kastenberg, H. and Rensink, A. (2006).
Model checking dynamic states in GROOVE.
In Model Checking Software (SPIN ’06), volume 3925 of
Lecture Notes in Computer Science, pages 299–305. Springer.

Noll, T. and Rieger, S. (2008).
Verifying dynamic pointer-manipulating threads.
In 15th International Symposium on Formal Methods
(FM ’08), volume 5014 of Lecture Notes in Computer Science,
pages 84–99. Springer.

O’Hearn, P. W., Yang, H., and Reynolds, J. C. (2004).
Separation and information hiding.

Stefan Rieger Verification of Pointer Programs 46/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

In Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL
2004, pages 268–280. ACM Press.

Rensink, A. (2004).
Canonical graph shapes.
In Proc. of 13th European Symposium on Programming
(ESOP ’04), volume 2986 of Lecture Notes in Computer
Science, pages 401–415. Springer.

Rensink, A. and Distefano, D. (2006).
Abstract graph transformation.
In Proc. of Int. Workshop on Software Verification and
Validation (SVV ’05), volume 157(1) of Electr. Notes Theor.
Comput. Sci.

Reynolds, J. C. (2002).
Separation logic: A logic for shared mutable data structures.

Stefan Rieger Verification of Pointer Programs 46/46

Hyperedge Replacement Abstraction and Concretization Pointer Logic Verification and Model Checking

In IEEE Symposium on Logic in Computer Science, LICS 2002,
pages 55–74. IEEE Computer Society.

Sagiv, M., Reps, T., and Wilhelm, R. (2002).
Parametric shape analysis via 3–valued logic.
ACM Transactions on Programming Languages and Systems,
24(3):217–298.

Stefan Rieger Verification of Pointer Programs 46/46

	Hyperedge Replacement
	Abstraction and Concretization
	Pointer Logic
	Verification and Model Checking
	

