
Software-Modellierung und Verifikation

Informatik 2

Prof. J.-P. Katoen

RWTH Aachen

Henrik Bohnenkamp henrik@cs.rwth-aachen.de

1. Exercise Series “Testing of Reactive Systems 2009”
28 April 2009, 11.45 – 13.15 AH3

Homework due 4 May 2009 (lecture)

About the Homework:

• Achieving 50% of the points in the homework in total are prerequisite to take the
exam at the end of the semester (relevant for Master students)

• Homework can be worked on in groups of up to three

• The exercise sheets will be given out in the exercise of week n

• The homework has to be delivered in week n+1 in the lecture

• The solutions will be discussed in the exercise class of week n+2

• The solutions of the exercises will be made available in non-electronic form only

• Exceptions from the rules are possible

Not Homework

Exercise 1.1: Determinism

Let L = (S,Act ,→) be an LTS.

(a) Show that, for s, s′ ∈ S, σ ∈ Act ∗, with s
σ

=⇒ s′,

s is deterministic =⇒ s′ is deterministic.

(b) Construct a finite LTS which contains nondeterministic as well as deterministic states, but
no deadlock state.

Exercise 1.2:

Recall from automata theory that every nondeterministic finite automaton A can be turned into
a deterministic finite automaton A′ which recognises the same language, i.e., L(A) = L(A′).
Something similar holds also for any finite-state LTS and its trace set. Let L = (S,Act ,→). We
define now an LTS L′ = (S ′,Act ,), where

• S ′ = 2S, the powerset of S

Find the latest exercise sheets at http://www-i2.informatik.rwth-aachen.de/i2/testing09

• ⊆ 2S × Act × 2S is the least relation fulfiling the following rule:

S after a = S ′ 6= ∅

S
a
 S ′

for all S ⊆ S and a ∈ Act .

Now show:

(a) L′ is deterministic

(b) for every s ∈ S: traces(s) ⊆ traces({s}) (by traces({s}) we denote the set of traces of state
{s} of LTS L′).

Exercise 1.3:

Given LTS L1 and L2:

L1

p1

p2

p3

L2

q1

q2

q3

q4

q5

c

a

a
b

b

a
a

c

b

b

a

a

a

b a

a

b

Let S = {p1, . . . , p3, q1, . . . , q5}. Show that p1 ∼B q1, i.e., find a bisimulation relation R ⊆ S × S

with p1Rq1.

Exercise 1.4: Infinite Processes

Consider the following process definitions:

X = b.STOP‖∅a.X

Start deriving the underlying LTS of process X. Derive at least the processes p ∈ X after a3.
What can you notice? When will state space generation end?

Homework

Exercise 1.5: Nondeterminism (2 Points)

Following Definition 1.2.8 in the script is a second definition of non-determinism. Argue (if not
prove) why these two definitions are equivalent.

Exercise 1.6: Derivation of processes (4+2 Points)

Consider Process P = X‖{a}(Y ‖∅Z) (Example 1.4.3 in the script) with

X =̂ a.X

Y =̂ a.b.Y

Z =̂ a.c.Z

Derive formally, similarly to Example 1.4.2 in the script, the two transitions going out from P ,
using the 7 SOS rules.

Exercise 1.7: Trace equivalence and bisimulation (2+4+4 Points)

We define the following processes (Act = {a, b, c}):

P1 =̂ a.P2 + a.c.P3

P2 =̂ a.P3 + b.P3

P3 =̂ a.P1

Q1 =̂ a.(a.Q2 + b.Q2 + c.Q2)

Q2 =̂ a.Q1

Find out, whether P1 and Q1 are trace equivalent and/or bisimilar. If not, why not?

Exercise 1.8: Processes and Bisimulation (3+4 Points)

Given the following process definitions.

X1 =̂ b.a.X1

X2 =̂ c.a.X2

Y =̂ X1‖aX2

(a) Derive the LTS of Y .

(b) Define a process p ∈ IP without containing any parallel operators such that the LTS under-
lying p is bisimilar to the one underlying Y . Give a reason why your solution is bisimilar.

