

- $\rightsquigarrow \subseteq 2^S \times Act \times 2^S$ is the least relation fulfilling the following rule:

$$\frac{\mathcal{S} \text{ after } a = \mathcal{S}' \neq \emptyset}{\mathcal{S} \rightsquigarrow \mathcal{S}'}$$

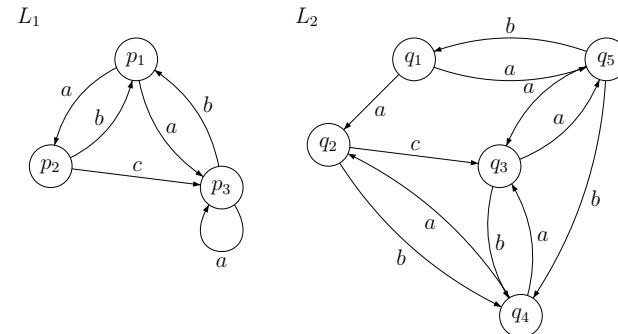
for all $\mathcal{S} \subseteq S$ and $a \in Act$.

Now show:

- L' is deterministic
- for every $s \in S$: $traces(s) \subseteq traces(\{s\})$ (by $traces(\{s\})$ we denote the set of traces of state $\{s\}$ of LTS L').

Exercise 1.3:

Given LTS L_1 and L_2 :



Let $S = \{p_1, \dots, p_3, q_1, \dots, q_5\}$. Show that $p_1 \sim_B q_1$, i.e., find a bisimulation relation $R \subseteq S \times S$ with $p_1 R q_1$.

Exercise 1.4: Infinite Processes

Consider the following process definitions:

$$X = b.STOP \parallel_{\emptyset} a.X$$

Start deriving the underlying LTS of process X . Derive at least the processes $p \in X$ after a^3 . What can you notice? When will state space generation end?

1. Exercise Series “Testing of Reactive Systems 2009”

28 April 2009, 11.45 – 13.15 AH3
 Homework due 4 May 2009 (lecture)

About the Homework:

- Achieving 50% of the points in the homework in total are prerequisite to take the exam at the end of the semester (relevant for Master students)
- Homework can be worked on in groups of up to three
- The exercise sheets will be given out in the exercise of week n
- The homework has to be delivered in week $n+1$ in the lecture
- The solutions will be discussed in the exercise class of week $n+2$
- The solutions of the exercises will be made available in *non-electronic* form only
- Exceptions from the rules are possible

Not Homework

Exercise 1.1: Determinism

Let $L = (S, Act, \rightarrow)$ be an LTS.

(a) Show that, for $s, s' \in S, \sigma \in Act^*$, with $s \xrightarrow{\sigma} s'$,

s is deterministic $\implies s'$ is deterministic.

(b) Construct a finite LTS which contains nondeterministic as well as deterministic states, but no deadlock state.

Exercise 1.2:

Recall from automata theory that every nondeterministic finite automaton A can be turned into a deterministic finite automaton A' which recognises the same language, i.e., $\mathcal{L}(A) = \mathcal{L}(A')$. Something similar holds also for any finite-state LTS and its trace set. Let $L = (S, Act, \rightarrow)$. We define now an LTS $L' = (S', Act, \rightsquigarrow)$, where

- $S' = 2^S$, the powerset of S

Find the latest exercise sheets at <http://www-i2.informatik.rwth-aachen.de/i2/testing09>

Homework

Exercise 1.5: Nondeterminism

(2 Points)

Following Definition 1.2.8 in the script is a second definition of non-determinism. Argue (if not prove) why these two definitions are equivalent.

Exercise 1.6: Derivation of processes

(4+2 Points)

Consider Process $P = X \parallel_{\{a\}} (Y \parallel_{\emptyset} Z)$ (Example 1.4.3 in the script) with

$$\begin{aligned} X &\triangleq a.X \\ Y &\triangleq a.b.Y \\ Z &\triangleq a.c.Z \end{aligned}$$

Derive formally, similarly to Example 1.4.2 in the script, the two transitions going out from P , using the 7 SOS rules.

Exercise 1.7: Trace equivalence and bisimulation

(2+4+4 Points)

We define the following processes ($Act = \{a, b, c\}$):

$$\begin{aligned} P_1 &\triangleq a.P_2 + a.c.P_3 \\ P_2 &\triangleq a.P_3 + b.P_3 \\ P_3 &\triangleq a.P_1 \\ Q_1 &\triangleq a.(a.Q_2 + b.Q_2 + c.Q_2) \\ Q_2 &\triangleq a.Q_1 \end{aligned}$$

Find out, whether P_1 and Q_1 are trace equivalent and/or bisimilar. If not, why not?

Exercise 1.8: Processes and Bisimulation

(3+4 Points)

Given the following process definitions.

$$\begin{aligned} X_1 &\triangleq b.a.X_1 \\ X_2 &\triangleq c.a.X_2 \\ Y &\triangleq X_1 \parallel_a X_2 \end{aligned}$$

(a) Derive the LTS of Y .

(b) Define a process $p \in \mathbb{P}$ without containing any parallel operators such that the LTS underlying p is bisimilar to the one underlying Y . Give a reason why your solution is bisimilar.