

Testing of Reactive Systems

Lecture 3: Semantics of Reactive Systems, Implementation
Relations

Henrik Bohnenkamp

Lehrstuhl Informatik 2 (MOVES)
RWTH Aachen

Summer Semester 2009

What happened so far?

Labelled Transition Systems

- **Actions Act** , atomic, observable, τ unobservable
- States, Transitions
- \Rightarrow , traces, reachable states, after,
- non-determinism

Processes

- prefix $a.P$
- choice $P + Q$,
- parallel composition $P \parallel_A Q$
- process variables \mathcal{P}
- (recursive) process definitions \mathcal{P}

What happened so far?

Labelled Transition Systems

- **Actions Act** , atomic, observable, τ unobservable
- **States, Transitions**
- \Rightarrow , traces, reachable states, after,
- non-determinism

Processes

- prefix $a.P$
- choice $P + Q$,
- parallel composition $P \parallel_A Q$
- process variables \mathcal{P}
- (recursive) process definitions \mathcal{P}

What happened so far?

Labelled Transition Systems

- Actions *Act* , atomic, observable, τ unobservable
- States, Transitions
- \Rightarrow , traces, reachable states, after,
- non-determinism

Processes

- prefix $a.P$
- choice $P + Q$,
- parallel composition $P \parallel_A Q$
- process variables \mathcal{P}
- (recursive) process definitions \mathcal{P}

What happened so far?

Labelled Transition Systems

- Actions *Act* , atomic, observable, τ unobservable
- States, Transitions
- \Rightarrow , traces, reachable states, after,
- non-determinism

Processes

- prefix $a.P$
- choice $P + Q$,
- parallel composition $P \parallel_A Q$
- process variables \mathcal{P}
- (recursive) process definitions \mathcal{P}

What happened so far?

Labelled Transition Systems

- Actions *Act* , atomic, observable, τ unobservable
- States, Transitions
- \Rightarrow , traces, reachable states, after,
- non-determinism

Processes

- prefix $a.P$
- choice $P + Q$,
- parallel composition $P \parallel_A Q$
- process variables \mathcal{P}
- (recursive) process definitions \mathcal{P}

What happened so far?

Labelled Transition Systems

- Actions *Act* , atomic, observable, τ unobservable
- States, Transitions
- \Rightarrow , traces, reachable states, after,
- non-determinism

Processes

- prefix $a.P$
- choice $P + Q$,
- parallel composition $P \parallel_A Q$
- process variables \mathcal{P}
- (recursive) process definitions \mathcal{P}

What happened so far?

Labelled Transition Systems

- Actions *Act* , atomic, observable, τ unobservable
- States, Transitions
- \Rightarrow , traces, reachable states, after,
- non-determinism

Processes

- prefix $a.P$
- choice $P + Q$,
- parallel composition $P \parallel_A Q$
- process variables \mathcal{P}
- (recursive) process definitions \mathcal{P}

What happened so far?

Labelled Transition Systems

- Actions *Act* , atomic, observable, τ unobservable
- States, Transitions
- \Rightarrow , traces, reachable states, after,
- non-determinism

Processes

- prefix $a.P$
- choice $P + Q$,
- parallel composition $P \parallel_A Q$
- process variables \mathcal{P}
- (recursive) process definitions \mathcal{P}

What happened so far?

Labelled Transition Systems

- Actions Act , atomic, observable, τ unobservable
- States, Transitions
- \Rightarrow , traces, reachable states, after,
- non-determinism

Processes

- prefix $a.P$
- choice $P + Q$,
- parallel composition $P \parallel_A Q$
- process variables \mathcal{P}
- (recursive) process definitions \mathcal{P}

1 Structural Operational Semantics for IP

2 Summary Part 1

3 Preorders

4 Some Implementation Relations

A formal semantics of processes

Approach

- Process semantics in terms of LTS
- States are processes
- Transitions derived inductively over the syntactic structure of processes
- We define one big LTS L_{IP}

A formal semantics of processes

Approach

- Process semantics in terms of LTS
- States are processes
- Transitions derived inductively over the syntactic structure of processes
- We define one big LTS L_{IP}

A formal semantics of processes

Approach

- Process semantics in terms of LTS
- States are processes
- Transitions derived inductively over the syntactic structure of processes
- We define one big LTS L_{IP}

A formal semantics of processes

Approach

- Process semantics in terms of LTS
- States are processes
- Transitions derived inductively over the syntactic structure of processes
- We define one big LTS L_{IP}

A formal semantics of processes

Definition: L_{IP}

$L_{\text{IP}} = (S, \text{Act} \cup \{\tau\}, \rightarrow)$ LTS, where:

- $S = \text{IP}$;
- the actions set Act the same as used to define IP ;
- \rightarrow contains all and only those transitions (is the least set of transitions) that can be derived with the following rules:

A formal semantics of processes

Definition: L_{IP}

$L_{\text{IP}} = (S, \text{Act} \cup \{\tau\}, \rightarrow)$ LTS, where:

- $S = \text{IP}$;
- the actions set Act the same as used to define IP ;
- \rightarrow contains all and only those transitions (is the least set of transitions) that can be derived with the following rules:

Rule 1): Prefix

for all $a \in \text{Act}_\tau$, $p \in \text{IP}$: $a.p \xrightarrow{a} p$

A formal semantics of processes

Definition: L_{IP}

$L_{\text{IP}} = (S, \text{Act} \cup \{\tau\}, \rightarrow)$ LTS, where:

- $S = \text{IP}$;
- the actions set Act the same as used to define IP ;
- \rightarrow contains all and only those transitions (is the least set of transitions) that can be derived with the following rules:

Rule 2): Choice

for $p, q \in \text{IP}$: if $p \xrightarrow{a} p'$ for $a \in \text{Act}_\tau$, then

$$p + q \xrightarrow{a} p'$$

A formal semantics of processes

Definition: L_{IP}

$L_{\text{IP}} = (S, \text{Act} \cup \{\tau\}, \rightarrow)$ LTS, where:

- $S = \text{IP}$;
- the actions set Act the same as used to define IP ;
- \rightarrow contains all and only those transitions (is the least set of transitions) that can be derived with the following rules:

Rule 3): Choice again

if $q \xrightarrow{a} q'$ for $a \in \text{Act}_\tau$, then

$$p + q \xrightarrow{a} q'$$

A formal semantics of processes

Definition: L_{IP}

$L_{\text{IP}} = (S, \text{Act} \cup \{\tau\}, \rightarrow)$ LTS, where:

- $S = \text{IP}$;
- the actions set Act the same as used to define IP ;
- \rightarrow contains all and only those transitions (is the least set of transitions) that can be derived with the following rules:

Rule 4): Process variables

For $P \in \mathcal{P}$: if $P \hat{=} p$ and $p \xrightarrow{a} p'$, then

$$P \xrightarrow{a} p'$$

A formal semantics of processes

Definition: $L_{\mathbb{P}}$

$L_{\mathbb{P}} = (S, Act \cup \{\tau\}, \rightarrow)$ LTS, where:

- $S = \mathbb{P}$;
- the actions set Act the same as used to define \mathbb{P} ;
- \rightarrow contains all and only those transitions (is the least set of transitions) that can be derived with the following rules:

Rule 5): Parallel composition (non-synchronising)

For $A \subseteq Act$ and $p \parallel_A q \in \mathbb{P}$: if $p \xrightarrow{a} p'$ and $a \notin A$, then

$$p \parallel_A q \xrightarrow{a} p' \parallel_A q$$

A formal semantics of processes

Definition: $L_{\mathbb{P}}$

$L_{\mathbb{P}} = (S, Act \cup \{\tau\}, \rightarrow)$ LTS, where:

- $S = \mathbb{P}$;
- the actions set Act the same as used to define \mathbb{P} ;
- \rightarrow contains all and only those transitions (is the least set of transitions) that can be derived with the following rules:

Rule 6): Parallel composition (non-synchronising) again

For $A \subseteq Act$ and $p \parallel_A q \in \mathbb{P}$: if $q \xrightarrow{a} q'$ and $a \notin A$, then

$$p \parallel_A q \xrightarrow{a} p \parallel_A q'$$

A formal semantics of processes

Definition: L_{IP}

$L_{\text{IP}} = (S, \text{Act} \cup \{\tau\}, \rightarrow)$ LTS, where:

- $S = \text{IP}$;
- the actions set Act the same as used to define IP ;
- \rightarrow contains all and only those transitions (is the least set of transitions) that can be derived with the following rules:

Rule 7): Parallel composition (synchronising)

if $p \xrightarrow{a} p'$, $q \xrightarrow{a} q'$, and $a \in A$, then

$$p \parallel_A q \xrightarrow{a} p' \parallel_A q'$$

A formal semantics of processes

A more compact way to write the rules

$$1) \frac{}{a.p \xrightarrow{a} p}$$

$$2) \frac{p \xrightarrow{a} p'}{p + q \xrightarrow{a} p'}$$

$$3) \frac{q \xrightarrow{a} q'}{p + q \xrightarrow{a} q'}$$

$$4) \frac{p \xrightarrow{a} p'}{P \xrightarrow{a} p'} (P \doteq p)$$

$$5) \frac{p \xrightarrow{a} p'}{p \parallel_A q \xrightarrow{a} p' \parallel_A q} (a \notin A) \quad 6) \frac{q \xrightarrow{a} q'}{p \parallel_A q \xrightarrow{a} p \parallel_A q'} (a \notin A)$$

$$7) \frac{p \xrightarrow{a} p' \quad q \xrightarrow{a} q'}{p \parallel_A q \xrightarrow{a} p' \parallel_A q'} (a \in A)$$

A formal semantics of processes

A more compact way to write the rules

$$1) \frac{}{a.p \xrightarrow{a} p}$$

$$2) \frac{p \xrightarrow{a} p'}{p + q \xrightarrow{a} p'}$$

$$3) \frac{q \xrightarrow{a} q'}{p + q \xrightarrow{a} q'}$$

$$4) \frac{p \xrightarrow{a} p'}{P \xrightarrow{a} p'} (P \doteq p)$$

$$5) \frac{p \xrightarrow{a} p'}{p \|_A q \xrightarrow{a} p' \|_A q} (a \notin A) \quad 6) \frac{q \xrightarrow{a} q'}{p \|_A q \xrightarrow{a} p \|_A q'} (a \notin A)$$

$$7) \frac{p \xrightarrow{a} p' \quad q \xrightarrow{a} q'}{p \|_A q \xrightarrow{a} p' \|_A q'} (a \in A)$$

A formal semantics of processes

A more compact way to write the rules

$$1) \frac{}{a.p \xrightarrow{a} p}$$

$$2) \frac{p \xrightarrow{a} p'}{p + q \xrightarrow{a} p'}$$

$$3) \frac{q \xrightarrow{a} q'}{p + q \xrightarrow{a} q'}$$

$$4) \frac{p \xrightarrow{a} p'}{P \xrightarrow{a} p'} (P \doteq p)$$

$$5) \frac{p \xrightarrow{a} p'}{p \parallel_A q \xrightarrow{a} p' \parallel_A q} (a \notin A) \quad 6) \frac{q \xrightarrow{a} q'}{p \parallel_A q \xrightarrow{a} p \parallel_A q'} (a \notin A)$$

$$7) \frac{p \xrightarrow{a} p' \quad q \xrightarrow{a} q'}{p \parallel_A q \xrightarrow{a} p' \parallel_A q'} (a \in A)$$

A formal semantics of processes

A more compact way to write the rules

$$1) \frac{}{a.p \xrightarrow{a} p}$$

$$2) \frac{p \xrightarrow{a} p'}{p + q \xrightarrow{a} p'}$$

$$3) \frac{q \xrightarrow{a} q'}{p + q \xrightarrow{a} q'}$$

$$4) \frac{p \xrightarrow{a} p'}{P \xrightarrow{a} p'} (P \doteq p)$$

$$5) \frac{p \xrightarrow{a} p'}{p \parallel_A q \xrightarrow{a} p' \parallel_A q} (a \notin A) \quad 6) \frac{q \xrightarrow{a} q'}{p \parallel_A q \xrightarrow{a} p \parallel_A q'} (a \notin A)$$

$$7) \frac{p \xrightarrow{a} p' \quad q \xrightarrow{a} q'}{p \parallel_A q \xrightarrow{a} p' \parallel_A q'} (a \in A)$$

A formal semantics of processes

A more compact way to write the rules

$$1) \frac{}{a.p \xrightarrow{a} p}$$

$$2) \frac{p \xrightarrow{a} p'}{p + q \xrightarrow{a} p'}$$

$$3) \frac{q \xrightarrow{a} q'}{p + q \xrightarrow{a} q'}$$

$$4) \frac{p \xrightarrow{a} p'}{P \xrightarrow{a} p'} (P \doteq p)$$

$$5) \frac{p \xrightarrow{a} p'}{p \|_A q \xrightarrow{a} p' \|_A q} (a \notin A) \quad 6) \frac{q \xrightarrow{a} q'}{p \|_A q \xrightarrow{a} p \|_A q'} (a \notin A)$$

$$7) \frac{p \xrightarrow{a} p' \quad q \xrightarrow{a} q'}{p \|_A q \xrightarrow{a} p' \|_A q'} (a \in A)$$

A formal semantics of processes

A more compact way to write the rules

$$1) \frac{}{a.p \xrightarrow{a} p}$$

$$2) \frac{p \xrightarrow{a} p'}{p + q \xrightarrow{a} p'}$$

$$3) \frac{q \xrightarrow{a} q'}{p + q \xrightarrow{a} q'}$$

$$4) \frac{p \xrightarrow{a} p'}{P \xrightarrow{a} p'} (P \doteq p)$$

$$5) \frac{p \xrightarrow{a} p'}{p \|_A q \xrightarrow{a} p' \|_A q} (a \notin A) \quad 6) \frac{q \xrightarrow{a} q'}{p \|_A q \xrightarrow{a} p \|_A q'} (a \notin A)$$

$$7) \frac{p \xrightarrow{a} p' \quad q \xrightarrow{a} q'}{p \|_A q \xrightarrow{a} p' \|_A q'} (a \in A)$$

A formal semantics of processes

A more compact way to write the rules

$$1) \frac{}{a.p \xrightarrow{a} p}$$

$$2) \frac{p \xrightarrow{a} p'}{p + q \xrightarrow{a} p'}$$

$$3) \frac{q \xrightarrow{a} q'}{p + q \xrightarrow{a} q'}$$

$$4) \frac{p \xrightarrow{a} p'}{P \xrightarrow{a} p'} (P \doteq p)$$

$$5) \frac{p \xrightarrow{a} p'}{p \|_A q \xrightarrow{a} p' \|_A q} (a \notin A) \quad 6) \frac{q \xrightarrow{a} q'}{p \|_A q \xrightarrow{a} p \|_A q'} (a \notin A)$$

$$7) \frac{p \xrightarrow{a} p' \quad q \xrightarrow{a} q'}{p \|_A q \xrightarrow{a} p' \|_A q'} (a \in A)$$

Operational Rules

Example 1.4.2: Three process equations:

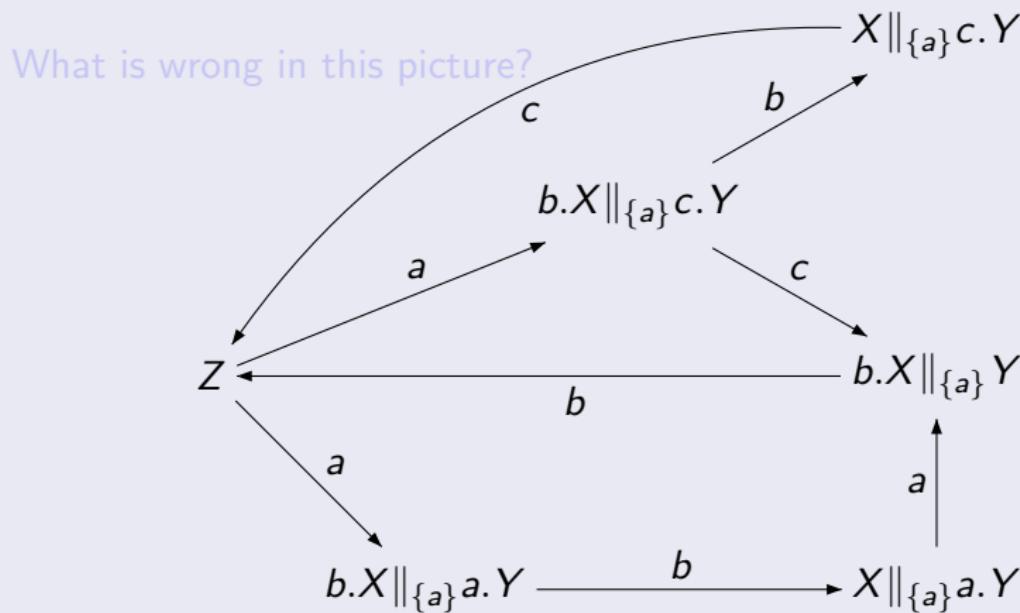
$$X \triangleq a.b.X$$

$$Y \triangleq a.c.Y + a.a.Y$$

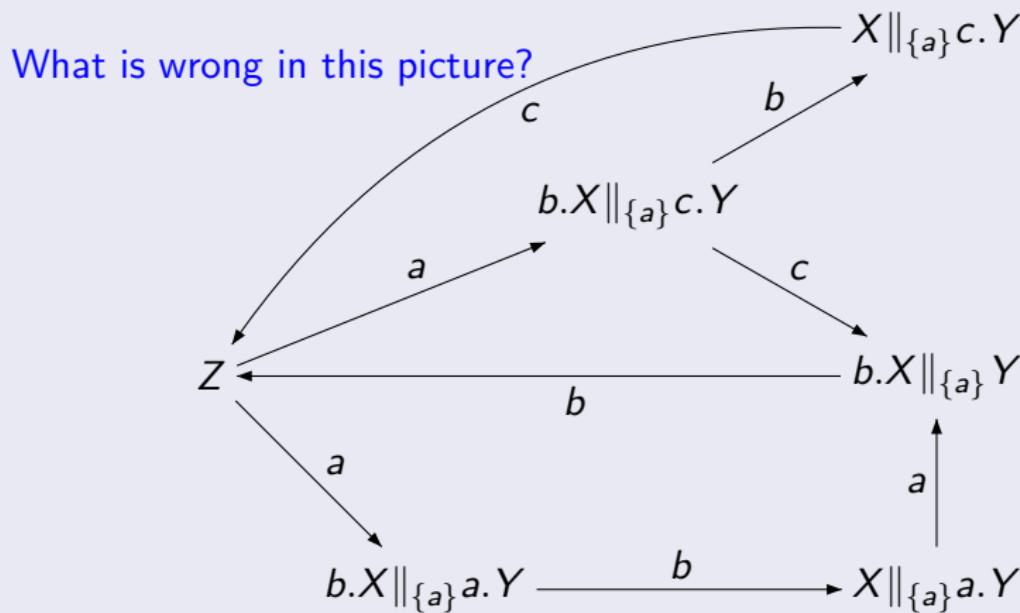
$$Z \triangleq X \parallel_{\{a\}} Y$$

⇒ Blackboard

Example 1.4.2

The complete transitions system of Z :

Example 1.4.2

The complete transitions system of Z :

Example 1.4.3

Deadlock

$(a.\text{STOP} \parallel_{\{a,b\}} b.\text{STOP}) \not\rightarrow$ for all $c \in \text{Act}_\tau$.

Example 1.4.3

Parallel Execution and Nondeterminism

$$X \hat{=} a.X$$

$$Y \hat{=} a.b.Y$$

$$Z \hat{=} a.c.Z$$

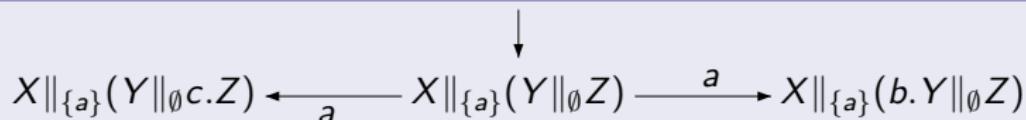
Example 1.4.3

Parallel Execution and Nondeterminism

$$X \hat{=} a.X$$

$$Y \hat{=} a.b.Y$$

$$Z \hat{=} a.c.Z$$

Initial transitions $X \parallel_{\{a\}} (Y \parallel_{\emptyset} Z)$:

- X, Y, Z all deterministic.
- Parallelism causes **non-determinism**.

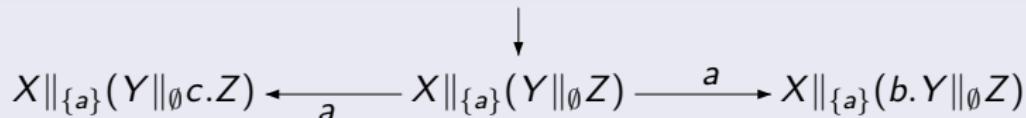
Example 1.4.3

Parallel Execution and Nondeterminism

$$X \hat{=} a.X$$

$$Y \hat{=} a.b.Y$$

$$Z \hat{=} a.c.Z$$

Initial transitions $X \parallel_{\{a\}} (Y \parallel_{\emptyset} Z)$:

- X, Y, Z all deterministic.
- Parallelism causes **non-determinism**.

Exercise: Derive all transitions of $X \parallel_{\{a\}} (Y \parallel_{\emptyset} Z)$

Note

- The structure of L_{IP} depends actually on the given process definitions, which are part of the process specification.
- If there are no process definitions, then L_{IP} is still well defined (why?).

1 Structural Operational Semantics for IP

2 Summary Part 1

3 Preorders

4 Some Implementation Relations

Summary

- LTS: **states, actions, transitions**
- Traces
- Non-determinism
- The language \mathbb{P}
- The SOS of \mathbb{P}

Summary

- LTS: **states, actions, transitions**
- Traces
 - Non-determinism
 - The language \mathbb{P}
 - The SOS of \mathbb{P}

Summary

- LTS: states, actions, transitions
- Traces
- Non-determinism
- The language \mathbb{P}
- The SOS of \mathbb{P}

Summary

- LTS: states, actions, transitions
- Traces
- Non-determinism
- The language \mathbb{P}
- The SOS of \mathbb{P}

Summary

- LTS: states, actions, transitions
- Traces
- Non-determinism
- The language IP
- The SOS of IP

Part 2: Differentiating Behaviour

1 Structural Operational Semantics for IP

2 Summary Part 1

3 Preorders

4 Some Implementation Relations

Motivation

Goal

- Describing **formally** when an implementation is (in)correct with respect to a specification
- We use (binary) relations \leq : **implementation relations**.
- Here:

$$\leq \subseteq \mathbb{IP} \times \mathbb{IP}$$

- We say:

$$i \leq s \quad \text{iff} \quad i \text{ is implementation of } s$$

- Often: implementation relations are **preorders**

Preorders

Definition 2.1.1: Preorders

Let X be a set. $\leq \subseteq X \times X$ is called a **preorder**, iff

- ① $(x, x) \in \leq$ (reflexivity)
- ② $(x, y), (y, z) \in \leq \implies (x, z) \in \leq$ (transitivity)

We write $x \leq y$ for $(x, y) \in \leq$

Preorders and equivalence relations

Lemma 2.1.2

- Let \leq be a preorder.
- Define $\sim_{\leq} \subseteq X \times X$ as

$$\{(x, y) \mid (x \leq y \text{ and } y \leq x)\}.$$

- Then \sim_{\leq} is an equivalence relation, called the **kernel** of preorder \leq .

Proof:

Show for \sim_{\leq} :

- reflexivity
- symmetry
- transitivity

(Exercise)

Preorders and equivalence relations

Lemma 2.1.2

- Let \leq be a preorder.
- Define $\sim_{\leq} \subseteq X \times X$ as

$$\{(x, y) \mid (x \leq y \text{ and } y \leq x)\}.$$

- Then \sim_{\leq} is an equivalence relation, called the *kernel* of preorder \leq .

Proof:

Show for \sim_{\leq} :

- reflexivity
- symmetry
- transitivity

(Exercise)

Preorders and equivalence relations

Lemma 2.1.2

- Let \leq be a preorder.
- Define $\sim_{\leq} \subseteq X \times X$ as

$$\{(x, y) \mid (x \leq y \text{ and } y \leq x)\}.$$

- Then \sim_{\leq} is an equivalence relation, called the **kernel** of preorder \leq .

Proof:

Show for \sim_{\leq} :

- reflexivity
- symmetry
- transitivity

(Exercise)

Preorders and equivalence relations

Lemma 2.1.2

- Let \leq be a preorder.
- Define $\sim_{\leq} \subseteq X \times X$ as

$$\{(x, y) \mid (x \leq y \text{ and } y \leq x)\}.$$

- Then \sim_{\leq} is an equivalence relation, called the **kernel** of preorder \leq .

Proof:

Show for \sim_{\leq} :

- reflexivity
- symmetry
- transitivity

(Exercise)

Note

Preorders and Equivalences on IP

- Preorders on IP used as implementation relations
- Kernels of preorders on IP then equivalences on processes: if $p \sim \leq q$, then p, q behave alike, according of the chosen preorder.
- Usually it is easier to reason about preorders, rather than the respective kernels.

1 Structural Operational Semantics for IP

2 Summary Part 1

3 Preorders

4 Some Implementation Relations

Until further notice we consider only processes that do not make any τ -steps!

Consequences

- 1 $\Rightarrow = \rightarrow \cup \{(p, \varepsilon, p) \mid p \in \mathbb{P}\}$
- 2 For consistency sake, we write then also $p \xrightarrow{\varepsilon} p'$ iff $p \xrightarrow{\varepsilon} p'$.

Until further notice we consider only processes that do not make any τ -steps!

Consequences

- ① $\Rightarrow = \rightarrow \cup \{(p, \varepsilon, p) \mid p \in \mathbb{P}\}$
- ② For consistency sake, we write then also $p \xrightarrow{\varepsilon} p'$ iff $p \xrightarrow{\varepsilon} p'$.

Definition 2.2.1

Trace preorder

Let p, q be processes. We define

$$p \leq_{tr} q \quad : \iff \quad \text{traces}(p) \subseteq \text{traces}(q)$$

Trace Preorder

Properties

- \leq_{tr} is a preorder: it follows from reflexivity and transitivity of \subseteq .
- if $p \leq q$ and p can execute $\sigma \in Act^*$, then q can as well.
- q describes the **legal** traces that an implementation is allowed to do.
- An implementation does not need to be complete.
- The kernel is **set equality** of the trace sets, called **trace equivalence**.

Trace Preorder

Properties

- \leq_{tr} is a preorder: it follows from reflexivity and transitivity of \subseteq .
- if $p \leq q$ and p can execute $\sigma \in Act^*$, then q can as well.
- q describes the **legal** traces that an implementation is allowed to do.
- An implementation does not need to be complete.
- The kernel is **set equality** of the trace sets, called **trace equivalence**.

Trace Preorder

Properties

- \leq_{tr} is a preorder: it follows from reflexivity and transitivity of \subseteq .
- if $p \leq q$ and p can execute $\sigma \in Act^*$, then q can as well.
- q describes the **legal** traces that an implementation is allowed to do.
- An implementation does not need to be complete.
- The kernel is **set equality** of the trace sets, called **trace equivalence**.

Trace Preorder

Properties

- \leq_{tr} is a preorder: it follows from reflexivity and transitivity of \subseteq .
- if $p \leq q$ and p can execute $\sigma \in Act^*$, then q can as well.
- q describes the **legal** traces that an implementation is allowed to do.
- An implementation does not need to be complete.
- The kernel is **set equality** of the trace sets, called **trace equivalence**.

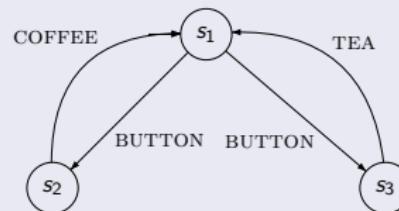
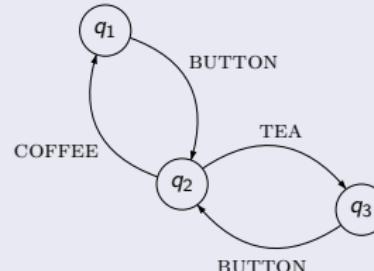
Trace Preorder

Properties

- \leq_{tr} is a preorder: it follows from reflexivity and transitivity of \subseteq .
- if $p \leq q$ and p can execute $\sigma \in Act^*$, then q can as well.
- q describes the **legal** traces that an implementation is allowed to do.
- An implementation does not need to be complete.
- The kernel is **set equality** of the trace sets, called **trace equivalence**.

Examples Trace Preorder

Example 1



$$s_1 \leq_{tr} q_1$$

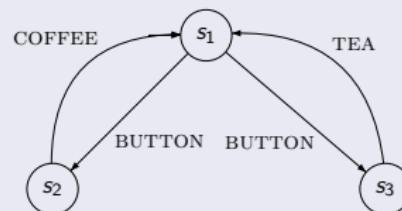
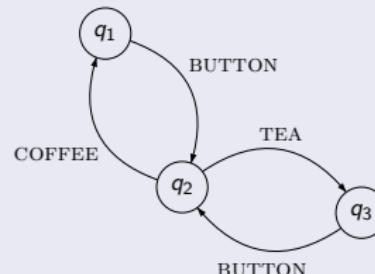
$$q_3 \leq_{tr} s_1$$

$$q_1 \leq_{tr} s_1$$

$$s_1 \leq_{tr} q_3$$

Examples Trace Preorder

Example 1



$$s_1 \leq_{tr} q_1$$

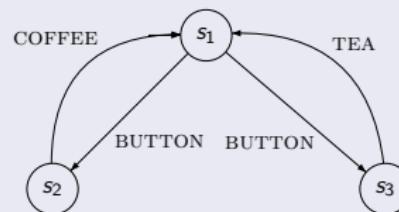
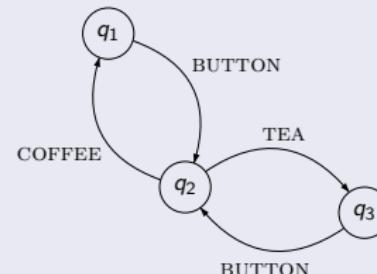
$$q_3 \leq_{tr} s_1$$

$$q_1 \leq_{tr} s_1$$

$$s_1 \leq_{tr} q_3$$

Examples Trace Preorder

Example 1



$$s_1 \leq_{tr} q_1$$

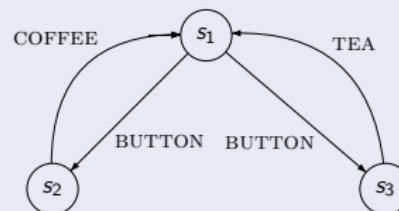
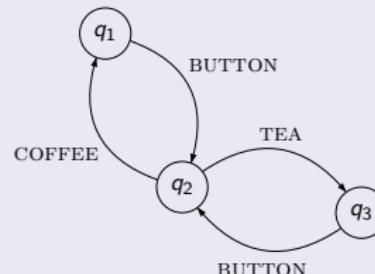
$$q_3 \leq_{tr} s_1$$

$$q_1 \leq_{tr} s_1$$

$$s_1 \leq_{tr} q_3$$

Examples Trace Preorder

Example 1



$$s_1 \leq_{tr} q_1$$

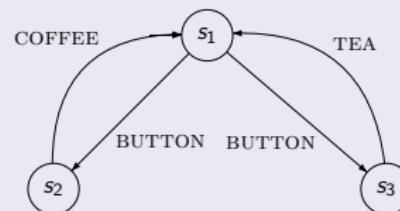
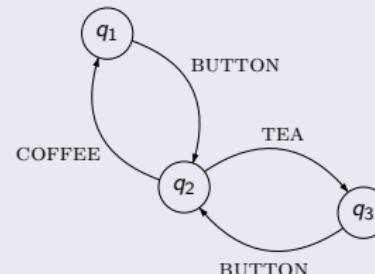
$$q_3 \leq_{tr} s_1$$

$$q_1 \leq_{tr} s_1$$

$$s_1 \leq_{tr} q_3$$

Examples Trace Preorder

Example 1



$$s_1 \leq_{tr} q_1$$

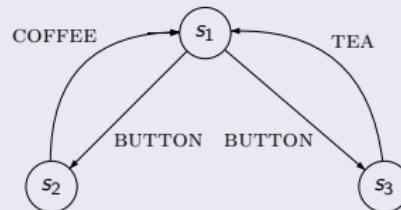
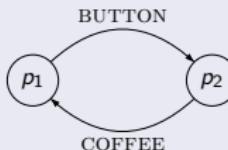
$$q_3 \leq_{tr} s_1$$

$$q_1 \leq_{tr} s_1$$

$$s_1 \leq_{tr} q_3$$

Examples Trace Preorder

Example 2



$$p_1 \leq_{tr} s_1$$

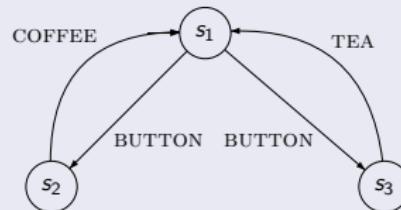
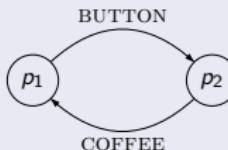
$$p_2 \leq_{tr} s_2$$

$$s_1 \not\leq_{tr} p_1$$

$$s_2 \not\leq_{tr} p_2$$

Examples Trace Preorder

Example 2



$$p_1 \leq_{tr} s_1$$

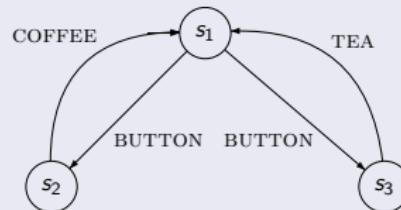
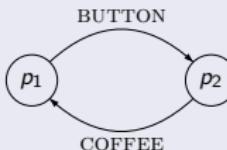
$$p_2 \leq_{tr} s_2$$

$$s_1 \not\leq_{tr} p_1$$

$$s_2 \not\leq_{tr} p_2$$

Examples Trace Preorder

Example 2



$$p_1 \leq_{tr} s_1$$

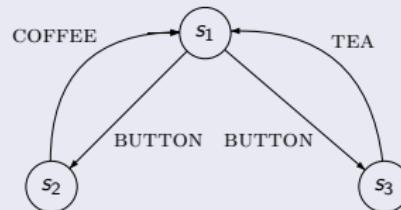
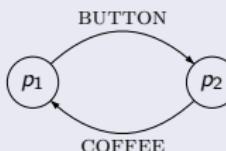
$$p_2 \leq_{tr} s_2$$

$$s_1 \not\leq_{tr} p_1$$

$$s_2 \not\leq_{tr} p_2$$

Examples Trace Preorder

Example 2



$$p_1 \leq_{tr} s_1$$

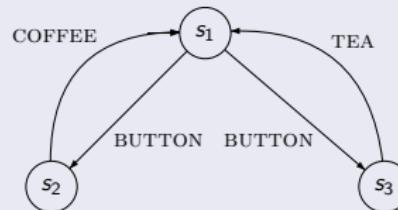
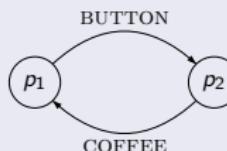
$$p_2 \leq_{tr} s_2$$

$$s_1 \not\leq_{tr} p_1$$

$$s_2 \not\leq_{tr} p_2$$

Examples Trace Preorder

Example 2



$$p_1 \leq_{tr} s_1$$

$$p_2 \leq_{tr} s_2$$

$$s_1 \not\leq_{tr} p_1$$

$$s_2 \not\leq_{tr} p_2$$

Definition 2.2.3

Bisimulation Equivalence

A **bisimulation** is a binary relation $R \subseteq \mathbb{IP} \times \mathbb{IP}$ satisfying:

For all $a \in \text{Act}$:

- 1) if pRq and $p \xrightarrow{a} p'$, then $\exists q' \in \mathbb{IP} : q \xrightarrow{a} q'$ and $p'Rq'$.
- 2) if pRq and $q \xrightarrow{a} q'$, then $\exists p' \in \mathbb{IP} : p \xrightarrow{a} p'$ and $p'Rq'$.

We say p is **bisimulation equivalent** to q (\sim_B) if there is a bisimulation R such that pRq .

Definition 2.2.3

Bisimulation Equivalence

A **bisimulation** is a binary relation $R \subseteq \mathbb{IP} \times \mathbb{IP}$ satisfying:
For all $a \in \text{Act}$:

- 1) if pRq and $p \xrightarrow{a} p'$, then $\exists q' \in \mathbb{IP} : q \xrightarrow{a} q'$ and $p'Rq'$.
- 2) if pRq and $q \xrightarrow{a} q'$, then $\exists p' \in \mathbb{IP} : p \xrightarrow{a} p'$ and $p'Rq'$.

We say p is **bisimulation equivalent** to q (\sim_B) if there is a bisimulation R such that pRq .

Definition 2.2.3

Bisimulation Equivalence

A **bisimulation** is a binary relation $R \subseteq \mathbb{IP} \times \mathbb{IP}$ satisfying:
For all $a \in \text{Act}$:

- 1) if pRq and $p \xrightarrow{a} p'$, then $\exists q' \in \mathbb{IP} : q \xrightarrow{a} q'$ and $p'Rq'$.
- 2) if pRq and $q \xrightarrow{a} q'$, then $\exists p' \in \mathbb{IP} : p \xrightarrow{a} p'$ and $p'Rq'$.

We say p is **bisimulation equivalent** to q (\sim_B) if there is a bisimulation R such that pRq .

Definition 2.2.3

Bisimulation Equivalence

A **bisimulation** is a binary relation $R \subseteq \mathbb{IP} \times \mathbb{IP}$ satisfying:
For all $a \in \text{Act}$:

- 1) if pRq and $p \xrightarrow{a} p'$, then $\exists q' \in \mathbb{IP} : q \xrightarrow{a} q'$ and $p'Rq'$.
- 2) if pRq and $q \xrightarrow{a} q'$, then $\exists p' \in \mathbb{IP} : p \xrightarrow{a} p'$ and $p'Rq'$.

We say p is **bisimulation equivalent** to q (\sim_B) if there is a bisimulation R such that pRq .

Definition 2.2.3

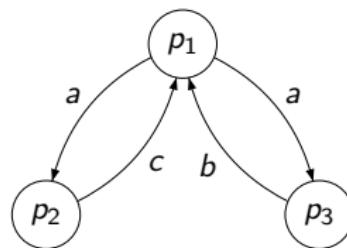
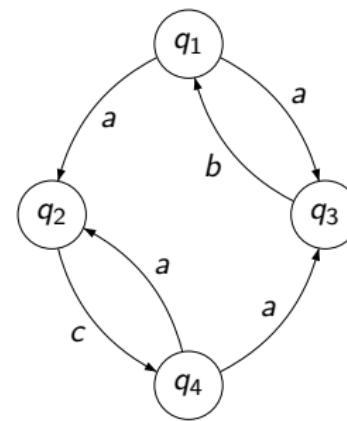
Bisimulation Equivalence

A **bisimulation** is a binary relation $R \subseteq \mathbb{IP} \times \mathbb{IP}$ satisfying:
For all $a \in \text{Act}$:

- 1) if pRq and $p \xrightarrow{a} p'$, then $\exists q' \in \mathbb{IP} : q \xrightarrow{a} q'$ and $p'Rq'$.
- 2) if pRq and $q \xrightarrow{a} q'$, then $\exists p' \in \mathbb{IP} : p \xrightarrow{a} p'$ and $p'Rq'$.

We say p is **bisimulation equivalent** to q (\sim_B) if there is a bisimulation R such that pRq .

Example 2.2.4

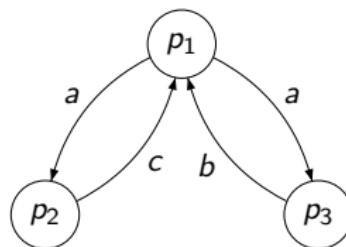
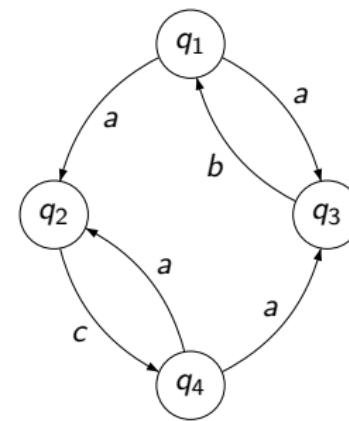
 L_1 : L_2 :Assertion: p_1 and q_1 are bisimulation equivalent

Consider:

$$p_1 R q_1 \quad p_2 R q_2 \quad p_3 R q_3 \quad p_1 R q_4$$

To show: R is a bisimulation

Example 2.2.4

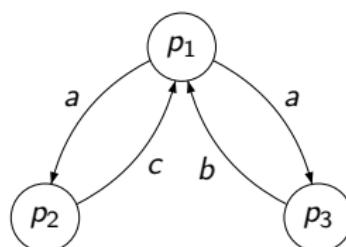
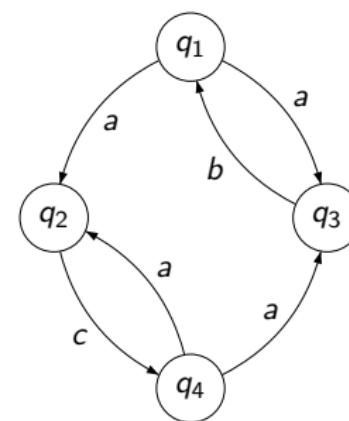
 L_1 : L_2 :Assertion: p_1 and q_1 are bisimulation equivalent

Consider:

$$p_1 R q_1 \quad p_2 R q_2 \quad p_3 R q_3 \quad p_1 R q_4$$

To show: R is a bisimulation

Example 2.2.4

 L_1 : L_2 :

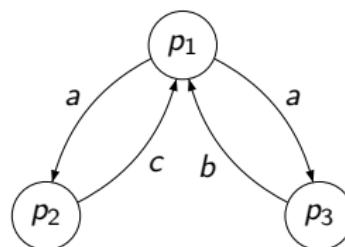
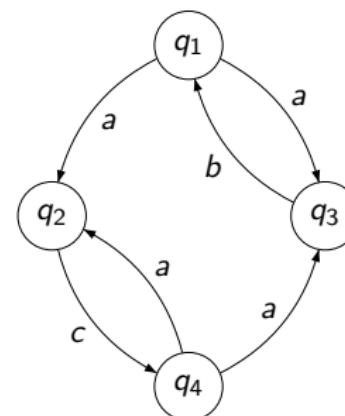
Assertion: p_1 and q_1 are bisimulation equivalent

Consider:

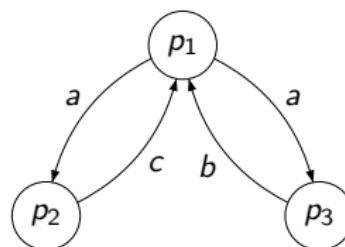
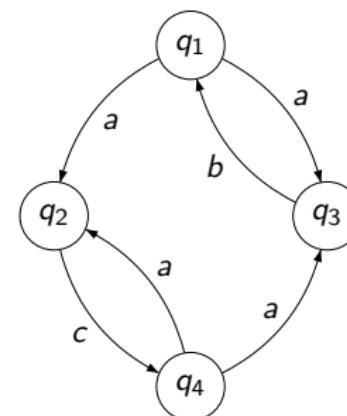
$$p_1 R q_1 \quad p_2 R q_2 \quad p_3 R q_3 \quad p_1 R q_4$$

To show: R is a bisimulation

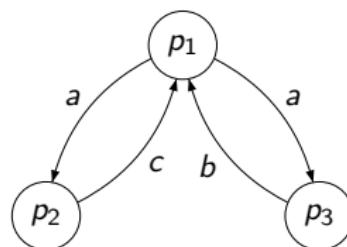
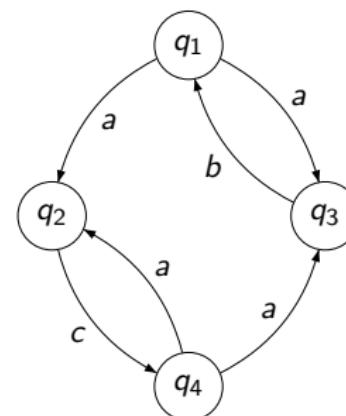
Example 2.2.4

 L_1 : L_2 : $p_1 R q_1 \quad p_2 R q_2 \quad p_3 R q_3 \quad p_1 R q_4$

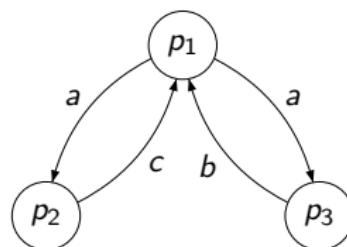
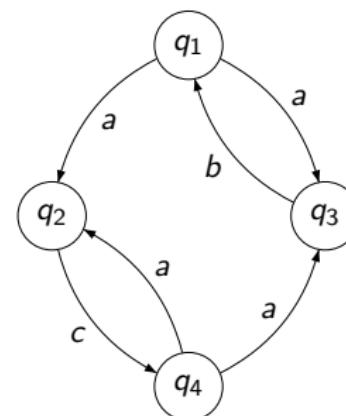
Example 2.2.4

 L_1 : L_2 : $p_1 R q_1 \quad p_2 R q_2 \quad p_3 R q_3 \quad p_1 R q_4$

Example 2.2.4

 L_1 : L_2 : $p_1 R q_1 \quad p_2 R q_2 \quad p_3 R q_3 \quad p_1 R q_4$

Example 2.2.4

 L_1 : L_2 : $p_1 R q_1 \quad p_2 R q_2 \quad p_3 R q_3 \quad p_1 R q_4$