Testing of Reactive Systems

Lecture 3:

Henrik Bohnenkamp

Lehrstuhl Informatik 2 (MOVES)
RWTH Aachen

Summer Semester 2009

What happened so far?

Labelled Transition Systems
@ Actions Act , atomic, observable, 7 unobservable

What happened so far?

Labelled Transition Systems
@ Actions Act , atomic, observable, 7 unobservable

@ States, Transitions

What happened so far?

Labelled Transition Systems

@ Actions Act , atomic, observable, 7 unobservable
@ States, Transitions

@ —, traces, reachable states, after ,

What happened so far?

Labelled Transition Systems
@ Actions Act , atomic, observable, 7 unobservable
@ States, Transitions
@ —, traces, reachable states, after ,

@ non-determinism

What happened so far?

Labelled Transition Systems

@ Actions Act , atomic, observable, 7 unobservable

@ States, Transitions
@ —, traces, reachable states, after ,

@ non-determinism

Processes

o prefix a.P

What happened so far?

Labelled Transition Systems

@ Actions Act , atomic, observable, 7 unobservable

@ States, Transitions
@ —, traces, reachable states, after ,

@ non-determinism

Processes

o prefix a.P
@ choice P + Q,

What happened so far?

Labelled Transition Systems

@ Actions Act , atomic, observable, 7 unobservable

@ States, Transitions
@ —, traces, reachable states, after ,

@ non-determinism

Processes

o prefix a.P
@ choice P + Q,

@ parallel composition P||aQ

What happened so far?

Labelled Transition Systems

@ Actions Act , atomic, observable, 7 unobservable

@ States, Transitions
@ —, traces, reachable states, after ,

@ non-determinism

Processes

o prefix a.P
@ choice P + Q,

@ parallel composition P||aQ

@ process variables P

What happened so far?

Labelled Transition Systems

@ Actions Act , atomic, observable, 7 unobservable

@ States, Transitions
@ —, traces, reachable states, after ,

@ non-determinism

Processes

o prefix a.P
choice P + Q,

°
@ parallel composition P||aQ
°
°

process variables P

(recursive) process definitions P

SOs

@ Structural Operational Semantics for TP

3/28

SOs
©0000000

A formal semantics of processes

Approach

@ Process semantics in terms of LTS

SOs
©0000000

A formal semantics of processes

Approach

@ Process semantics in terms of LTS

@ States are processes

SOs
©0000000

A formal semantics of processes

Approach

@ Process semantics in terms of LTS
@ States are processes

@ Transitions derived inductively over the syntactic structure of
processes

SOs
©0000000

A formal semantics of processes

Approach

® Process semantics in terms of LTS

@ States are processes

@ Transitions derived inductively over the syntactic structure of
processes

@ We define one big LTS Lp

SOs
0®000000

A formal semantics of processes

Lp = (S, Act U {7},—) LTS, where:
e S=1p;
@ the actions set Act the same as used to define IP;
@ — contains all and only those transitions (is the least set of

transitions) that can be derived with the following rules:

SOs
0®000000

A formal semantics of processes

Lp = (S, Act U {7},—) LTS, where:
o S=1p;
@ the actions set Act the same as used to define 1IP;

@ — contains all and only those transitions (is the least set of
transitions) that can be derived with the following rules:

Rule 1): Prefix
forallae Act,, peP: ap-3p

SOs
0®000000

A formal semantics of processes

Lp = (S, Act U {7},—) LTS, where:
o S=1p;
@ the actions set Act the same as used to define 1IP;

@ — contains all and only those transitions (is the least set of
transitions) that can be derived with the following rules:

Rule 2): Choice
for p,q € IP: if p-2 p’ for a € Act,, then

p+q-2p

SOs
0®000000

A formal semantics of processes

Lp = (S, Act U {7},—) LTS, where:
o S=1p;
@ the actions set Act the same as used to define 1IP;

@ — contains all and only those transitions (is the least set of
transitions) that can be derived with the following rules:

Rule 3): Choice again

if g2 g for a € Act,, then

p+q->4q

SOs
0®000000

A formal semantics of processes

Lp = (S, Act U {7},—) LTS, where:
o S=1p;
@ the actions set Act the same as used to define 1IP;

@ — contains all and only those transitions (is the least set of
transitions) that can be derived with the following rules:

Rule 4): Process variables

For Pe P: if P=pand p-2 p/, then

P3p

SOs
0®000000

A formal semantics of processes

Lp = (S, Act U {7},—) LTS, where:
e S=1p;
@ the actions set Act the same as used to define IP;
@ — contains all and only those transitions (is the least set of

transitions) that can be derived with the following rules:

Rule 5): Parallel composition (non-synchronising)

For A C Act and p|lag € IP: if p-2 p’ and a &€ A, then

pllag -2 p'llag

SOs
0®000000

A formal semantics of processes

Lp = (S, Act U {7},—) LTS, where:
e S=1p;
@ the actions set Act the same as used to define IP;
@ — contains all and only those transitions (is the least set of

transitions) that can be derived with the following rules:

Rule 6): Parallel composition (non-synchronising) again

For A C Act and p|lag € IP: if g% ¢’ and a € A, then

pllag -2 pllag’

SOs
0®000000

A formal semantics of processes

Lp = (S, Act U {7},—) LTS, where:
e S=1p;
@ the actions set Act the same as used to define IP;
@ — contains all and only those transitions (is the least set of

transitions) that can be derived with the following rules:

Rule 7): Parallel composition (synchronising)

ifp-2p,q-2q,and ac A, then

pllag 2 p'llaq’

SOs
00®00000

A formal semantics of processes

A more compact way to write the rules

1) ——
ap-2p
3
3,
a
3
— —
—

SOs
00®00000

A formal semantics of processes

A more compact way to write the rules

p-=p
1) —— 2) ———— p
a.p->p p+q-2p
—
—
3,
N
— —
—

SOs
00®00000

A formal semantics of processes

A more compact way to write the rules

p->p 94
1) — 2) - 3 =—
ap-=p p+q-=>p p+qagq
—
—
2,
N
— —
—

SOs
00®00000

A formal semantics of processes

A more compact way to write the rules

a / a /
) —— 2P g 97
a.p-=>p p+q-=p p+qg-=q
p=p .
4) PP (p2p)
P=p
B
B
— —
—

SOs
00®00000

A formal semantics of processes

A more compact way to write the rules »

a / a /
) —— 2)# 3)%
a.p-=>p p+q-=p p+q-=4q
p=p .
4) o5 (P=p)
= p

p->p
5) — (2 g A)
pllag 2 p'llaq

SOs
00®00000

A formal semantics of processes

A more compact way to write the rules »
p-=p
ap-=>p p+q->p p+q->q

) ——— 2

/

PP (pap)

4 S
)P—a>p’

a /

p->p q->q
5) — 5 i—(a¢A) 6) ——————(af A)
pllag = p'llag pllag = pllag

SOs
00®00000

A formal semantics of processes

A more compact way to write the rules

p->p 94
1) 5 2) s 3) =
ap->p p+q->p p+q->q
p=p .
4) 5—=—(P=p)
P=p
p->p qg-=>4
5) — 5 i—(a¢A) 6) ——————(af A)
pllag = p'llag pllag = pllag
a / a /
)W(%A)
pllag 2 p'llaq

SOs
00080000

Operational Rules

Example 1.4.2: Three process equations:

X £ abX
Y £ acY+aayY
Z = Xl@aY
— Blackboard)

SOs
0000@000

Example 1.4.2

The complete transitions system of Z:

SOs
0000@000

Example 1.4.2

The complete transitions system of Z:

SOs
00000000

Example 1.4.3

Deadlock
(a.STOP|| (4,51 b.STOP) 2 for all c € Act,.

SOs
00000000

Example 1.4.3

Parallel Execution and Nondeterminism
XZ=aX YZ=a.b.Y Z=ac”Z

10/28

SOs
00000000

Example 1.4.3

Parallel Execution and Nondeterminism
XZ=aX YZ=a.b.Y Z=ac”Z

Initial transitions X||¢,3(Y([pZ):

i

Xllga(YlloZ) —2—= Xll{a) (b-Y 9 Z)

Xllap(Ylloe.2) ~—

o X,Y,Z all deterministic.

@ Parallelism causes non-determinism.

10/28

SOs
00000000

Example 1.4.3

Parallel Execution and Nondeterminism
XZ=aX YZ=a.b.Y Z=ac”Z

Initial transitions X||¢,3(Y([pZ):

i

Xllga(YlloZ) —2—= Xll{a) (b-Y 9 Z)

Xllap(Ylloe.2) ~—

o X,Y,Z all deterministic.

@ Parallelism causes non-determinism.

Exercise: Derive all transitions of X||,1(Y[¢pZ)

10

28

SOs
0000000@

@ The structure of Lp depends actually on the given process
definitions, which are part of the process specification.

@ [f there are no process definitions, then Lp is still well defined
(why?).

Summary Part 1

© Summary Part 1

Summary Part 1
[le]

Summary

@ LTS: states, actions, transitions

Summary Part 1
[le]

Summary

@ LTS: states, actions, transitions

@ Traces

Summary Part 1
[le]

Summary

@ LTS: states, actions, transitions
@ Traces

@ Non-determinism

Summary Part 1
[le]

Summary

@ LTS: states, actions, transitions
@ Traces
@ Non-determinism

@ The language IP

Summary Part 1
[le]

Summary

LTS: states, actions, transitions
Traces

Non-determinism

The language IP

The SOS of IP

Summary Part 1
oe

Part 2: Differentiating Behaviour)

14/28

Preorders

© Preorders

15/28

Preorders
[Jelele]

Motivation

@ Describing formally when an implementation is (in)correct
with respect to a specification

@ We use (binary) relations <: implementation relations.
@ Here:
<CIPxIP
o We say:
i <s iff iisimplementation of s

@ Often: implementation relations are preorders

Preorders
0e00

Preorders

Definition 2.1.1: Preorders
Let X be a set. <C X x X is called a preorder, iff
Q (x,x) €< (reflexivity)
Q (x,y),(y,z) e< = (x,z) €< (transitivity)
We write x < y for (x,y) €<

17 /28

Preorders
[e]e] Je]

Preorders and equivalence relations

Lemma 2.1.2

@ Let < be a preorder.

Preorders
[e]e] Je]

Preorders and equivalence relations

Lemma 2.1.2

@ Let < be a preorder.
® Define ~<C X x X as

{Go) (x <y and y < x}.

Preorders
[e]e] Je]

Preorders and equivalence relations

Lemma 2.1.2

@ Let < be a preorder.
® Define ~<C X x X as

{Go) (x <y and y < x}.

@ Then ~< is an equivalence relation, called the kernel of
preorder <.

Preorders
[e]e] Je]

Preorders and equivalence relations

Lemma 2.1.2

@ Let < be a preorder.
® Define ~<C X x X as

{Go) (x <y and y < x}.

@ Then ~< is an equivalence relation, called the kernel of
preorder <.

Show for ~<:

O reflexivity
Q@ symmetry
© transitivity

(Exercise)

Preorders
[e]e]e])

Preorders and Equivalences on 1P

@ Preorders on IP used as implementation relations

@ Kernels of preorders on IP then equivalences on processes: if
p ~< q, then p, g behave alike, according of the chosen
preorder.

@ Usually it is easier to reason about preorders, rather than the
respective kernels.

Some ImpRel

@ Some Implementation Relations

20/28

Some ImpRel
0000000

Until further notice we consider only processes that do not
make any 7-steps!

21/28

Some ImpRel
0000000

Until further notice we consider only processes that do not
make any 7-steps!

Consequences

Q@ = =— U{(p,e,p) | pe P}
@ For consistency sake, we write then also p 5 p iff p = p'.

Some ImpRel
O@000000

Definition 2.2.1

Trace preorder
Let p, g be processes. We define

p<e&q :<= traces(p) C traces(q)

22/28

Some ImpRel
[e]e] lelele]le]e]

Trace Preorder

@ < is a preorder: it follows from reflexivity and transitivity of
C.

23 /28

Some ImpRel
[e]e] lelele]le]e]

Trace Preorder

@ < is a preorder: it follows from reflexivity and transitivity of
C.

@ if p < g and p can execute o € Act”, then g can as well.

23 /28

Some ImpRel
[e]e] lelele]le]e]

Trace Preorder

@ < is a preorder: it follows from reflexivity and transitivity of
C.

@ if p < g and p can execute o € Act”, then g can as well.

@ g describes the legal traces that an implementation is allowed
to do.

Some ImpRel
[e]e] lelele]le]e]

Trace Preorder

® <,is a preorder: it follows from reflexivity and transitivity of
C.

@ if p < g and p can execute o € Act”, then g can as well.

@ g describes the legal traces that an implementation is allowed
to do.

@ An implementation does not need to be complete.

Some ImpRel
[e]e] lelele]le]e]

Trace Preorder

@ < is a preorder: it follows from reflexivity and transitivity of
C.

@ if p < g and p can execute o € Act”, then g can as well.

@ g describes the legal traces that an implementation is allowed
to do.

@ An implementation does not need to be complete.

@ The kernel is set equality of the trace sets, called trace
equivalence.

Some ImpRel
[e]e]e] lelele]e]

Examples Trace Preorder

Example 1

COFFEE TEA

BUTTON BUTTON

BUTTON

Some ImpRel
[e]e]e] lelele]e]

Examples Trace Preorder

Example 1

COFFEE TEA

BUTTON BUTTON

BUTTON

s1 <t q1

Some ImpRel
[e]e]e] lelele]e]

Examples Trace Preorder

Example 1

COFFEE TEA

BUTTON BUTTON

BUTTON

s1 <tr q1 as <t S1

Some ImpRel
[e]e]e] lelele]e]

Examples Trace Preorder

Example 1

COFFEE TEA

BUTTON BUTTON

BUTTON

COFFEE

BUTTON

s1 <t q1 g3 <tr 51 q1 < 51

Some ImpRel
[e]e]e] lelele]e]

Examples Trace Preorder

Example 1

COFFEE TEA

BUTTON BUTTON

BUTTON

COFFEE

BUTTON

s1 <t q1 g3 <tr 51 q1 < 51 s1 <tr g3

Examples Trace Preorder

Example 2

COFFEE

BUTTON BUTTON

TEA

BUTTON

COFFEE

Some ImpRel
[ee]e]e] Telele]

Examples Trace Preorder

Example 2

COFFEE

p1 <t S1

BUTTON BUTTON

TEA

BUTTON

COFFEE

Some ImpRel
[ee]e]e] Telele]

Some ImpRel
[ee]e]e] Telele]

Examples Trace Preorder

Example 2

COFFEE TEA

BUTTON BUTTON

BUTTON

COFFEE

p1 <t S1 P2 <t

Some ImpRel
[ee]e]e] Telele]

Examples Trace Preorder

Example 2

COFFEE TEA

BUTTON BUTTON

BUTTON

COFFEE

p1 <t S1 P2 <t s1 Ler P1

Some ImpRel
[ee]e]e] Telele]

Examples Trace Preorder

Example 2

COFFEE TEA

BUTTON BUTTON

BUTTON

COFFEE

p1 <t S1 P2 <t s1 Ler P1 S2 Lir P2

Some ImpRel
[ee]e]ele] lele]

Definition 2.2.3

Bisimulation Equivalence

A bisimulation is a binary relation R C IP x IP satisfying:

26 /28

Some ImpRel
[ee]e]ele] lele]

Definition 2.2.3

Bisimulation Equivalence

A bisimulation is a binary relation R C IP x IP satisfying:
For all a € Act:

26 /28

Some ImpRel
[ee]e]ele] lele]

Definition 2.2.3

Bisimulation Equivalence

A bisimulation is a binary relation R C IP x IP satisfying:
For all a € Act:

1) if pRg and p-2 p/, then 3¢’ € IP : ¢ > ¢’ and p'Rq’.

26 /28

Some ImpRel
[ee]e]ele] lele]

Definition 2.2.3

Bisimulation Equivalence

A bisimulation is a binary relation R C IP x IP satisfying:
For all a € Act:

1) if pRg and p-2 p/, then 3¢’ € IP : ¢ > ¢’ and p'Rq’.

2) if pRq and g2 ¢/, then 3p' € P : p-2 p’ and p'Rq’.

26 /28

Some ImpRel
[ee]e]ele] lele]

Definition 2.2.3

Bisimulation Equivalence

A bisimulation is a binary relation R C IP x IP satisfying:
For all a € Act:

1) if pRg and p-2 p/, then 3¢’ € IP : ¢ > ¢’ and p'Rq’.
2) if pRq and g2 ¢/, then 3p' € P : p-2 p’ and p'Rq’.

We say p is bisimulation equivalent to g (~pg) if there is a
bisimulation R such that pRq.

26 /28

Some ImpRel
00000080

Example 2.2.4

27 /28

Some ImpRel
00000080

Example 2.2.4

Assertion: p; and g are bisimulation equivalent
Consider:
piRg1 pRqg p3sRqs piRaa

Some ImpRel
00000080

Example 2.2.4

Assertion: p; and g are bisimulation equivalent
Consider:
piRg1 pRqg p3sRqs piRaa

To show: R is a bisimulation

Some ImpRel
O000000e

Example 2.2.4

piR q1)

Example 2.2.4

piRq1 p2Rq)

Example 2.2.4

piRg1 p2Rq p3Rags)

Example 2.2.4

piRgr pRq psRqgs p1Raqa J

	Structural Operational Semantics for IP
	

	Summary Part 1
	

	Preorders
	

	Some Implementation Relations
	

