
SOS Summary Part 1 Preorders Some ImpRel

Testing of Reactive Systems

Lecture 3: Semantics of Reactive Systems, Implementation
Relations

Henrik Bohnenkamp

Lehrstuhl Informatik 2 (MOVES)
RWTH Aachen

Summer Semester 2009

1 / 28



SOS Summary Part 1 Preorders Some ImpRel

What happened so far?

Labelled Transition Systems

Actions Act , atomic, observable, τ unobservable

States, Transitions

=⇒, traces, reachable states, after ,

non-determinism

Processes

prefix a.P

choice P + Q,

parallel composition P‖AQ

process variables P

(recursive) process definitions P

2 / 28



SOS Summary Part 1 Preorders Some ImpRel

What happened so far?

Labelled Transition Systems

Actions Act , atomic, observable, τ unobservable

States, Transitions

=⇒, traces, reachable states, after ,

non-determinism

Processes

prefix a.P

choice P + Q,

parallel composition P‖AQ

process variables P

(recursive) process definitions P

2 / 28



SOS Summary Part 1 Preorders Some ImpRel

What happened so far?

Labelled Transition Systems

Actions Act , atomic, observable, τ unobservable

States, Transitions

=⇒, traces, reachable states, after ,

non-determinism

Processes

prefix a.P

choice P + Q,

parallel composition P‖AQ

process variables P

(recursive) process definitions P

2 / 28



SOS Summary Part 1 Preorders Some ImpRel

What happened so far?

Labelled Transition Systems

Actions Act , atomic, observable, τ unobservable

States, Transitions

=⇒, traces, reachable states, after ,

non-determinism

Processes

prefix a.P

choice P + Q,

parallel composition P‖AQ

process variables P

(recursive) process definitions P

2 / 28



SOS Summary Part 1 Preorders Some ImpRel

What happened so far?

Labelled Transition Systems

Actions Act , atomic, observable, τ unobservable

States, Transitions

=⇒, traces, reachable states, after ,

non-determinism

Processes

prefix a.P

choice P + Q,

parallel composition P‖AQ

process variables P

(recursive) process definitions P

2 / 28



SOS Summary Part 1 Preorders Some ImpRel

What happened so far?

Labelled Transition Systems

Actions Act , atomic, observable, τ unobservable

States, Transitions

=⇒, traces, reachable states, after ,

non-determinism

Processes

prefix a.P

choice P + Q,

parallel composition P‖AQ

process variables P

(recursive) process definitions P

2 / 28



SOS Summary Part 1 Preorders Some ImpRel

What happened so far?

Labelled Transition Systems

Actions Act , atomic, observable, τ unobservable

States, Transitions

=⇒, traces, reachable states, after ,

non-determinism

Processes

prefix a.P

choice P + Q,

parallel composition P‖AQ

process variables P

(recursive) process definitions P

2 / 28



SOS Summary Part 1 Preorders Some ImpRel

What happened so far?

Labelled Transition Systems

Actions Act , atomic, observable, τ unobservable

States, Transitions

=⇒, traces, reachable states, after ,

non-determinism

Processes

prefix a.P

choice P + Q,

parallel composition P‖AQ

process variables P

(recursive) process definitions P

2 / 28



SOS Summary Part 1 Preorders Some ImpRel

What happened so far?

Labelled Transition Systems

Actions Act , atomic, observable, τ unobservable

States, Transitions

=⇒, traces, reachable states, after ,

non-determinism

Processes

prefix a.P

choice P + Q,

parallel composition P‖AQ

process variables P

(recursive) process definitions P

2 / 28



SOS Summary Part 1 Preorders Some ImpRel

1 Structural Operational Semantics for IP

2 Summary Part 1

3 Preorders

4 Some Implementation Relations

3 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

Approach

Process semantics in terms of LTS

States are processes

Transitions derived inductively over the syntactic structure of
processes

We define one big LTS LIP

4 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

Approach

Process semantics in terms of LTS

States are processes

Transitions derived inductively over the syntactic structure of
processes

We define one big LTS LIP

4 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

Approach

Process semantics in terms of LTS

States are processes

Transitions derived inductively over the syntactic structure of
processes

We define one big LTS LIP

4 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

Approach

Process semantics in terms of LTS

States are processes

Transitions derived inductively over the syntactic structure of
processes

We define one big LTS LIP

4 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

Definition: LIP

LIP = (S ,Act ∪ {τ},→) LTS, where:

S = IP;

the actions set Act the same as used to define IP;

→ contains all and only those transitions (is the least set of
transitions) that can be derived with the following rules:

5 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

Definition: LIP

LIP = (S ,Act ∪ {τ},→) LTS, where:

S = IP;

the actions set Act the same as used to define IP;

→ contains all and only those transitions (is the least set of
transitions) that can be derived with the following rules:

Rule 1): Prefix

for all a ∈ Act τ , p ∈ IP: a.p a→ p

5 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

Definition: LIP

LIP = (S ,Act ∪ {τ},→) LTS, where:

S = IP;

the actions set Act the same as used to define IP;

→ contains all and only those transitions (is the least set of
transitions) that can be derived with the following rules:

Rule 2): Choice

for p, q ∈ IP: if p a→ p′ for a ∈ Act τ , then

p + q a→ p′

5 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

Definition: LIP

LIP = (S ,Act ∪ {τ},→) LTS, where:

S = IP;

the actions set Act the same as used to define IP;

→ contains all and only those transitions (is the least set of
transitions) that can be derived with the following rules:

Rule 3): Choice again

if q a→ q′ for a ∈ Act τ , then

p + q a→ q′

5 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

Definition: LIP

LIP = (S ,Act ∪ {τ},→) LTS, where:

S = IP;

the actions set Act the same as used to define IP;

→ contains all and only those transitions (is the least set of
transitions) that can be derived with the following rules:

Rule 4): Process variables

For P ∈ P: if P =̂ p and p a→ p′, then

P a→ p′

5 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

Definition: LIP

LIP = (S ,Act ∪ {τ},→) LTS, where:

S = IP;

the actions set Act the same as used to define IP;

→ contains all and only those transitions (is the least set of
transitions) that can be derived with the following rules:

Rule 5): Parallel composition (non-synchronising)

For A ⊆ Act and p‖Aq ∈ IP: if p a→ p′ and a 6∈ A, then

p‖Aq a→ p′‖Aq

5 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

Definition: LIP

LIP = (S ,Act ∪ {τ},→) LTS, where:

S = IP;

the actions set Act the same as used to define IP;

→ contains all and only those transitions (is the least set of
transitions) that can be derived with the following rules:

Rule 6): Parallel composition (non-synchronising) again

For A ⊆ Act and p‖Aq ∈ IP: if q a→ q′ and a 6∈ A, then

p‖Aq a→ p‖Aq′

5 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

Definition: LIP

LIP = (S ,Act ∪ {τ},→) LTS, where:

S = IP;

the actions set Act the same as used to define IP;

→ contains all and only those transitions (is the least set of
transitions) that can be derived with the following rules:

Rule 7): Parallel composition (synchronising)

if p a→ p′, q a→ q′, and a ∈ A, then

p‖Aq a→ p′‖Aq′

5 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

A more compact way to write the rules

1)
a.p a→ p

2)
p a→ p′

p + q a→ p′
3)

q a→ q′

p + q a→ q′

4)
p a→ p′

P a→ p′
(P =̂ p)

5)
p a→ p′

p‖Aq a→ p′‖Aq
(a 6∈ A) 6)

q a→ q′

p‖Aq a→ p‖Aq′
(a 6∈ A)

7)
p a→ p′ q a→ q′

p‖Aq a→ p′‖Aq′
(a ∈ A)

6 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

A more compact way to write the rules

1)
a.p a→ p

2)
p a→ p′

p + q a→ p′
3)

q a→ q′

p + q a→ q′

4)
p a→ p′

P a→ p′
(P =̂ p)

5)
p a→ p′

p‖Aq a→ p′‖Aq
(a 6∈ A) 6)

q a→ q′

p‖Aq a→ p‖Aq′
(a 6∈ A)

7)
p a→ p′ q a→ q′

p‖Aq a→ p′‖Aq′
(a ∈ A)

6 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

A more compact way to write the rules

1)
a.p a→ p

2)
p a→ p′

p + q a→ p′
3)

q a→ q′

p + q a→ q′

4)
p a→ p′

P a→ p′
(P =̂ p)

5)
p a→ p′

p‖Aq a→ p′‖Aq
(a 6∈ A) 6)

q a→ q′

p‖Aq a→ p‖Aq′
(a 6∈ A)

7)
p a→ p′ q a→ q′

p‖Aq a→ p′‖Aq′
(a ∈ A)

6 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

A more compact way to write the rules

1)
a.p a→ p

2)
p a→ p′

p + q a→ p′
3)

q a→ q′

p + q a→ q′

4)
p a→ p′

P a→ p′
(P =̂ p)

5)
p a→ p′

p‖Aq a→ p′‖Aq
(a 6∈ A) 6)

q a→ q′

p‖Aq a→ p‖Aq′
(a 6∈ A)

7)
p a→ p′ q a→ q′

p‖Aq a→ p′‖Aq′
(a ∈ A)

6 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

A more compact way to write the rules

1)
a.p a→ p

2)
p a→ p′

p + q a→ p′
3)

q a→ q′

p + q a→ q′

4)
p a→ p′

P a→ p′
(P =̂ p)

5)
p a→ p′

p‖Aq a→ p′‖Aq
(a 6∈ A) 6)

q a→ q′

p‖Aq a→ p‖Aq′
(a 6∈ A)

7)
p a→ p′ q a→ q′

p‖Aq a→ p′‖Aq′
(a ∈ A)

6 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

A more compact way to write the rules

1)
a.p a→ p

2)
p a→ p′

p + q a→ p′
3)

q a→ q′

p + q a→ q′

4)
p a→ p′

P a→ p′
(P =̂ p)

5)
p a→ p′

p‖Aq a→ p′‖Aq
(a 6∈ A) 6)

q a→ q′

p‖Aq a→ p‖Aq′
(a 6∈ A)

7)
p a→ p′ q a→ q′

p‖Aq a→ p′‖Aq′
(a ∈ A)

6 / 28



SOS Summary Part 1 Preorders Some ImpRel

A formal semantics of processes

A more compact way to write the rules

1)
a.p a→ p

2)
p a→ p′

p + q a→ p′
3)

q a→ q′

p + q a→ q′

4)
p a→ p′

P a→ p′
(P =̂ p)

5)
p a→ p′

p‖Aq a→ p′‖Aq
(a 6∈ A) 6)

q a→ q′

p‖Aq a→ p‖Aq′
(a 6∈ A)

7)
p a→ p′ q a→ q′

p‖Aq a→ p′‖Aq′
(a ∈ A)

6 / 28



SOS Summary Part 1 Preorders Some ImpRel

Operational Rules

Example 1.4.2: Three process equations:

X =̂ a.b.X

Y =̂ a.c .Y + a.a.Y

Z =̂ X‖{a}Y

=⇒ Blackboard

7 / 28



SOS Summary Part 1 Preorders Some ImpRel

Example 1.4.2

The complete transitions system of Z :

Z

b.X‖{a}c .Y

b.X‖{a}a.Y

X‖{a}c .Y

b.X‖{a}Y

X‖{a}a.Y

a

a

b

a

b

c

bc
What is wrong in this picture?

8 / 28



SOS Summary Part 1 Preorders Some ImpRel

Example 1.4.2

The complete transitions system of Z :

Z

b.X‖{a}c .Y

b.X‖{a}a.Y

X‖{a}c .Y

b.X‖{a}Y

X‖{a}a.Y

a

a

b

a

b

c

bc
What is wrong in this picture?

8 / 28



SOS Summary Part 1 Preorders Some ImpRel

Example 1.4.3

Deadlock

(a.STOP‖{a,b}b.STOP) 6 c→ for all c ∈ Act τ .

9 / 28



SOS Summary Part 1 Preorders Some ImpRel

Example 1.4.3

Parallel Execution and Nondeterminism

X =̂ a.X Y =̂ a.b.Y Z =̂ a.c .Z

10 / 28



SOS Summary Part 1 Preorders Some ImpRel

Example 1.4.3

Parallel Execution and Nondeterminism

X =̂ a.X Y =̂ a.b.Y Z =̂ a.c .Z

Initial transitions X‖{a}(Y ‖∅Z ):

X‖{a}(Y ‖∅Z ) X‖{a}(b.Y ‖∅Z )X‖{a}(Y ‖∅c .Z ) a
a

X ,Y ,Z all deterministic.

Parallelism causes non-determinism.

10 / 28



SOS Summary Part 1 Preorders Some ImpRel

Example 1.4.3

Parallel Execution and Nondeterminism

X =̂ a.X Y =̂ a.b.Y Z =̂ a.c .Z

Initial transitions X‖{a}(Y ‖∅Z ):

X‖{a}(Y ‖∅Z ) X‖{a}(b.Y ‖∅Z )X‖{a}(Y ‖∅c .Z ) a
a

X ,Y ,Z all deterministic.

Parallelism causes non-determinism.

Exercise: Derive all transitions of X‖{a}(Y ‖∅Z )

10 / 28



SOS Summary Part 1 Preorders Some ImpRel

Note

The structure of LIP depends actually on the given process
definitions, which are part of the process specification.

If there are no process definitions, then LIP is still well defined
(why?).

11 / 28



SOS Summary Part 1 Preorders Some ImpRel

1 Structural Operational Semantics for IP

2 Summary Part 1

3 Preorders

4 Some Implementation Relations

12 / 28



SOS Summary Part 1 Preorders Some ImpRel

Summary

LTS: states, actions, transitions

Traces

Non-determinism

The language IP

The SOS of IP

13 / 28



SOS Summary Part 1 Preorders Some ImpRel

Summary

LTS: states, actions, transitions

Traces

Non-determinism

The language IP

The SOS of IP

13 / 28



SOS Summary Part 1 Preorders Some ImpRel

Summary

LTS: states, actions, transitions

Traces

Non-determinism

The language IP

The SOS of IP

13 / 28



SOS Summary Part 1 Preorders Some ImpRel

Summary

LTS: states, actions, transitions

Traces

Non-determinism

The language IP

The SOS of IP

13 / 28



SOS Summary Part 1 Preorders Some ImpRel

Summary

LTS: states, actions, transitions

Traces

Non-determinism

The language IP

The SOS of IP

13 / 28



SOS Summary Part 1 Preorders Some ImpRel

Part 2: Differentiating Behaviour

14 / 28



SOS Summary Part 1 Preorders Some ImpRel

1 Structural Operational Semantics for IP

2 Summary Part 1

3 Preorders

4 Some Implementation Relations

15 / 28



SOS Summary Part 1 Preorders Some ImpRel

Motivation

Goal

Describing formally when an implementation is (in)correct
with respect to a specification

We use (binary) relations ≤: implementation relations.

Here:
≤⊆ IP × IP

We say:

i ≤ s iff i is implementation of s

Often: implementation relations are preorders

16 / 28



SOS Summary Part 1 Preorders Some ImpRel

Preorders

Definition 2.1.1: Preorders

Let X be a set. ≤⊆ X × X is called a preorder, iff

1 (x , x) ∈≤ (reflexivity)

2 (x , y), (y , z) ∈≤ =⇒ (x , z) ∈≤ (transitivity)

We write x ≤ y for (x , y) ∈≤

17 / 28



SOS Summary Part 1 Preorders Some ImpRel

Preorders and equivalence relations

Lemma 2.1.2

Let ≤ be a preorder.

Define ∼≤⊆ X × X as

{(x , y)| (x ≤ y and y ≤ x}.

Then ∼≤ is an equivalence relation, called the kernel of
preorder ≤.

Proof:

Show for ∼≤:

1 reflexivity

2 symmetry

3 transitivity

(Exercise)
18 / 28



SOS Summary Part 1 Preorders Some ImpRel

Preorders and equivalence relations

Lemma 2.1.2

Let ≤ be a preorder.

Define ∼≤⊆ X × X as

{(x , y)| (x ≤ y and y ≤ x}.

Then ∼≤ is an equivalence relation, called the kernel of
preorder ≤.

Proof:

Show for ∼≤:

1 reflexivity

2 symmetry

3 transitivity

(Exercise)
18 / 28



SOS Summary Part 1 Preorders Some ImpRel

Preorders and equivalence relations

Lemma 2.1.2

Let ≤ be a preorder.

Define ∼≤⊆ X × X as

{(x , y)| (x ≤ y and y ≤ x}.

Then ∼≤ is an equivalence relation, called the kernel of
preorder ≤.

Proof:

Show for ∼≤:

1 reflexivity

2 symmetry

3 transitivity

(Exercise)
18 / 28



SOS Summary Part 1 Preorders Some ImpRel

Preorders and equivalence relations

Lemma 2.1.2

Let ≤ be a preorder.

Define ∼≤⊆ X × X as

{(x , y)| (x ≤ y and y ≤ x}.

Then ∼≤ is an equivalence relation, called the kernel of
preorder ≤.

Proof:

Show for ∼≤:

1 reflexivity

2 symmetry

3 transitivity

(Exercise)
18 / 28



SOS Summary Part 1 Preorders Some ImpRel

Note

Preorders and Equivalences on IP

Preorders on IP used as implementation relations

Kernels of preorders on IP then equivalences on processes: if
p ∼≤ q, then p, q behave alike, according of the chosen
preorder.

Usually it is easier to reason about preorders, rather than the
respective kernels.

19 / 28



SOS Summary Part 1 Preorders Some ImpRel

1 Structural Operational Semantics for IP

2 Summary Part 1

3 Preorders

4 Some Implementation Relations

20 / 28



SOS Summary Part 1 Preorders Some ImpRel

Until further notice we consider only processes that do not

make any τ -steps!

Consequences

1 =⇒ = → ∪{(p, ε, p) | p ∈ IP}

2 For consistency sake, we write then also p ε→ p′ iff p
ε

=⇒ p′.

21 / 28



SOS Summary Part 1 Preorders Some ImpRel

Until further notice we consider only processes that do not

make any τ -steps!

Consequences

1 =⇒ = → ∪{(p, ε, p) | p ∈ IP}

2 For consistency sake, we write then also p ε→ p′ iff p
ε

=⇒ p′.

21 / 28



SOS Summary Part 1 Preorders Some ImpRel

Definition 2.2.1

Trace preorder

Let p, q be processes. We define

p ≤tr q : ⇐⇒ traces(p) ⊆ traces(q)

22 / 28



SOS Summary Part 1 Preorders Some ImpRel

Trace Preorder

Properties

≤tr is a preorder: it follows from reflexivity and transitivity of
⊆.

if p ≤ q and p can execute σ ∈ Act∗, then q can as well.

q describes the legal traces that an implementation is allowed
to do.

An implementation does not need to be complete.

The kernel is set equality of the trace sets, called trace
equivalence.

23 / 28



SOS Summary Part 1 Preorders Some ImpRel

Trace Preorder

Properties

≤tr is a preorder: it follows from reflexivity and transitivity of
⊆.

if p ≤ q and p can execute σ ∈ Act∗, then q can as well.

q describes the legal traces that an implementation is allowed
to do.

An implementation does not need to be complete.

The kernel is set equality of the trace sets, called trace
equivalence.

23 / 28



SOS Summary Part 1 Preorders Some ImpRel

Trace Preorder

Properties

≤tr is a preorder: it follows from reflexivity and transitivity of
⊆.

if p ≤ q and p can execute σ ∈ Act∗, then q can as well.

q describes the legal traces that an implementation is allowed
to do.

An implementation does not need to be complete.

The kernel is set equality of the trace sets, called trace
equivalence.

23 / 28



SOS Summary Part 1 Preorders Some ImpRel

Trace Preorder

Properties

≤tr is a preorder: it follows from reflexivity and transitivity of
⊆.

if p ≤ q and p can execute σ ∈ Act∗, then q can as well.

q describes the legal traces that an implementation is allowed
to do.

An implementation does not need to be complete.

The kernel is set equality of the trace sets, called trace
equivalence.

23 / 28



SOS Summary Part 1 Preorders Some ImpRel

Trace Preorder

Properties

≤tr is a preorder: it follows from reflexivity and transitivity of
⊆.

if p ≤ q and p can execute σ ∈ Act∗, then q can as well.

q describes the legal traces that an implementation is allowed
to do.

An implementation does not need to be complete.

The kernel is set equality of the trace sets, called trace
equivalence.

23 / 28



SOS Summary Part 1 Preorders Some ImpRel

Examples Trace Preorder

Example 1

s2 s3

s1

button button

coffee tea

q1

q2
q3

button

coffee

tea

button

s1 ≤tr q1 q3 ≤tr s1 q1 ≤tr s1 s1 ≤tr q3
24 / 28



SOS Summary Part 1 Preorders Some ImpRel

Examples Trace Preorder

Example 1

s2 s3

s1

button button

coffee tea

q1

q2
q3

button

coffee

tea

button

s1 ≤tr q1 q3 ≤tr s1 q1 ≤tr s1 s1 ≤tr q3
24 / 28



SOS Summary Part 1 Preorders Some ImpRel

Examples Trace Preorder

Example 1

s2 s3

s1

button button

coffee tea

q1

q2
q3

button

coffee

tea

button

s1 ≤tr q1 q3 ≤tr s1 q1 ≤tr s1 s1 ≤tr q3
24 / 28



SOS Summary Part 1 Preorders Some ImpRel

Examples Trace Preorder

Example 1

s2 s3

s1

button button

coffee tea

q1

q2
q3

button

coffee

tea

button

s1 ≤tr q1 q3 ≤tr s1 q1 ≤tr s1 s1 ≤tr q3
24 / 28



SOS Summary Part 1 Preorders Some ImpRel

Examples Trace Preorder

Example 1

s2 s3

s1

button button

coffee tea

q1

q2
q3

button

coffee

tea

button

s1 ≤tr q1 q3 ≤tr s1 q1 ≤tr s1 s1 ≤tr q3
24 / 28



SOS Summary Part 1 Preorders Some ImpRel

Examples Trace Preorder

Example 2

s2 s3

s1

button button

coffee tea

p1 p2

button

coffee

p1 ≤tr s1 p2 ≤tr s2 s1 6≤tr p1 s2 6≤tr p2

25 / 28



SOS Summary Part 1 Preorders Some ImpRel

Examples Trace Preorder

Example 2

s2 s3

s1

button button

coffee tea

p1 p2

button

coffee

p1 ≤tr s1 p2 ≤tr s2 s1 6≤tr p1 s2 6≤tr p2

25 / 28



SOS Summary Part 1 Preorders Some ImpRel

Examples Trace Preorder

Example 2

s2 s3

s1

button button

coffee tea

p1 p2

button

coffee

p1 ≤tr s1 p2 ≤tr s2 s1 6≤tr p1 s2 6≤tr p2

25 / 28



SOS Summary Part 1 Preorders Some ImpRel

Examples Trace Preorder

Example 2

s2 s3

s1

button button

coffee tea

p1 p2

button

coffee

p1 ≤tr s1 p2 ≤tr s2 s1 6≤tr p1 s2 6≤tr p2

25 / 28



SOS Summary Part 1 Preorders Some ImpRel

Examples Trace Preorder

Example 2

s2 s3

s1

button button

coffee tea

p1 p2

button

coffee

p1 ≤tr s1 p2 ≤tr s2 s1 6≤tr p1 s2 6≤tr p2

25 / 28



SOS Summary Part 1 Preorders Some ImpRel

Definition 2.2.3

Bisimulation Equivalence

A bisimulation is a binary relation R ⊆ IP × IP satisfying:
For all a ∈ Act :

1) if pRq and p a→ p′, then ∃q′ ∈ IP : q a→ q′ and p′Rq′.

2) if pRq and q a→ q′, then ∃p′ ∈ IP : p a→ p′ and p′Rq′.

We say p is bisimulation equivalent to q (∼B) if there is a
bisimulation R such that pRq.

26 / 28



SOS Summary Part 1 Preorders Some ImpRel

Definition 2.2.3

Bisimulation Equivalence

A bisimulation is a binary relation R ⊆ IP × IP satisfying:
For all a ∈ Act :

1) if pRq and p a→ p′, then ∃q′ ∈ IP : q a→ q′ and p′Rq′.

2) if pRq and q a→ q′, then ∃p′ ∈ IP : p a→ p′ and p′Rq′.

We say p is bisimulation equivalent to q (∼B) if there is a
bisimulation R such that pRq.

26 / 28



SOS Summary Part 1 Preorders Some ImpRel

Definition 2.2.3

Bisimulation Equivalence

A bisimulation is a binary relation R ⊆ IP × IP satisfying:
For all a ∈ Act :

1) if pRq and p a→ p′, then ∃q′ ∈ IP : q a→ q′ and p′Rq′.

2) if pRq and q a→ q′, then ∃p′ ∈ IP : p a→ p′ and p′Rq′.

We say p is bisimulation equivalent to q (∼B) if there is a
bisimulation R such that pRq.

26 / 28



SOS Summary Part 1 Preorders Some ImpRel

Definition 2.2.3

Bisimulation Equivalence

A bisimulation is a binary relation R ⊆ IP × IP satisfying:
For all a ∈ Act :

1) if pRq and p a→ p′, then ∃q′ ∈ IP : q a→ q′ and p′Rq′.

2) if pRq and q a→ q′, then ∃p′ ∈ IP : p a→ p′ and p′Rq′.

We say p is bisimulation equivalent to q (∼B) if there is a
bisimulation R such that pRq.

26 / 28



SOS Summary Part 1 Preorders Some ImpRel

Definition 2.2.3

Bisimulation Equivalence

A bisimulation is a binary relation R ⊆ IP × IP satisfying:
For all a ∈ Act :

1) if pRq and p a→ p′, then ∃q′ ∈ IP : q a→ q′ and p′Rq′.

2) if pRq and q a→ q′, then ∃p′ ∈ IP : p a→ p′ and p′Rq′.

We say p is bisimulation equivalent to q (∼B) if there is a
bisimulation R such that pRq.

26 / 28



SOS Summary Part 1 Preorders Some ImpRel

Example 2.2.4

L1 :

p1

p2 p3

a

b

a

c

L2 :

q1

q2 q3

q4

a

b

a

c

a

a

Assertion: p1 and q1 are bisimulation equivalent

Consider:
p1R q1 p2R q2 p3R q3 p1R q4

To show: R is a bisimulation
27 / 28



SOS Summary Part 1 Preorders Some ImpRel

Example 2.2.4

L1 :

p1

p2 p3

a

b

a

c

L2 :

q1

q2 q3

q4

a

b

a

c

a

a

Assertion: p1 and q1 are bisimulation equivalent

Consider:
p1R q1 p2R q2 p3R q3 p1R q4

To show: R is a bisimulation
27 / 28



SOS Summary Part 1 Preorders Some ImpRel

Example 2.2.4

L1 :

p1

p2 p3

a

b

a

c

L2 :

q1

q2 q3

q4

a

b

a

c

a

a

Assertion: p1 and q1 are bisimulation equivalent

Consider:
p1R q1 p2R q2 p3R q3 p1R q4

To show: R is a bisimulation
27 / 28



SOS Summary Part 1 Preorders Some ImpRel

Example 2.2.4

L1 :

p1

p2 p3

a

b

a

c

L2 :

q1

q2 q3

q4

a

b

a

c

a

a

p1R q1 p2R q2 p3R q3 p1R q4

28 / 28



SOS Summary Part 1 Preorders Some ImpRel

Example 2.2.4

L1 :

p1

p2 p3

a

b

a

c

L2 :

q1

q2 q3

q4

a

b

a

c

a

a

p1R q1 p2R q2 p3R q3 p1R q4

28 / 28



SOS Summary Part 1 Preorders Some ImpRel

Example 2.2.4

L1 :

p1

p2 p3

a

b

a

c

L2 :

q1

q2 q3

q4

a

b

a

c

a

a

p1R q1 p2R q2 p3R q3 p1R q4

28 / 28



SOS Summary Part 1 Preorders Some ImpRel

Example 2.2.4

L1 :

p1

p2 p3

a

b

a

c

L2 :

q1

q2 q3

q4

a

b

a

c

a

a

p1R q1 p2R q2 p3R q3 p1R q4

28 / 28


	Structural Operational Semantics for IP
	

	Summary Part 1
	

	Preorders
	

	Some Implementation Relations
	


