Testing of Reactive Systems

Lecture 4:

Henrik Bohnenkamp

Lehrstuhl Informatik 2 (MOVES)
RWTH Aachen

Summer Semester 2009



What happened so far?

@ SOS of processes



What happened so far?

@ SOS of processes

@ Preorders, Equivalences



What happened so far?

@ SOS of processes
@ Preorders, Equivalences

@ Trace preorder



What happened so far?

@ SOS of processes
@ Preorders, Equivalences
@ Trace preorder

@ Bisimulation equivalence

33



What happened so far?

@ SOS of processes
@ Preorders, Equivalences
@ Trace preorder

@ Bisimulation equivalence

Definition Bisimulation Equivalence

A bisimulation is a binary relation R C IP x IP satisfying:

33



What happened so far?

@ SOS of processes
@ Preorders, Equivalences
@ Trace preorder

@ Bisimulation equivalence

Definition Bisimulation Equivalence

A bisimulation is a binary relation R C IP x IP satisfying:
For all a € Act:

33



What happened so far?

@ SOS of processes
@ Preorders, Equivalences
@ Trace preorder

@ Bisimulation equivalence

Definition Bisimulation Equivalence

A bisimulation is a binary relation R C IP x IP satisfying:
For all a € Act:

1) if pRg and p-2 p/, then 3¢’ € IP : ¢ % ¢’ and p'Rq’.




What happened so far?

@ SOS of processes
@ Preorders, Equivalences
@ Trace preorder

@ Bisimulation equivalence

Definition Bisimulation Equivalence

A bisimulation is a binary relation R C IP x IP satisfying:
For all a € Act:

1) if pRg and p-2 p/, then 3¢’ € IP : ¢ % ¢’ and p'Rq’.

2) if pRq and g2 ¢/, then 3p' € P : p-2 p’ and p'Rq’.




What happened so far?

@ SOS of processes
@ Preorders, Equivalences
@ Trace preorder

@ Bisimulation equivalence

Definition Bisimulation Equivalence

A bisimulation is a binary relation R C IP x IP satisfying:
For all a € Act:

1) if pRg and p-2 p/, then 3¢’ € IP : ¢ % ¢’ and p'Rq’.
2) if pRq and g2 ¢/, then 3p' € P : p-2 p’ and p'Rq’.

We say p is bisimulation equivalent to g (~pg) if there is a
bisimulation R such that pRq.




Some ImpRel

@ Some Implementation Relations (cont)

w
w
@



Some ImpRel
000000

Lifting bisimulation to %

Lemma 2.2.5

R is a bisimulation iff:




Some ImpRel
000000

Lifting bisimulation to %

Lemma 2.2.5

R is a bisimulation iff:
For all o € Act™ :




Some ImpRel
000000

Lifting bisimulation to %

Lemma 2.2.5

R is a bisimulation iff:
For all o € Act™ :

1) if pRg and p-% p/, then 3¢’ € IP: ¢ % ¢’ and p'Rq’.




Some ImpRel
000000

Lifting bisimulation to %

Lemma 2.2.5

R is a bisimulation iff:
For all o € Act™ :

1) if pRg and p-% p/, then 3¢’ € IP: ¢ % ¢’ and p'Rq’.

2) if pRq and g% ¢, then 3p' € P : p-% p' and p'Rq’.




Some ImpRel
000000

Lifting bisimulation to %

Lemma 2.2.5

R is a bisimulation iff:
For all o € Act™ :

1) if pRg and p-% p/, then 3¢’ € IP: ¢ % ¢’ and p'Rq’.

2) if pRq and g% ¢, then 3p' € P : p-% p' and p'Rq’.

— Blackboard




Some ImpRel
0@00000

Example 2.2.6

5/33



Some ImpRel
[e]e] lelele]e]

Comparing preorders

@ A preorder is a set

@ We can relate different preorders by set inclusion.




Some ImpRel
[e]e] lelele]e]

Comparing preorders

@ A preorder is a set

@ We can relate different preorders by set inclusion.

Definition 2.2.7 (Finer and Coarser)
Let <, <’ be preorders and < C <'.

33



Some ImpRel
[e]e] lelele]e]

Comparing preorders

@ A preorder is a set

@ We can relate different preorders by set inclusion.

Definition 2.2.7 (Finer and Coarser)

Let <, <’ be preorders and < C <'.
We say

Q < is finer than <’ (written < <X <),




Some ImpRel
[e]e] lelele]e]

Comparing preorders

@ A preorder is a set

@ We can relate different preorders by set inclusion.

Definition 2.2.7 (Finer and Coarser)

Let <, <’ be preorders and < C <'.
We say

Q < is finer than <’ (written < <X <),
Q@ <’ is coarser than <.




Some ImpRel
[e]e] lelele]e]

Comparing preorders

@ A preorder is a set
@ We can relate different preorders by set inclusion.

Definition 2.2.7 (Finer and Coarser)

Let <, <’ be preorders and < C <'.

We say
Q < is finer than <’ (written < <X <),
Q@ <’ is coarser than <.

Analogously for equivalences.

33



Some ImpRel
[e]e]e] Jele]e]

Finer and Coarser

Finer preorder:

@ is more “picky”




Some ImpRel
[e]e]e] Jele]e]

Finer and Coarser

Finer preorder:

@ is more “picky”

@ distinguishes more processes from each other




Some ImpRel
[e]e]e] Jele]e]

Finer and Coarser

Finer preorder:

@ is more “picky”
@ distinguishes more processes from each other

© equivalences: the partitioning is finer




Some ImpRel
[e]e]e] Jele]e]

Finer and Coarser

Finer preorder:

@ is more “picky”
@ distinguishes more processes from each other
© equivalences: the partitioning is finer
Q < finer than <’ means:
p<q implies p<'gq




Some ImpRel
[e]e]e] Jele]e]

Finer and Coarser

Finer preorder:

@ is more “picky”
@ distinguishes more processes from each other
© equivalences: the partitioning is finer
Q < finer than <’ means:
p<q implies p<'gq

© We write pre; =< pre, iff pre; is finer than pre,.




Some ImpRel
[e]e]e] Jele]e]

Finer and Coarser

Finer preorder:
@ is more “picky”
@ distinguishes more processes from each other
© equivalences: the partitioning is finer
Q < finer than <’ means:
p<q implies p<'gq

© We write pre; =< pre, iff pre; is finer than pre,.

How are trace equivalence and bisimulation equivalence related?




Some ImpRel
0000e00

Comparing Trace and Bisimulation Equivalence

Proposition 2.2.8
~¢r is coarser than ~g, but not finer.




Some ImpRel
0000e00

Comparing Trace and Bisimulation Equivalence

Proposition 2.2.8
~¢r is coarser than ~g, but not finer.

— Blackboard




Some ImpRel
00000e0

The picture so far

bisimulation
equivalence

A

trace equivalence



Some ImpRel
000000e

The whole picture: linear time — branching time spectrum

bisimulation equivalence

|

2-nested simulation equivalence

|

ready simulation equivalence

|

possible worlds equivalence
l possible-futures equivalence

ready trace equivalence

— ™~

simulation equivalence failure trace equivalence readiness equivalence

\ /

failures equivalence

|

completed trace equivalence

|

trace equivalence

10/33



Some ImpRel
000000e

The whole picture: linear time — branching time spectrum

bisimulation equivalence

|

2-nested simulation equivalence

|

ready simulation equivalence

|

possible worlds equivalence
l possible-futures equivalence

ready trace equivalence

— ™~

simulation equivalence failure trace equivalence readiness equivalence

\ /

failures equivalence

|

completed trace equivalence

|

trace equivalence

10/33



Surprise
)

© A little surprise: Determinism and the LTBT spectrum

11/33



Surprise
00000

Determinism and the LTBT spectrum

Let IP4.; be the set of all deterministic processes. )

12/33



Surprise
00000

Determinism and the LTBT spectrum

Let IP4.; be the set of all deterministic processes. )

Proposition 2.3.1

If we restrict ~g and ~¢ on Py, then




Surprise
00000

Determinism and the LTBT spectrum

Let IP4.; be the set of all deterministic processes.

Proposition 2.3.1

If we restrict ~g and ~¢ on Py, then

~B = ~tr
v

Restricted means, we look at:

9 ~p N IPgey X IPyes

@ ~y N ]Pdet X ]Pdet

N

12/33



Surprise
(o] Jelelele]

Implications

Collapse of the linear time

bisimulation equivalence

|

2-nested simulation equivalence

l

ready simulation equivalence

l

possible worlds equivalence
{ possible-futures equivalence

ready trace equivalence

— >~

simulation equivalence failure trace equivalence readiness equivalence

\ /

failures equivalence

l

completed trace equivalence

|

trace equivalence

13/33



Surprise
(o] Jelelele]

Implications

Collapse of the linear time

bisimulation equivalence
2-nested simulation equivalence
possible-futures equivalence
ready simulation equivalence
possible worlds equivalence
simulation equivalence
ready trace equivalence
readiness equivalence

failure trace equivalence
failures equivalence
completed trace equivalence

trace equivalence

13

33



Surprise
[e]e] lelele]

Implications

Differences between equivalences

The equivalences differ in the way how they treat nondeterminism
in processes

14 /33



Surprise
[e]e] lelele]

Implications

Position in the diagram

...is an indication on how much nondeterminism is taken into
account to distinguish processes

14 /33



Surprise
[e]e] lelele]

Implications

Trace equivalence

...ignores non-determinism completely

14 /33



Surprise
[e]e] lelele]

Implications

Trace equivalence

...ignores non-determinism completely

Bisimulation equivalence

...takes most of the information on nondeterminism into account

14 /33



Surprise
[e]e] lelele]

Implications

Why linear-time - branching-time?

@ trace equivalence works on traces, linear sequences of actions
= “linear time"

14 /33



Surprise
[e]e] lelele]

Implications

Why linear-time - branching-time?

@ trace equivalence works on traces, linear sequences of actions
= “linear time"

@ bisimulation takes branching, esp. nondeterministic branching
into account = “branching time"

14 /33



Surprise
[e]e] lelele]

Implications

Why linear-time - branching-time?

@ trace equivalence works on traces, linear sequences of actions
= “linear time"

@ bisimulation takes branching, esp. nondeterministic branching
into account = “branching time"

Studying preorders and implementation relations on processes is
thus studying nondeterminism

14 /33



Surprise
[ee]e] lele]

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ~g and ~¢ on P4, then

15/33



Surprise
[ee]e] lele]

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ~g and ~¢ on P4, then

To show: 1) ~g C ~y, and 2) ~y C ~p

15/33



Surprise
[ee]e] lele]

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ~g and ~¢ on P4, then

To show: 1) ~g C ~y, and 2) ~y C ~p

1) is already clear, since ~p is finer than ~¢,

15/33



Surprise
[ee]e] lele]

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ~g and ~¢ on P4, then

To show: 1) ~g C ~y, and 2) ~y C ~p
1) is already clear, since ~p is finer than ~¢,
2) We assume

15/33



Surprise
[ee]e] lele]

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ~g and ~¢ on P4, then

To show: 1) ~g C ~y, and 2) ~y C ~p
1) is already clear, since ~p is finer than ~¢,
2) We assume
® p,q € Pyet

15/33



Surprise
[ee]e] lele]

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ~g and ~¢ on P4, then

To show: 1) ~g C ~y, and 2) ~y C ~p
1) is already clear, since ~p is finer than ~¢,
2) We assume

9 p,q € Pyey
@ P~y q

15/33



Surprise
[ee]e] lele]

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ~g and ~¢ on P4, then

To show: 1) ~g C ~y, and 2) ~y C ~p
1) is already clear, since ~p is finer than ~¢,
2) We assume

° p,q € Py
@ P~y q
Approach: construct a bisimulation R such that p R q.

15/33



Surprise
[ee]e] lele]

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ~g and ~¢ on P4, then

To show: 1) ~g C ~y, and 2) ~y C ~p
1) is already clear, since ~p is finer than ~¢,
2) We assume
° p,q € Py
° P~ q
Approach: construct a bisimulation R such that p R q.
This implies p ~g ¢

15/33



Surprise
[ee]e] lele]

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ~g and ~¢ on P4, then

To show: 1) ~g C ~y, and 2) ~y C ~p

1) is already clear, since ~p is finer than ~¢,
2) We assume
° p,q € Py
® P~y q
Approach: construct a bisimulation R such that p R q.
This implies p ~g ¢

— Blackboard

15/33



Surprise
[ee]ele] lo]

Summary Part 2

Preorders, equivalences

Trace inclusion

Bisimulation equivalence

Comparison of preorders, the LTBT spectrum

The collapse of the LTBT spectrum for deterministic processes



Surprise
[ee]ele]e] J )

Part 3: Distinguishing Processes by Manipulation and Observation )

17/33



Introduction Part 3

© Introduction Part 3



Introduction Part 3
0000000000000 0(

Remember

Even though it does not feel this way yet. ..

19/33



Introduction Part 3
0000000000000 0(

Remember

Even though it does not feel this way yet. ..

... this lecture is about testing! J

19/33



Introduction Part 3
0000000000000 0(

Next step

How can we relate implementation relations to testing?

Testing has much of experimenting:

20/33



Introduction Part 3
0000000000000 0(

Next step

How can we relate implementation relations to testing?

Testing has much of experimenting:

@ test-object is manipulated

20/33



Introduction Part 3
0000000000000 0(

Next step

How can we relate implementation relations to testing?

Testing has much of experimenting:
@ test-object is manipulated

@ reactions are observed

20/33



Introduction Part 3
0000000000000 0(

Next step

How can we relate implementation relations to testing?

Testing has much of experimenting:
@ test-object is manipulated

@ reactions are observed

20/33



Introduction Part 3
0000000000000 0(

Next step

How can we relate implementation relations to testing?

Testing has much of experimenting:

@ test-object is manipulated
@ reactions are observed

How to compare the behaviour of processes (our test-objects) by
manipulation and observation?

20/33



~ Some ImpRel Surprise Introduction Part 3
0000000 000000 OO@00000000000!

Framework

Process in black-box




OO@00000000000!

Introduction Part 3 CI

Framework

Inner structure not visible




Introduction Part 3
0008000000000 0(

Framework

Manipulating and Observing Processes: the User Panel )
\\‘// \\‘// \\‘//
AX)= 2K AKX L
2 sy s replicate
free free o free I
blocked blocked blocked
action D ! /.
a b z —(
DS
active

22 /33



Introduction Part 3
0000800000000 0(

The Generative machine

BISISIINS BOS -

s s s replicate

free free free c

blocked blocked blocked

action Ly

I
active

Process in black box executes actions spontaneously
Gadgets on user panel: possible observations
Display: current action

Switches: restricting corresponding action

¢ © 6 ¢ ¢

Menu Lights: actions that can be executed

23/33



Introduction Part 3
0000800000000 0(

The Generative machine

User panel

vz vy vy

R o -
e N N replicate
free free free I
blocked blocked blocked

action 1/

4

Convention

@ Switches manipulate process

\

23/33



Introduction Part 3
0000800000000 0(

The Generative machine

User panel

o .
TN A et replicate
free free free I
blocked blocked blocked
action S
Bee
active

4

Convention

@ Switches manipulate process

@ Possible manipulation can be seen as observation

\

23/33



Introduction Part 3
0000800000000 0(

The Generative machine

User panel

o .
TN A et replicate
free free free I
blocked blocked blocked
action S
Bee
active

4

Convention

@ Switches manipulate process

@ Possible manipulation can be seen as observation

@ Convention: manipulations are observations

\

23/33



Introduction Part 3
0000080000000 0(

What are observations?

\®/ \®/ \®/ .
TR T S replicate
free free free c
blocked blocked blocked
action S
X
active

@ shows the action that is currently executed

24 /33



Introduction Part 3
0000080000000 0(

What are observations?

BISISIINS BONS -

ey s /N replicate

free free . free

©

blocked blocked blocked

action Ly

a b z 2 ®‘l

@ set on free: action can be executed

@ set on blocked: action can not be executed

@ machine idles, if no free action can be executed, display is
empty

@ all switches on free, display empty: machine is deadlocked b1/ 33



Introduction Part 3
0000080000000 0(

What are observations?

User panel

\®/ \®/ \®/ .
TR T S replicate
free free free @
blocked blocked blocked
action S
X
active

@ For each action one light

@ Machine idle: light on for actions that can be executed
@ Set of lighted actions: menu

24 /33



Introduction Part 3
0000008000000 0(

Observations

Primitive observations PO

@ Actions: Act C PO

25/33



Introduction Part 3
0000008000000 0(

Observations

Primitive observations PO

@ Actions: Act C PO
@ Refusals: X € PO, for all X € 2A¢t

25/33



Introduction Part 3
0000008000000 0(

Observations

Primitive observations PO

@ Actions: Act C PO

@ Refusals: X € PO, for all X € 2A¢t
actions a € X are set on free

25/33



Introduction Part 3
0000008000000 0(

Observations

Primitive observations PO

@ Actions: Act C PO

@ Refusals: X € PO, for all X € 2A¢t
actions a € X are set on free

@ Menus: (X) € PO, for all X € 2A<t

25/33



Introduction Part 3
0000008000000 0(

Observations

Primitive observations PO

@ Actions: Act C PO

@ Refusals: X € PO, for all X € 2A¢t
actions a € X are set on free

@ Menus: (X) € PO, for all X € 2A<t
actions a € X can be executed

25/33



Introduction Part 3
0000008000000 0(

Observations

Primitive observations PO

@ Actions: Act C PO

@ Refusals: X € PO, for all X € 2A¢t
actions a € X are set on free

@ Menus: (X) € PO, for all X € 2A<t
actions a € X can be executed

Observations
Sequences o € PO* are our observations

25/33




Introduction Part 3
0000000800000 0(

Observations and implementation relations

@ processes p, g inside black box

@ obs(p),obs(g) € PO*: the sequences of observations of p
and g

@ the elements of obs(-) depend on the primitive observation
chosen

4

Implementation relations

@ p <™ ¢ iff obs(p) C obs(q)
° p <Mt q iff obs(p) D obs(q)

26 /33



Introduction Part 3
0000000800000 0(

Observations and implementation relations

@ processes p, g inside black box

@ obs(p),obs(g) € PO*: the sequences of observations of p
and g

@ the elements of obs(-) depend on the primitive observation
chosen

4

Implementation relations

@ p <™ ¢ iff obs(p) C obs(q)
° p <Mt q iff obs(p) D obs(q)

We consider only may preorders

26 /33



Introduction Part 3
0000000080000 0(

Trace preorder

The panel

Observations and preorder

@ obs; (p): the sequence of actions executed by p

@ p <y qiff Obstr(p) C Obstr(q)

27 /33



Introduction Part 3
000000000 e0000(

Failure preorder

Switches and display

free free free c

blocked blocked blocked

a b z

@ Switches on free or blocked, blocked actions not executable.

@ X C Act: actions set on free.

@ deadlock: machine refuses X

@ observations: pairs (o, X): trace o leads up to refusal X

28 /33



Introduction Part 3
000000000 e0000(

Failure preorder

Preorder

@ (o, X): failure pair
@ obss(p) = {(0,X) | p executes o, then refuses X}

o p <y q iff obs¢(p) C obss(q)
@ failure preorder

28 /33



Introduction Part 3
0000000000 e000(

Readiness preorder

Switches and display

020 ee 2N
N T e
free free free I
blocked blocked blocked
b z

@ Situation as for failures preorder

@ If machine idles: menu lights indicate which actions could
have continued

@ X C Act: (0,X) ready pair of p iff

dp' :p% p and p' > Va e X.

29 /33



Failure trace and Readiness trace preorder

Failures scenario and readiniess scenario
@ Observation stops after machine idles
@ machine is reset to starting state

@ new observation starts

Introduction Part 3
0000000000080

Alternative

@ after machine idles continue observing

@ unlock machine by setting switches to free
@ Observations:
s o€ ({X | X € 2A“} U Act)*: failure traces

o g€ ({(X)| X €24} UAct)*: ready traces
o failure trace preorder, ready trace preorder

30/33



Introduction Part 3
000000000000 e0(

More Gadgets

Green light

Light is off: process idle or deadlocked
Light is on: process active with action
internal: if display is empty
observable: if display shows name

@ Allows to distinguish deadlock and internal activity

@ useless if process has no 7 transitions

31/33



Introduction Part 3
0000000000000 e(

More Gadgets

Replicate Button i

o if pressed, process (in its current state) is replicated:
@ one or finitely many copies

o infinite nr. of copies (only interesting for systems with infinite
branching)

o observation of different futures
— trees rather than traces
@ necessary to characterise bisimulation

32/33



Introduction Part 3
0000000000000

What is coming?

@ formalise notion of (primitive) observation

33/33



Introduction Part 3
0000000000000

What is coming?

@ formalise notion of (primitive) observation

@ introduce so-called observers

33/33



Introduction Part 3
0000000000000

What is coming?

@ formalise notion of (primitive) observation
@ introduce so-called observers

@ observers will be special processes: test expressions

33/33



Introduction Part 3
0000000000000

What is coming?

@ formalise notion of (primitive) observation
@ introduce so-called observers
@ observers will be special processes: test expressions

@ observers will manipulate and observe, i.e.: test

33/33



Introduction Part 3
0000000000000

What is coming?

formalise notion of (primitive) observation

(]

introduce so-called observers
observers will be special processes: test expressions
observers will manipulate and observe, i.e.: test

characterise a few simple preorders by observers

33/33



Introduction Part 3
0000000000000

What is coming?

@ formalise notion of (primitive) observation

)
)
)
)
)

introduce so-called observers

observers will be special processes: test expressions
observers will manipulate and observe, i.e.: test
characterise a few simple preorders by observers
establish order in LTBT spectrum

33/33



	Some Implementation Relations (cont)
	

	A little surprise: Determinism and the LTBT spectrum
	

	Introduction Part 3
	


