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Some ImpRel Surprise Introduction Part 3

What happened so far?

SOS of processes

Preorders, Equivalences

Trace preorder

Bisimulation equivalence

Definition Bisimulation Equivalence

A bisimulation is a binary relation R ⊆ IP × IP satisfying:
For all a ∈ Act :

1) if pRq and p a→ p′, then ∃q′ ∈ IP : q a→ q′ and p′Rq′.

2) if pRq and q a→ q′, then ∃p′ ∈ IP : p a→ p′ and p′Rq′.

We say p is bisimulation equivalent to q (∼B) if there is a
bisimulation R such that pRq.
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1 Some Implementation Relations (cont)

2 A little surprise: Determinism and the LTBT spectrum

3 Introduction Part 3
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Lifting bisimulation to σ→

Lemma 2.2.5

R is a bisimulation iff:
For all σ ∈ Act ∗ :

1) if pRq and p σ→ p′, then ∃q′ ∈ IP : q σ→ q′ and p′R q′.

2) if pRq and q σ→ q′, then ∃p′ ∈ IP : p σ→ p′ and p′R q′.

Proof:

=⇒ Blackboard
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Example 2.2.6

L1 :

p1

p2 p3

a

b

a

c

L2 :

q1

q2 q3

q4

a

b

a

c

a

a
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Comparing preorders

A preorder is a set

We can relate different preorders by set inclusion.

Definition 2.2.7 (Finer and Coarser)

Let ≤, ≤′ be preorders and ≤⊆≤′.
We say

1 ≤ is finer than ≤′ (written ≤�≤′),

2 ≤′ is coarser than ≤.

Analogously for equivalences.
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Finer and Coarser

Note:

Finer preorder:

1 is more “picky”

2 distinguishes more processes from each other

3 equivalences: the partitioning is finer

4 ≤ finer than ≤′ means:

p ≤ q implies p ≤′ q

5 We write pre1 � pre2 iff pre1 is finer than pre2.

Question:

How are trace equivalence and bisimulation equivalence related?
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Comparing Trace and Bisimulation Equivalence

Proposition 2.2.8

∼tr is coarser than ∼B , but not finer.

Proof:

=⇒ Blackboard
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The picture so far

�

bisimulation

equivalence

trace equivalence
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The whole picture: linear time – branching time spectrum

bisimulation equivalence

2-nested simulation equivalence

ready simulation equivalence

possible worlds equivalence

ready trace equivalence

failure trace equivalence readiness equivalence

failures equivalence

completed trace equivalence

trace equivalence

simulation equivalence

possible-futures equivalence
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1 Some Implementation Relations (cont)

2 A little surprise: Determinism and the LTBT spectrum

3 Introduction Part 3
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Determinism and the LTBT spectrum

Let IPdet be the set of all deterministic processes.

Proposition 2.3.1

If we restrict ∼B and ∼tr on IPdet, then

∼B = ∼tr

Restricted means, we look at:

∼B ∩ IPdet × IPdet

∼tr ∩ IPdet × IPdet
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Implications

Collapse of the linear time – branching time spectrum

bisimulation equivalence

2-nested simulation equivalence

ready simulation equivalence

possible worlds equivalence

ready trace equivalence

failure trace equivalence readiness equivalence

failures equivalence

completed trace equivalence

trace equivalence

simulation equivalence

possible-futures equivalence
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Implications

Collapse of the linear time – branching time spectrum

∼

bisimulation equivalence

2-nested simulation equivalence

possible-futures equivalence

ready simulation equivalence

possible worlds equivalence

simulation equivalence

ready trace equivalence

readiness equivalence

failure trace equivalence

failures equivalence

completed trace equivalence

trace equivalence

13 / 33



Some ImpRel Surprise Introduction Part 3

Implications

Differences between equivalences

The equivalences differ in the way how they treat nondeterminism
in processes
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Implications

Position in the diagram

. . . is an indication on how much nondeterminism is taken into
account to distinguish processes
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Implications

Trace equivalence

. . . ignores non-determinism completely

Bisimulation equivalence

. . . takes most of the information on nondeterminism into account
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Implications

Why linear-time - branching-time?

trace equivalence works on traces, linear sequences of actions
=⇒ “linear time”

bisimulation takes branching, esp. nondeterministic branching
into account =⇒ “branching time”

Studying preorders and implementation relations on processes is
thus studying nondeterminism
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Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ∼B and ∼tr on IPdet, then

∼B = ∼tr

Proof idea

To show: 1) ∼B ⊆ ∼tr and 2) ∼tr ⊆ ∼B

1) is already clear, since ∼B is finer than ∼tr

2) We assume

p, q ∈ IPdet

p ∼tr q

Approach: construct a bisimulation R such that p R q.
This implies p ∼B q

=⇒ Blackboard
15 / 33



Some ImpRel Surprise Introduction Part 3

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ∼B and ∼tr on IPdet, then

∼B = ∼tr

Proof idea

To show: 1) ∼B ⊆ ∼tr and 2) ∼tr ⊆ ∼B

1) is already clear, since ∼B is finer than ∼tr

2) We assume

p, q ∈ IPdet

p ∼tr q

Approach: construct a bisimulation R such that p R q.
This implies p ∼B q

=⇒ Blackboard
15 / 33



Some ImpRel Surprise Introduction Part 3

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ∼B and ∼tr on IPdet, then

∼B = ∼tr

Proof idea

To show: 1) ∼B ⊆ ∼tr and 2) ∼tr ⊆ ∼B

1) is already clear, since ∼B is finer than ∼tr

2) We assume

p, q ∈ IPdet

p ∼tr q

Approach: construct a bisimulation R such that p R q.
This implies p ∼B q

=⇒ Blackboard
15 / 33



Some ImpRel Surprise Introduction Part 3

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ∼B and ∼tr on IPdet, then

∼B = ∼tr

Proof idea

To show: 1) ∼B ⊆ ∼tr and 2) ∼tr ⊆ ∼B

1) is already clear, since ∼B is finer than ∼tr

2) We assume

p, q ∈ IPdet

p ∼tr q

Approach: construct a bisimulation R such that p R q.
This implies p ∼B q

=⇒ Blackboard
15 / 33



Some ImpRel Surprise Introduction Part 3

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ∼B and ∼tr on IPdet, then

∼B = ∼tr

Proof idea

To show: 1) ∼B ⊆ ∼tr and 2) ∼tr ⊆ ∼B

1) is already clear, since ∼B is finer than ∼tr

2) We assume

p, q ∈ IPdet

p ∼tr q

Approach: construct a bisimulation R such that p R q.
This implies p ∼B q

=⇒ Blackboard
15 / 33



Some ImpRel Surprise Introduction Part 3

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ∼B and ∼tr on IPdet, then

∼B = ∼tr

Proof idea

To show: 1) ∼B ⊆ ∼tr and 2) ∼tr ⊆ ∼B

1) is already clear, since ∼B is finer than ∼tr

2) We assume

p, q ∈ IPdet

p ∼tr q

Approach: construct a bisimulation R such that p R q.
This implies p ∼B q

=⇒ Blackboard
15 / 33



Some ImpRel Surprise Introduction Part 3

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ∼B and ∼tr on IPdet, then

∼B = ∼tr

Proof idea

To show: 1) ∼B ⊆ ∼tr and 2) ∼tr ⊆ ∼B

1) is already clear, since ∼B is finer than ∼tr

2) We assume

p, q ∈ IPdet

p ∼tr q

Approach: construct a bisimulation R such that p R q.
This implies p ∼B q

=⇒ Blackboard
15 / 33



Some ImpRel Surprise Introduction Part 3

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ∼B and ∼tr on IPdet, then

∼B = ∼tr

Proof idea

To show: 1) ∼B ⊆ ∼tr and 2) ∼tr ⊆ ∼B

1) is already clear, since ∼B is finer than ∼tr

2) We assume

p, q ∈ IPdet

p ∼tr q

Approach: construct a bisimulation R such that p R q.
This implies p ∼B q

=⇒ Blackboard
15 / 33



Some ImpRel Surprise Introduction Part 3

Proof of Proposition 2.3.1

Proposition 2.3.1

If we restrict ∼B and ∼tr on IPdet, then

∼B = ∼tr

Proof idea

To show: 1) ∼B ⊆ ∼tr and 2) ∼tr ⊆ ∼B

1) is already clear, since ∼B is finer than ∼tr

2) We assume

p, q ∈ IPdet

p ∼tr q

Approach: construct a bisimulation R such that p R q.
This implies p ∼B q

=⇒ Blackboard
15 / 33



Some ImpRel Surprise Introduction Part 3

Summary Part 2

Preorders, equivalences

Trace inclusion

Bisimulation equivalence

Comparison of preorders, the LTBT spectrum

The collapse of the LTBT spectrum for deterministic processes
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Part 3: Distinguishing Processes by Manipulation and Observation
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1 Some Implementation Relations (cont)

2 A little surprise: Determinism and the LTBT spectrum

3 Introduction Part 3
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Remember

Even though it does not feel this way yet. . .

. . . this lecture is about testing!
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Next step

How can we relate implementation relations to testing?

Testing has much of experimenting:

test-object is manipulated

reactions are observed

How to compare the behaviour of processes (our test-objects) by
manipulation and observation?
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Framework

Process in black-box

Z

b.X‖{a}c .Y

b.X‖{a}a.Y

X‖{a}c .Y

b.X‖{a}Y

X‖{a}a.Y

a

a

b

a

b

c

bc
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Framework

Inner structure not visible
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Framework

Manipulating and Observing Processes: the User Panel

· · ·

a b z

c

replicate

active

action

free

blocked

free

blocked

free

blocked
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The Generative machine

User panel

· · ·

a b z

c

replicate

active

action

free

blocked

free

blocked

free

blocked

Process in black box executes actions spontaneously

Gadgets on user panel: possible observations

Display: current action

Switches: restricting corresponding action

Menu Lights: actions that can be executed

23 / 33
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The Generative machine

User panel

· · ·

a b z

c

replicate

active

action

free

blocked

free

blocked

free

blocked

Convention

Switches manipulate process

Possible manipulation can be seen as observation

Convention: manipulations are observations
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What are observations?

User panel

· · ·

a b z

c

replicate

active

action

free

blocked

free

blocked

free

blocked

Display

shows the action that is currently executed

24 / 33
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What are observations?

User panel

· · ·

a b z

c

replicate

active

action

free

blocked

free

blocked

free

blocked

Switches

set on free: action can be executed

set on blocked: action can not be executed

machine idles, if no free action can be executed, display is
empty

all switches on free, display empty: machine is deadlocked 24 / 33
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What are observations?

User panel

· · ·

a b z

c

replicate

active

action

free

blocked

free

blocked

free

blocked

Menus

For each action one light

Machine idle: light on for actions that can be executed

Set of lighted actions: menu

24 / 33
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Observations

Primitive observations PO

1 Actions: Act ⊆ PO

2 Refusals: X̃ ∈ PO, for all X ∈ 2Act

actions a ∈ X are set on free

3 Menus: (X ) ∈ PO, for all X ∈ 2Act

actions a ∈ X can be executed

Observations

Sequences σ ∈ PO∗ are our observations
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Observations and implementation relations

Given:

processes p, q inside black box

obs(p), obs(q) ⊆ PO∗: the sequences of observations of p

and q

the elements of obs(·) depend on the primitive observation
chosen

Implementation relations

p ≤may q iff obs(p) ⊆ obs(q)

p ≤must q iff obs(p) ⊇ obs(q)

We consider only may preorders
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Trace preorder

The panel

c

Observations and preorder

obstr (p): the sequence of actions executed by p

p ≤tr q iff obstr (p) ⊆ obstr (q)
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Failure preorder

Switches and display

· · ·

a b z

cfree

blocked

free

blocked

free

blocked

Observations

Switches on free or blocked, blocked actions not executable.

X ⊆ Act : actions set on free.

deadlock: machine refuses X

observations: pairs 〈σ,X 〉: trace σ leads up to refusal X
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Failure preorder

Preorder

〈σ,X 〉: failure pair

obsf (p) = {〈σ,X 〉 | p executes σ, then refuses X}

p ≤f q iff obsf (p) ⊆ obsf (q)

failure preorder

28 / 33
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Readiness preorder

Switches and display

· · ·

a b z

cfree

blocked

free

blocked

free

blocked

Observations

Situation as for failures preorder

If machine idles: menu lights indicate which actions could
have continued

X ⊆ Act : 〈σ,X 〉 ready pair of p iff

∃p′ : p σ→ p′ and p′ a→ ∀a ∈ X .

29 / 33



Some ImpRel Surprise Introduction Part 3

Failure trace and Readiness trace preorder

Failures scenario and readiniess scenario

Observation stops after machine idles

machine is reset to starting state

new observation starts

Alternative

after machine idles continue observing

unlock machine by setting switches to free

Observations:

σ ∈ (
{
X̃ | X ∈ 2Act

}
∪ Act )∗: failure traces

σ ∈ (
{
(X ) | X ∈ 2Act

}
∪ Act )∗: ready traces

failure trace preorder, ready trace preorder
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More Gadgets

Green light

Light is off: process idle or deadlocked

Light is on: process active with action

internal: if display is empty
observable: if display shows name

Allows to distinguish deadlock and internal activity

useless if process has no τ transitions

31 / 33
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More Gadgets

Replicate Button

if pressed, process (in its current state) is replicated:

one or finitely many copies
infinite nr. of copies (only interesting for systems with infinite
branching)

observation of different futures
=⇒ trees rather than traces

necessary to characterise bisimulation
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What is coming?

We will

formalise notion of (primitive) observation

introduce so-called observers

observers will be special processes: test expressions

observers will manipulate and observe, i.e.: test

characterise a few simple preorders by observers

establish order in LTBT spectrum
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