Testing of Reactive Systems

Lecture 5:

Henrik Bohnenkamp

Lehrstuhl Informatik 2 (MOVES)
RWTH Aachen

Summer Semester 2009

What happened so far?

Bisimulation
Comparison of preorders/equivalences (finer/coarser)
Linear-Time/Branching-Time spectrum
Effect of nondeterminism on the LTBT spectrum
Observing and Manipulating Processes: The Generative
Machine

B -

T T T replicate

vy oow

aaaaaa

f . 5
active

What is coming?

@ formalise notion of (primitive) observation

What is coming?

@ formalise notion of (primitive) observation

@ introduce so-called observers

What is coming?

@ formalise notion of (primitive) observation
@ introduce so-called observers

@ observers will be special processes: test expressions

What is coming?

@ formalise notion of (primitive) observation
@ introduce so-called observers
@ observers will be special processes: test expressions

@ observers will manipulate and observe, i.e.: test

What is coming?

@ formalise notion of (primitive) observation

@ introduce so-called observers

@ observers will be special processes: test expressions
@ observers will manipulate and observe, i.e.: test

@ characterise a few simple preorders by observers

What is coming?

@ formalise notion of (primitive) observation

@ introduce so-called observers
@ observers will be special processes: test expressions
@ observers will manipulate and observe, i.e.: test

@ characterise a few simple preorders by observers

@ establish order in LTBT spectrum

Implementation Relations

@ Some more Implementation Relations

Implementation Relations
0000000000000 0000

We assume (again): no 7-steps |

Implementation Relations
0®000000000000000

Trace preorder

Otr
Let Oy, be the set of test expressions defined by the following
grammar:

o — ao | tSTOP,

where a € Act, and t € Act is a special action which denotes the
end of the observation.

Implementation Relations
0®000000000000000

Trace preorder

Otr

Let Oy, be the set of test expressions defined by the following
grammar:
o — ao | tSTOP,

where a € Act, and t € Act is a special action which denotes the
end of the observation.

Example

For Act = {a, b, c}, the following are typical test expressions:

t.STOP, a.c.a.b.t.STOP, etc.

Implementation Relations
0®000000000000000

Trace preorder

Otr

Let Oy, be the set of test expressions defined by the following
grammar:
o — ao | tSTOP,

where a € Act, and t € Act is a special action which denotes the
end of the observation.

Example

For Act = {a, b, c}, the following are typical test expressions:

t.STOP, a.c.a.b.t.STOP, etc.

Convention

@ We write t.STOP just as t
o We write Acty = Act U {t}.

Implementation Relations
00e00000000000000

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p’ processes. Test execution is
described by the test-operator T, whose behaviour is defined by

the following rules:

Implementation Relations
00e00000000000000

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p’ processes. Test execution is
described by the test-operator T, whose behaviour is defined by

the following rules:

 (a€Acty)
a.o— O

Implementation Relations
00e00000000000000

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p’ processes. Test execution is
described by the test-operator T, whose behaviour is defined by

the following rules:

a /

a /
(acActy) 22 PP

Act
a.o3o ollp-2oTp 2 € Adt)

Implementation Relations
00e00000000000000

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p’ processes. Test execution is
described by the test-operator T, whose behaviour is defined by

the following rules:

o030 p3p oY o
—— (a € Act a € Act —_—
a.o—a>o() o'lTp—a>o"|Tp’() ol p-L pass

Implementation Relations
00e00000000000000

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p’ processes. Test execution is
described by the test-operator T, whose behaviour is defined by

the following rules:

o030 p3p oY o
—— (a € Act a € Act —_—
a.o—a>o() o'lTp—a>o"|Tp’() ol p-L pass

@ Observations of o and p:

obsy (0, p) :={o | ol p-% pass}

Implementation Relations
00e00000000000000

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p’ processes. Test execution is
described by the test-operator T, whose behaviour is defined by

the following rules:

a ./ a, ./ t /
0O — O — o0 — O
2 p(aEAct)

(a € Acty)

a

a.o3o ollp2oTp ol p-L pass

@ Observations of o and p:

obsy (0, p) :={o | ol p-% pass}

@ All observations for p:

obs (p) = U obs (o, p).

N
a1

Implementation Relations
0000000000000 0000

Test Execution

Example 3.1.3

Let PE=b.c.Q+a.b.Q+b.Q and Q=c.P and o = b.c.c.t.

Implementation Relations
0000000000000 0000

Test Execution

Example 3.1.3

Let PE=b.c.Q+a.b.Q+b.Q and Q=c.P and o = b.c.c.t.

b.c.ctT P

Implementation Relations
0000000000000 0000

Test Execution

Example 3.1.3

Let PE=b.c.Q+a.b.Q+b.Q and Q=c.P and o = b.c.c.t.

b.cctT P2 cctlle.@Q

Implementation Relations
0000000000000 0000

Test Execution

Example 3.1.3

Let PE=b.c.Q+a.b.Q+b.Q and Q=c.P and o = b.c.c.t.

bcctTPLcctTec@SctTQ

Implementation Relations
0000000000000 0000

Test Execution

Example 3.1.3

Let PE=b.c.Q+a.b.Q+b.Q and Q=c.P and o = b.c.c.t.

bcctTPLcctTc@QSctTQStTP

Implementation Relations
0000000000000 0000

Test Execution

Example 3.1.3

Let PE=b.c.Q+a.b.Q+b.Q and Q=c.P and o = b.c.c.t.

bcctTPLcctlTecQSctTQ-=StTP-S pass,

but also
b.c.ctT P

Implementation Relations
0000000000000 0000

Test Execution

Example 3.1.3

Let PE=b.c.Q+a.b.Q+b.Q and Q=c.P and o = b.c.c.t.

bcctTPLcctlTecQSctTQ-=StTP-S pass,

but also
bcctTPLcctTQ

Implementation Relations
0000000000000 0000

Test Execution

Example 3.1.3

Let PE=b.c.Q+a.b.Q+b.Q and Q=c.P and o = b.c.c.t.

bcctTPLcctlTecQSctTQ-=StTP-S pass,

but also
bcctTPLcctTQSctTTP

Implementation Relations
0000000000000 0000

Test Execution

Example 3.1.3

Let PE=b.c.Q+a.b.Q+b.Q and Q=c.P and o = b.c.c.t.

bcctTPLcctlTecQSctTQ-=StTP-S pass,

but also
b.cctTPL cctTQS ctTPA.

Observations: obs (o0, P) = {bcct}.

Implementation Relations
0000@000000000000

Trace preorder

For p,q € IP:

p<u q iff obsy(p) C obsy(q)

Implementation Relations
0000@000000000000

Trace preorder

For p,q € IP:

p<u q iff obsy(p) C obsy(q)

Exercise.

Implementation Relations
0000@000000000000

Trace preorder

For p,q € IP:

p<u q iff obsy(p) C obsy(q)

Exercise.

p <t q iff Yo & Oy :obsy(o,p) C obsy(o,q).

Implementation Relations
00000e00000000000

Failures Preorder

Example 3.2.1: Crummy Tea & Coffee Inc.
Coffee & Tea Dispenser Inc. (CTD) Specification:

“Inviting offers for implemen-
tation, correct wrt. <"

Implementation Relations
00000e00000000000

Failures Preorder

Example 3.2.1: Crummy Tea & Coffee Inc.

Crummy Tea & Coffee Inc. offers CTD the following:

1o / 25

Implementation Relations
00000e00000000000

Failures Preorder

On first sight: M2 seems ok

Implementation Relations
00000e00000000000

Failures Preorder

On first sight: M2 seems ok

But trace inclusion is not enough! BUTTON in M5 has no effect!

Implementation Relations
00000e00000000000

Failures Preorder

On first sight: M2 seems ok

@ We need a finer implementation relation.

Implementation Relations
00000e00000000000

Failures Preorder

On first sight: M2 seems ok

@ We need a finer implementation relation.

@ Approach: which actions can not be performed in the states?

Implementation Relations
00000e00000000000

Failures Preorder

On first sight: M2 seems ok

@ We need a finer implementation relation.
@ Approach: which actions can not be performed in the states?

@ refusal sets

Implementation Relations
00000e00000000000

Failures Preorder

On first sight: M2 seems ok

@ We need a finer implementation relation.
@ Approach: which actions can not be performed in the states?
@ refusal sets

o refusal sets of state 1 and | are {BUTTON, COFFEE, TEA }

Implementation Relations
0000008000000 0000

Failures preorder

Refusals, Failure pairs and Failures preorder |

@ Refusals R(Act) = {X | X C Act}

Implementation Relations
0000008000000 0000

Failures preorder

Refusals, Failure pairs and Failures preorder |

@ Refusals R(Act) = {X | X C Act}
@ Actr = Act U R(Act).

Implementation Relations
0000008000000 0000

Failures preorder

LS B T e T S
@ Refusals R(Act) = {X | X C Act}
@ Actr = Act U R(Act).
o For X € R(Act), X is called refusal set.

Implementation Relations
0000008000000 0000

Failures preorder

Refusals, Failure pairs and Failures preorder |

@ Refusals R(Act) = {X | X C Act}
@ Actr = Act U R(Act).
o For X € R(Act), X is called refusal set.

@ Failure pairs are traces over Actg of the form o -)~< where
o € Act®

Implementation Relations
0000008000000 0000

Failures preorder

Refusals, Failure pairs and Failures preorder |

Refusals R(Act) = {X | X C Act}
Actr = Act U R(Act).
For X € R(Act), X is called refusal set.

Failure pairs are traces over Actg of the form o -)~< where
o € Act®
The failure pairs F(p) of process p € IP are defined as:

o X € F(p), if pA forall ac X. -

e g-X € F(p)foroe Act™, if p-= p' and X € F(p').

(]
(*]
(*]
(*]

Implementation Relations
0000008000000 0000

Failures preorder

Refusals, Failure pairs and Failures preorder

Refusals R(Act) = {X | X C Act}
Actr = Act U R(Act).
For X € R(Act), X is called refusal set.

Failure pairs are traces over Actg of the form o -)~< where
o € Act*
The failure pairs F(p) of process p € IP are defined as:
o X € F(p), if pA forall ac X. -
e g-X € F(p)foroe Act™, if p-= p' and X € F(p').
The failures preorder <¢ is defined as:
p <f q if and only if F(p) C F(q).

(]
(*]
(*]
(*]

(]

(]

Implementation Relations
0000000 @000000000

Failures preorder

o Refusal X: special kind of action

Implementation Relations
0000000 @000000000

Failures preorder

o Refusal X: special kind of action

@ corresponds one-to-one to X C Act.

Implementation Relations
0000000 @000000000

Failures preorder

o Refusal X: special kind of action
@ corresponds one-to-one to X C Act.

o o- X € F(p): there is a trace leading to state p’ such that
p’ refuses X.

Implementation Relations
0000000 @000000000

Failures preorder

o Refusal X: special kind of action

@ corresponds one-to-one to X C Act.

o o- X € F(p): there is a trace leading to state p’ such that
p’ refuses X.

o p refuses Act: equivalent to p is deadlocked

Failures preorder

Let Act = {a, b, c}

Failures preorder

Let Act = {a, b, c}

p <t q is obvious

Implementation Relations
0000000080000 0000

Failures preorder

Let Act = {a, b, c}

p <t q is obvious

—_—— —_——

p % q since 0 = a-{a,c} € F(p), but not a-{a,c} € F(q).

13 /25

Implementation Relations
000000000 e0000000

Failures preorder

Example (cont.)

g <f p: we annotate the states with the set of refusal sets:

{b}
{/3}/} >f
{a}
{c}

—_—~

@ Failure pairs of p e.g.: 0, {b, c}, afa, c}, a{av}, acAct,

@ g is a part of p, g <f p obvious.

Implementation Relations
000000000000 0000

3.2.4 Example 3.2.1 continued

Coffee & Tea Dispenser Inc.:

@ "Only implementations correct according to <f are
acceptable”

Implementation Relations
000000000000 0000

3.2.4 Example 3.2.1 continued

Coffee & Tea Dispenser Inc.:

@ "Only implementations correct according to <f are
acceptable”

@ “obviously My £¢ M;", therefore not acceptable

Implementation Relations
000000000000 0000

3.2.4 Example 3.2.1 continued

Coffee & Tea Dispenser Inc.:

@ "Only implementations correct according to <f are
acceptable”

@ “obviously My £¢ M;", therefore not acceptable

Right?

Implementation Relations
000000000000 0000

3.2.4 Example 3.2.1 continued

Coffee & Tea Dispenser Inc.:

@ "Only implementations correct according to <f are
acceptable”

@ “obviously My £¢ M;", therefore not acceptable

Right? Wrong!

Implementation Relations
00000000000 e00000

3.2.4 Example 3.2.1 continued

Failure pairs of M>

COIN - {COIN, COFFEE}

16/25

Implementation Relations
00000000000 e00000

3.2.4 Example 3.2.1 continued

Failure pairs of M>

COIN - BUTTON - {COIN, COFFEE}

16/25

Implementation Relations
00000000000 e00000

3.2.4 Example 3.2.1 continued

Failure pairs of M>

COIN - {COIN, TEA}

16/25

Implementation Relations
00000000000 e00000

3.2.4 Example 3.2.1 continued

Failure pairs of M>

COIN - BUTTON - {COIN, TEA }

16/25

Implementation Relations
00000000000 e00000

3.2.4 Example 3.2.1 continued

@ not only refusal sets of reached states important

Implementation Relations
00000000000 e00000

3.2.4 Example 3.2.1 continued

@ not only refusal sets of reached states important

@ also what states with which refusals passed

Implementation Relations
00000000000 e00000

3.2.4 Example 3.2.1 continued

@ not only refusal sets of reached states important
@ also what states with which refusals passed

@ seems to be important to record also the refusals of
intermediate states.

Implementation Relations
00000000000 e00000

3.2.4 Example 3.2.1 continued

@ not only refusal sets of reached states important

@ also what states with which refusals passed

@ seems to be important to record also the refusals of
intermediate states.

— failure traces

Implementation Relations
000000000000 e0000

Failure traces and failure trace preorder

Defintin]

© Failure traces are the elements of Actr,.

Implementation Relations
000000000000 e0000

Failure traces and failure trace preorder

Defiitin
© Failure traces are the elements of Actr,.
@ Set of failure traces of p € IP:

Implementation Relations
000000000000 e0000

Failure traces and failure trace preorder

PDefinigon
© Failure traces are the elements of Actr,.
@ Set of failure traces of p € IP:
9 ¢ € ftraces(p);

Implementation Relations
000000000000 e0000

Failure traces and failure trace preorder

Defiitin
© Failure traces are the elements of Actr,.
@ Set of failure traces of p € IP:

9 ¢ € ftraces(p);
e a € ftraces(p), if p 2,

Implementation Relations
000000000000 e0000

Failure traces and failure trace preorder

Defiitin
© Failure traces are the elements of Actr,.
@ Set of failure traces of p € IP:

9 ¢ € ftraces(p);
e a € ftraces(p), if p 2,
@ X € ftraces(p), if p7 for all a € X;

Implementation Relations
000000000000 e0000

Failure traces and failure trace preorder

Defiitin
© Failure traces are the elements of Actr,.
@ Set of failure traces of p € IP:

€ € ftraces(p);

a € ftraces(p), if p2;

X € ftraces(p), if p 7 for all a € X;

a- o € ftraces(p) for o € Acty, a € Act, if

p->p’ and o € ftraces(p');

<

¢ € ¢

Implementation Relations
000000000000 e0000

Failure traces and failure trace preorder

T
© Failure traces are the elements of Actr,.
@ Set of failure traces of p € IP:
€ € ftraces(p);
a € ftraces(p), if p2;
X € ftraces(p), if p 7 for all a € X;
a- o € ftraces(p) for o € Acty, a € Act, if
p->p’ and o € ftraces(p');
X -0 € ftraces(p) for o € Actl,, X € R(Act), if

X € ftraces(p) and o € ftraces(p).

<

¢ € ¢

<

Implementation Relations
000000000000 e0000

Failure traces and failure trace preorder

© Failure traces are the elements of Actr,.
@ Set of failure traces of p € IP:

€ € ftraces(p);

a € ftraces(p), if p2;

X € ftraces(p), if p 7 for all a € X;

a- o € ftraces(p) for o € Acty, a € Act, if

p->p’ and o € ftraces(p');
X -0 € ftraces(p) for o € Actl,, X € R(Act), if
X € ftraces(p) and o € ftraces(p).
© The failure trace preorder <z C IP x IP is defined as

p <g q iff ftraces(p) C ftraces(q).

<

¢ € ¢

<

Implementation Relations
0000000000000 e000

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

@\ &A\Z

ot] Klmuou
5%

M5 is not an implementation of M; according to <g!

butHou,

Implementation Relations
0000000000000 e000

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

@\ &A\Z

ot] Klmuou
5%

@ 0 = COIN{COFFEE, COIN }BUTTON{TEA, COIN} € ftraces(1)

butHou,

Implementation Relations
0000000000000 e000

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

@\ &A\Z

ot / Klmuou
5%

@ 0 = COIN{COFFEE, COIN }BUTTON{TEA, COIN} € ftraces(1)
@ o not an element of ftraces(I):

butHou,

Implementation Relations
0000000000000 e000

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

@\ &A\Z

ot] Klmuou
5%

@ 0 = COIN{COFFEE, COIN }BUTTON{TEA, COIN} € ftraces(1)
@ o not an element of ftraces(I):

butHou,

COIN4q COFFEE,COIN ; BUTTON
e 1 { . } 4

Implementation Relations
0000000000000 e000

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)
1,

colu

E . V @ coiu
Te~ \
. /\ wHou / / KJ/EV“M
e
@

@ 0 = COIN{COFFEE, COIN }BUTTON{TEA, COIN} € ftraces(1)
@ o not an element of ftraces(I):

o 1 COIN{COFFEE,COIN } BUTTON

o | COIN{COFFEE,COIN } BUTTON

v

Implementation Relations
0000000000000 e000

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)
1,

, @@
<
LuHon /\ o / K lwm
SIA\,

@ 0 = COIN{COFFEE, COIN }BUTTON{TEA, COIN} € ftraces(1)
@ o not an element of ftraces(I):

o 1 COIN{COFFEE,COIN } BUTTON

o | COIN{COFFEE,COIN } BUTTON

@ {TEA, COIN} € ftraces(4)

v

Implementation Relations
0000000000000 e000

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

@\ &A\Z

ot / Klmuou
5%

@ 0 = COIN{COFFEE, COIN }BUTTON{TEA, COIN} € ftraces(1)
@ o not an element of ftraces(I):

butHou,

o 1 COIN{COFFEE,COIN } BUTTON

o | COIN{COFFEE,COIN } BUTTON

v

<

{TEA, COIN} € ftraces(4)
{TEA, COIN} ¢ ftraces(IV)

©

Implementation Relations
0000000000000 0e00

Comparing the Implementation relations

3.2.7 Proposition
<t =X <f 2 Z¢r

Proof: = Blackboaord

Implementation Relations
0000000000000 00e0

Completed trace preorder

3.2.8 Definition <

For p, g € IP, the completed trace preorder <,C IP x IP is defined
as

p <c q iff

Implementation Relations
0000000000000 00e0

Completed trace preorder

3.2.8 Definition <

For p, g € IP, the completed trace preorder <,C IP x IP is defined
as

p <c q iff

traces(p) C traces(q)

Implementation Relations
0000000000000 00e0

Completed trace preorder

3.2.8 Definition <

For p, g € IP, the completed trace preorder <,C IP x IP is defined
as

p <c q iff

traces(p) C traces(q)
~_and -
F(p) N Act* - Act C F(q) N Act” - Act

Implementation Relations
0000000000000 00e0

Completed trace preorder

3.2.8 Definition <.
For p, g € IP, the completed trace preorder <,C IP x IP is defined
as
p <c q iff
traces(p) C traces(q)
~_and -
F(p) N Act* - Act C F(q) N Act” - Act

o If Act € F(p), then p is deadlocked.

20/25

Implementation Relations
0000000000000 00e0

Completed trace preorder

3.2.8 Definition <.
For p, g € IP, the completed trace preorder <,C IP x IP is defined
as
p <c q iff
traces(p) C traces(q)
~_and -
F(p) N Act* - Act C F(q) N Act” - Act

o If Act € F(p), then p is deadlocked.

o If o- Act € F(p), then o is called a completed trace of p.

20/25

Implementation Relations
0000000000000 00e0

Completed trace preorder

3.2.8 Definition <.
For p, g € IP, the completed trace preorder <,C IP x IP is defined
as
p <c q iff
traces(p) C traces(q)
~_and -
F(p) N Act* - Act C F(q) N Act” - Act

o If Act € F(p), then p is deadlocked.

o If o- Act € F(p), then o is called a completed trace of p.
© Apparently, < X <¢t X <.

20/25

Implementation Relations
0000000000000 00e0

Completed trace preorder

3.2.8 Definition <.
For p, g € IP, the completed trace preorder <,C IP x IP is defined
as
p <c q iff
traces(p) C traces(q)
~_and -
F(p) N Act* - Act C F(q) N Act” - Act

o If Act € F(p), then p is deadlocked.

o If o- Act € F(p), then o is called a completed trace of p.
© Apparently, < X <¢t X <.

@ < is finer than <.

20/25

Implementation Relations
0000000000000 000e

<t Is finer than <4,

[] []
<
a =tr
/ \ a
o L Let !
[]
b
b
° Y
[]

21/25

© Failure Trace Preorder and Observers

22/25

Observing <g
000

Test Expressions for <g

Refusals become part of test expressions J

23/25

Observing <g
000

Test Expressions for <g

Refusals become part of test expressions)

Test Expressions O

o — ao | tSTOP

23/25

Observing <g
000

Test Expressions for <g

Refusals become part of test expressions)

Test Expressions O

o — ao | tSTOP | X.o
with a € Act, and X € R(Act).

23/25

Observing <g
o] o)

Test Execution

Test Execution for <z

o020 p2p o5 o

(a € Act)

E(a € Atht) =

ollp2oTp oT p-% pass

24 /25

Observing <g
o] o)

Test Execution

Test Execution for <z

o020 p2p o5 o

(a € Act)

730(3 € Atht)

3.0 > d

ollp2oTp oT p-% pass

02X of pA~VaeX
oTpX oTp

24 /25

Observing <g
o] o)

Test Execution

Test Execution for <z

o020 p2p o5 o

(a € Act)

730(3 € Atht)

3.0 > d

ollp2oTp oT p-% pass

02X of pA~VaeX
oTpX oTp

obsp(p) ={ 0€ Og| Jo € Acth, 0l p =Z%, pass }

24 /25

Observing <g
ooe

Observing Failure Trace Preorder

p < q iff Obsft(P) c Obet(q)

Proof: blackboard)

25 /25

	Some more Implementation Relations
	

	Failure Trace Preorder and Observers
	

