

Testing of Reactive Systems

Lecture 5: Some more Implementation Relations

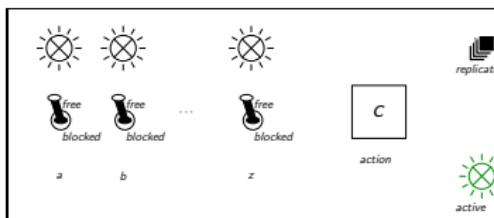
Henrik Bohnenkamp

Lehrstuhl Informatik 2 (MOVES)
RWTH Aachen

Summer Semester 2009

What happened so far?

- Bisimulation
- Comparison of preorders/equivalences (finer/coarser)
- Linear-Time/Branching-Time spectrum
- Effect of nondeterminism on the LTBT spectrum
- Observing and Manipulating Processes: **The Generative Machine**



What is coming?

We will

- formalise notion of (primitive) observation
- introduce so-called *observers*
- observers will be *special processes*: test expressions
- observers will *manipulate* and *observe*, i.e.: test
- characterise a few simple preorders by *observers*
- establish order in LTBT spectrum

What is coming?

We will

- formalise notion of (primitive) observation
- introduce so-called **observers**
- observers will be special processes: test expressions
- observers will **manipulate** and **observe**, i.e.: test
- characterise a few simple preorders by **observers**
- establish order in LTBT spectrum

What is coming?

We will

- formalise notion of (primitive) observation
- introduce so-called **observers**
- observers will be **special processes**: **test expressions**
- observers will **manipulate** and **observe**, i.e.: test
- characterise a few simple preorders by **observers**
- establish order in LTBT spectrum

What is coming?

We will

- formalise notion of (primitive) observation
- introduce so-called **observers**
- observers will be **special processes**: test expressions
- observers will **manipulate** and **observe**, i.e.: test
- characterise a few simple preorders by **observers**
- establish order in LTBT spectrum

What is coming?

We will

- formalise notion of (primitive) observation
- introduce so-called **observers**
- observers will be **special processes**: test expressions
- observers will **manipulate** and **observe**, i.e.: test
- characterise a few simple preorders by **observers**
- establish order in LTBT spectrum

What is coming?

We will

- formalise notion of (primitive) observation
- introduce so-called **observers**
- observers will be **special processes**: test expressions
- observers will **manipulate** and **observe**, i.e.: test
- characterise a few simple preorders by **observers**
- establish order in LTBT spectrum

1 Some more Implementation Relations

2 Failure Trace Preorder and Observers

We assume (again): no τ -steps

Trace preorder

O_{tr}

Let \mathcal{O}_{tr} be the set of [test expressions](#) defined by the following grammar:

o → *a.o* | t.STOP

where $a \in Act$, and $t \notin Act$ is a special action which denotes the end of the observation.

Trace preorder

σ_{tr}

Let \mathcal{O}_{tr} be the set of [test expressions](#) defined by the following grammar:

o → *a.o* | t.STOP

where $a \in Act$, and $t \notin Act$ is a special action which denotes the end of the observation.

Example

For $Act = \{a, b, c\}$, the following are typical test expressions:

t.STOP, *a.c.a.b.t.STOP*, etc

Trace preorder

σ_{tr}

Let \mathcal{O}_{tr} be the set of [test expressions](#) defined by the following grammar:

o → *a.o* | t.STOP

where $a \in Act$, and $t \notin Act$ is a special action which denotes the end of the observation.

Example

For $Act = \{a, b, c\}$, the following are typical test expressions:

t.STOP, *a.c.a.b.t.STOP*, etc

Convention

- We write $t.\text{STOP}$ just as t
- We write $\text{Act}_{tr} = \text{Act} \cup \{t\}$.

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p' processes. Test execution is described by the **test-operator** \mathbb{T} , whose behaviour is defined by the following rules:

$$\frac{}{a.o \xrightarrow{a} o} (a \in \text{Act}_{tr}) \quad \frac{o \xrightarrow{a} o' \quad p \xrightarrow{a} p'}{o \mathbb{T} p \xrightarrow{a} o' \mathbb{T} p'} (a \in \text{Act}) \quad \frac{o \xrightarrow{t} o'}{o \mathbb{T} p \xrightarrow{t} \text{PASS}}$$

- Observations of o and p :

$$\text{obs}_{tr}(o, p) := \{\sigma \mid o \mathbb{T} p \xrightarrow{\sigma} \text{PASS}\}$$

- All observations for p :

$$\text{obs}_{tr}(p) = \bigcup \text{obs}_{tr}(o, p).$$

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p' processes. Test execution is described by the **test-operator** \mathbb{T} , whose behaviour is defined by the following rules:

$$\frac{}{a.o \xrightarrow{a} o} (a \in \text{Act}_{tr}) \quad \frac{o \xrightarrow{a} o' \quad p \xrightarrow{a} p'}{o \mathbb{T} p \xrightarrow{a} o' \mathbb{T} p'} (a \in \text{Act}) \quad \frac{o \xrightarrow{t} o'}{o \mathbb{T} p \xrightarrow{t} \text{PASS}}$$

- Observations of o and p :

$$\text{obs}_{tr}(o, p) := \{\sigma \mid o \mathbb{T} p \xrightarrow{\sigma} \text{PASS}\}$$

- All observations for p :

$$\text{obs}_{tr}(p) = \bigcup \text{obs}_{tr}(o, p).$$

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p' processes. Test execution is described by the **test-operator** \mathbb{T} , whose behaviour is defined by the following rules:

$$\frac{}{a.o \xrightarrow{a} o} (a \in Act_{tr}) \quad \frac{o \xrightarrow{a} o' \quad p \xrightarrow{a} p'}{o \mathbb{T} p \xrightarrow{a} o' \mathbb{T} p'} (a \in Act) \quad \frac{o \xrightarrow{t} o'}{o \mathbb{T} p \xrightarrow{t} \text{PASS}}$$

- Observations of o and p :

$$\text{obs}_{tr}(o, p) := \{\sigma \mid o \mathbb{T} p \xrightarrow{\sigma} \text{PASS}\}$$

- All observations for p :

$$\text{obs}_{tr}(p) = \bigcup \text{obs}_{tr}(o, p).$$

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p' processes. Test execution is described by the **test-operator** \mathbb{T} , whose behaviour is defined by the following rules:

$$\frac{}{a.o \xrightarrow{a} o} (a \in Act_{tr}) \quad \frac{o \xrightarrow{a} o' \quad p \xrightarrow{a} p'}{o \mathbb{T} p \xrightarrow{a} o' \mathbb{T} p'} (a \in Act) \quad \frac{o \xrightarrow{t} o'}{o \mathbb{T} p \xrightarrow{t} \text{PASS}}$$

- Observations of o and p :

$$\text{obs}_{tr}(o, p) := \{\sigma \mid o \mathbb{T} p \xrightarrow{\sigma} \text{PASS}\}$$

- All observations for p :

$$\text{obs}_{tr}(p) = \bigcup \text{obs}_{tr}(o, p).$$

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p' processes. Test execution is described by the **test-operator** \mathbb{T} , whose behaviour is defined by the following rules:

$$\frac{}{a.o \xrightarrow{a} o} (a \in Act_{tr}) \quad \frac{o \xrightarrow{a} o' \quad p \xrightarrow{a} p'}{o \mathbb{T} p \xrightarrow{a} o' \mathbb{T} p'} (a \in Act) \quad \frac{o \xrightarrow{t} o'}{o \mathbb{T} p \xrightarrow{t} \text{PASS}}$$

- Observations of o and p :

$$\text{obs}_{tr}(o, p) := \{\sigma \mid o \mathbb{T} p \xrightarrow{\sigma} \text{PASS}\}$$

- All observations for p :

$$\text{obs}_{tr}(p) = \bigcup \text{obs}_{tr}(o, p).$$

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p' processes. Test execution is described by the **test-operator** \mathbb{T} , whose behaviour is defined by the following rules:

$$\frac{}{a.o \xrightarrow{a} o} (a \in Act_{tr}) \quad \frac{o \xrightarrow{a} o' \quad p \xrightarrow{a} p'}{o \mathbb{T} p \xrightarrow{a} o' \mathbb{T} p'} (a \in Act) \quad \frac{o \xrightarrow{t} o'}{o \mathbb{T} p \xrightarrow{t} \text{PASS}}$$

- Observations of o and p :

$$\text{obs}_{tr}(o, p) := \{\sigma \mid o \mathbb{T} p \xrightarrow{\sigma} \text{PASS}\}$$

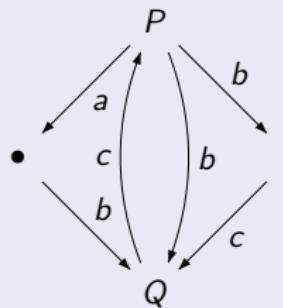
- All observations for p :

$$\text{obs}_{tr}(p) = \bigcup \text{obs}_{tr}(o, p).$$

Test Execution

Example 3.1.3

Let $P \hat{=} b.c.Q + a.b.Q + b.Q$ and $Q \hat{=} c.P$ and $o = b.c.c.t$.



$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} c.Q \xrightarrow{c} c.t \mathbb{T} Q \xrightarrow{c} t \mathbb{T} P \xrightarrow{t} \text{PASS}$,

but also

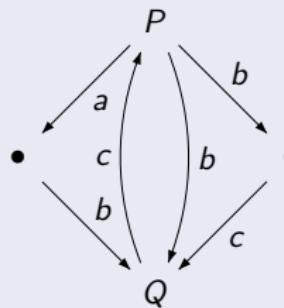
$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} Q \xrightarrow{c} c.t \mathbb{T} P \not\xrightarrow{t}$.

Observations: $\text{obs}_{tr}(o, P) = \{bcct\}$.

Test Execution

Example 3.1.3

Let $P \hat{=} b.c.Q + a.b.Q + b.Q$ and $Q \hat{=} c.P$ and $o = b.c.c.t$.



$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} c.Q \xrightarrow{c} c.t \mathbb{T} Q \xrightarrow{c} t \mathbb{T} P \xrightarrow{t} \text{PASS}$,

but also

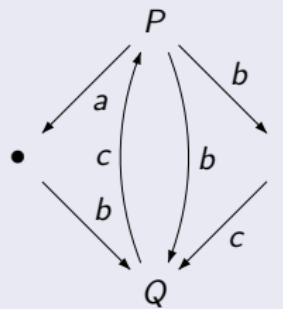
$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} Q \xrightarrow{c} c.t \mathbb{T} P \not\xrightarrow{t}$.

Observations: $\text{obs}_{tr}(o, P) = \{bcct\}$.

Test Execution

Example 3.1.3

Let $P \hat{=} b.c.Q + a.b.Q + b.Q$ and $Q \hat{=} c.P$ and $o = b.c.c.t$.



$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} c.Q \xrightarrow{c} c.t \mathbb{T} Q \xrightarrow{c} t \mathbb{T} P \xrightarrow{t} \text{PASS}$,

but also

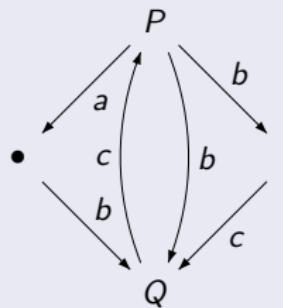
$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} Q \xrightarrow{c} c.t \mathbb{T} P \not\xrightarrow{t}$.

Observations: $\text{obs}_{tr}(o, P) = \{bcct\}$.

Test Execution

Example 3.1.3

Let $P \hat{=} b.c.Q + a.b.Q + b.Q$ and $Q \hat{=} c.P$ and $o = b.c.c.t$.



$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} c.Q \xrightarrow{c} c.t \mathbb{T} Q \xrightarrow{c} t \mathbb{T} P \xrightarrow{t} \text{PASS}$,

but also

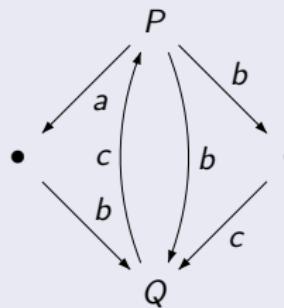
$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} Q \xrightarrow{c} c.t \mathbb{T} P \not\rightarrow \text{.}$

Observations: $\text{obs}_{tr}(o, P) = \{bcct\}$.

Test Execution

Example 3.1.3

Let $P \hat{=} b.c.Q + a.b.Q + b.Q$ and $Q \hat{=} c.P$ and $o = b.c.c.t$.



$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} c.Q \xrightarrow{c} c.t \mathbb{T} Q \xrightarrow{c} t \mathbb{T} P \xrightarrow{t} \text{PASS}$,

but also

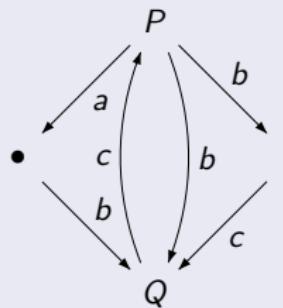
$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} Q \xrightarrow{c} c.t \mathbb{T} P \not\rightarrow$.

Observations: $\text{obs}_{tr}(o, P) = \{bcct\}$.

Test Execution

Example 3.1.3

Let $P \hat{=} b.c.Q + a.b.Q + b.Q$ and $Q \hat{=} c.P$ and $o = b.c.c.t$.



$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} c.Q \xrightarrow{c} c.t \mathbb{T} Q \xrightarrow{c} t \mathbb{T} P \xrightarrow{t} \text{PASS}$,

but also

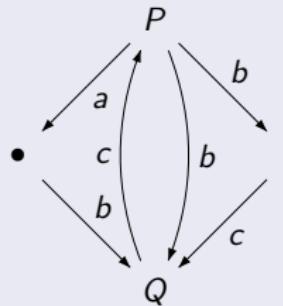
$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} Q \xrightarrow{c} c.t \mathbb{T} P \not\rightarrow$.

Observations: $\text{obs}_{tr}(o, P) = \{bcct\}$.

Test Execution

Example 3.1.3

Let $P \hat{=} b.c.Q + a.b.Q + b.Q$ and $Q \hat{=} c.P$ and $o = b.c.c.t$.



$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} c.Q \xrightarrow{c} c.t \mathbb{T} Q \xrightarrow{c} t \mathbb{T} P \xrightarrow{t} \text{PASS}$,

but also

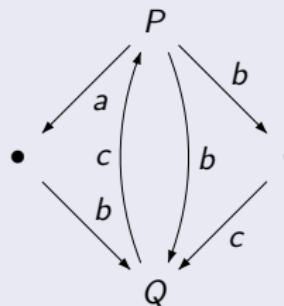
$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} Q \xrightarrow{c} c.t \mathbb{T} P \not\rightarrow$.

Observations: $\text{obs}_{tr}(o, P) = \{bcct\}$.

Test Execution

Example 3.1.3

Let $P \hat{=} b.c.Q + a.b.Q + b.Q$ and $Q \hat{=} c.P$ and $o = b.c.c.t$.



$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} c.Q \xrightarrow{c} c.t \mathbb{T} Q \xrightarrow{c} t \mathbb{T} P \xrightarrow{t} \text{PASS}$,

but also

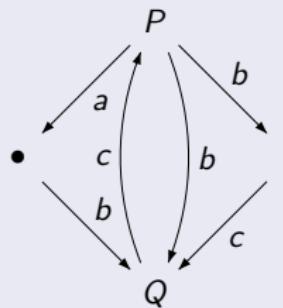
$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} Q \xrightarrow{c} c.t \mathbb{T} P \not\xrightarrow{t}$.

Observations: $\text{obs}_{tr}(o, P) = \{bcct\}$.

Test Execution

Example 3.1.3

Let $P \hat{=} b.c.Q + a.b.Q + b.Q$ and $Q \hat{=} c.P$ and $o = b.c.c.t$.



$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} c.Q \xrightarrow{c} c.t \mathbb{T} Q \xrightarrow{c} t \mathbb{T} P \xrightarrow{t} \text{PASS}$,

but also

$b.c.c.t \mathbb{T} P \xrightarrow{b} c.c.t \mathbb{T} Q \xrightarrow{c} c.t \mathbb{T} P \not\rightarrow$.

Observations: $\text{obs}_{tr}(o, P) = \{bcct\}$.

Trace preorder

Lemma 3.1.4

For $p, q \in \mathbb{P}$:

$$p \leq_{tr} q \quad \text{iff} \quad \text{obs}_{tr}(p) \subseteq \text{obs}_{tr}(q)$$

Proof

Exercise.

Note

$$p \leq_{tr} q \quad \text{iff} \quad \forall o \in \mathcal{O}_{tr} : \text{obs}_{tr}(o, p) \subseteq \text{obs}_{tr}(o, q).$$

Trace preorder

Lemma 3.1.4

For $p, q \in \mathbb{P}$:

$$p \leq_{tr} q \quad \text{iff} \quad \text{obs}_{tr}(p) \subseteq \text{obs}_{tr}(q)$$

Proof

Exercise.

Note

$$p \leq_{tr} q \quad \text{iff} \quad \forall o \in \mathcal{O}_{tr} : \text{obs}_{tr}(o, p) \subseteq \text{obs}_{tr}(o, q).$$

Trace preorder

Lemma 3.1.4

For $p, q \in \mathbb{P}$:

$$p \leq_{tr} q \quad \text{iff} \quad \text{obs}_{tr}(p) \subseteq \text{obs}_{tr}(q)$$

Proof

Exercise.

Note

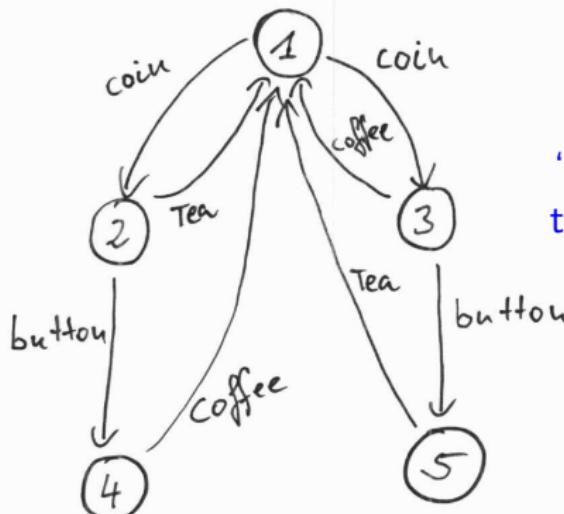
$$p \leq_{tr} q \quad \text{iff} \quad \forall o \in \mathcal{O}_{tr} : \text{obs}_{tr}(o, p) \subseteq \text{obs}_{tr}(o, q).$$

Failures Preorder

Example 3.2.1: Crummy Tea & Coffee Inc.

Coffee & Tea Dispenser Inc. (CTD) Specification:

91,1

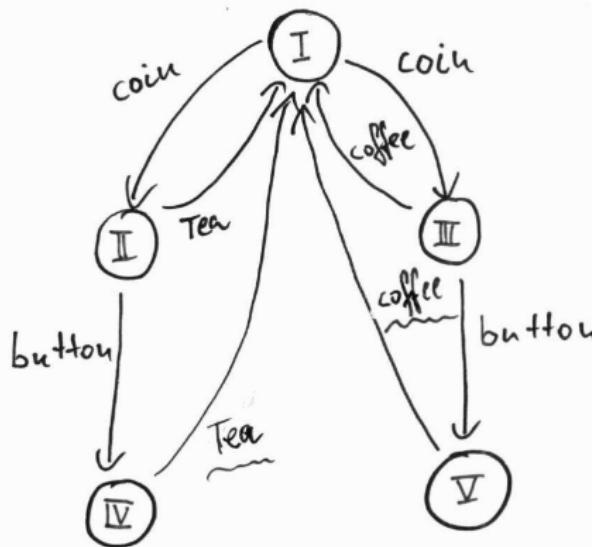


“Inviting offers for implementation, correct wrt. \leq_{tr} ”

Failures Preorder

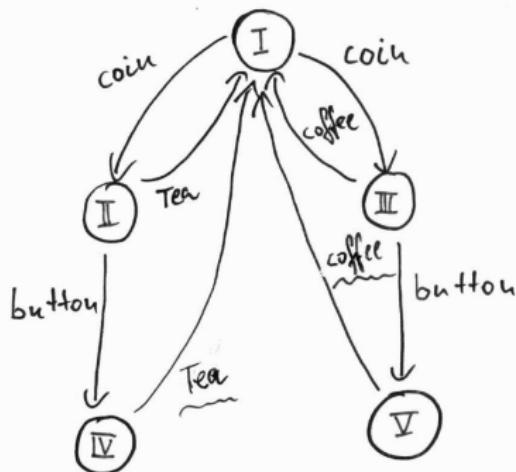
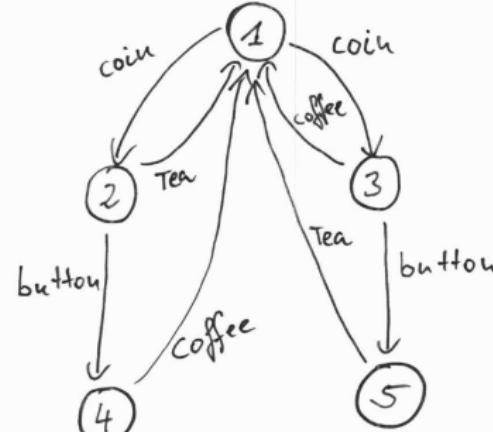
Example 3.2.1: Crummy Tea & Coffee Inc.

Crummy Tea & Coffee Inc. offers CTD the following:



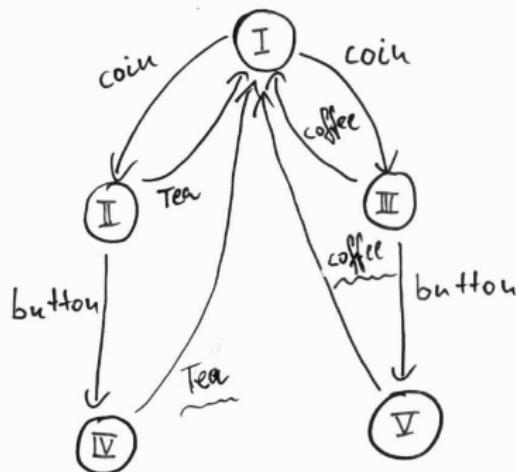
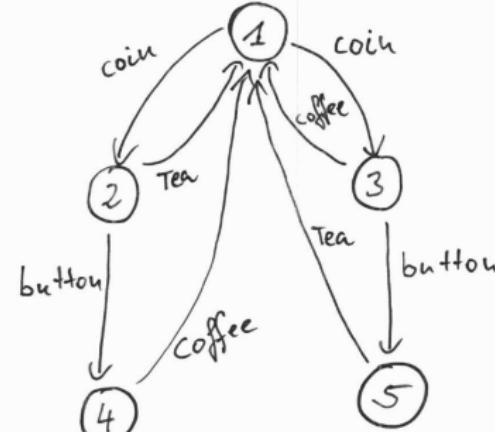
Failures Preorder

On first sight: M2 seems ok

 \mathcal{H}_2  \mathcal{H}_1 

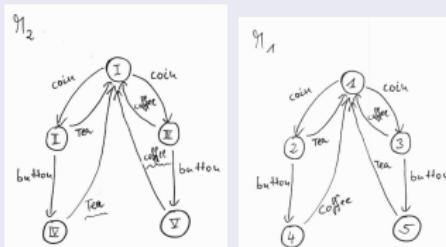
$$I \leq_{tr} 1$$

Failures Preorder

On first sight: M_2 seems ok M_2  M_1 But trace inclusion is not enough! **BUTTON** in M_2 has no effect!

Failures Preorder

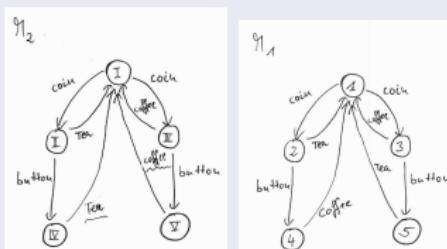
On first sight: M2 seems ok



- We need a finer implementation relation.
- Approach: which actions can **not** be performed in the states?
- refusal sets
- refusal sets of state 1 and 4 are {BUTTON, COFFEE, TEA}

Failures Preorder

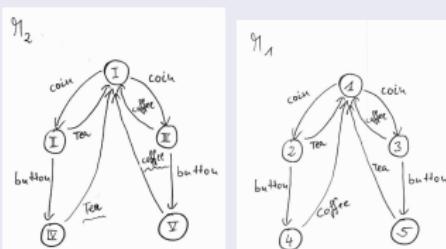
On first sight: M2 seems ok



- We need a finer implementation relation.
- Approach: which actions can **not** be performed in the states?
- refusal sets
- refusal sets of state 1 and 1 are {BUTTON, COFFEE, TEA}

Failures Preorder

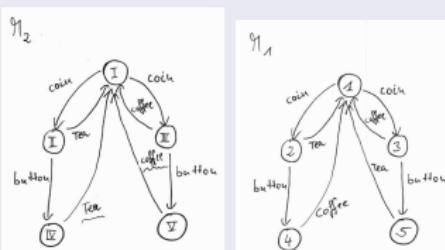
On first sight: M2 seems ok



- We need a finer implementation relation.
- Approach: which actions can **not** be performed in the states?
- refusal sets
- refusal sets of state 1 and 4 are {BUTTON, COFFEE, TEA}

Failures Preorder

On first sight: M2 seems ok



- We need a finer implementation relation.
- Approach: which actions can **not** be performed in the states?
- **refusal sets**
- refusal sets of state 1 and 4 are {BUTTON, COFFEE, TEA}

Failures preorder

Refusals, Failure pairs and Failures preorder

- Refusals $R(Act) = \{\tilde{X} \mid X \subseteq Act\}$
- $Act_{ft} = Act \cup R(Act)$.
- For $\tilde{X} \in R(Act)$, X is called refusal set.
- Failure pairs are traces over Act_{ft} of the form $\sigma \cdot \tilde{X}$, where $\sigma \in Act^*$
- The failure pairs $F(p)$ of process $p \in \mathbb{IP}$ are defined as:
 - $\tilde{X} \in F(p)$, if $p \not\ni a$ for all $a \in X$.
 - $\sigma \cdot \tilde{X} \in F(p)$ for $\sigma \in Act^*$, if $p \xrightarrow{\sigma} p'$ and $\tilde{X} \in F(p')$.
- The failures preorder \leq_f is defined as:
$$p \leq_f q \text{ if and only if } F(p) \subseteq F(q).$$

Failures preorder

Refusals, Failure pairs and Failures preorder

- Refusals $R(Act) = \{\tilde{X} \mid X \subseteq Act\}$
- $Act_f = Act \cup R(Act)$.
- For $\tilde{X} \in R(Act)$, X is called refusal set.
- Failure pairs are traces over Act_f of the form $\sigma \cdot \tilde{X}$, where $\sigma \in Act^*$
- The failure pairs $F(p)$ of process $p \in \mathbb{P}$ are defined as:
 - $\tilde{X} \in F(p)$, if $p \not\ni a$ for all $a \in X$.
 - $\sigma \cdot \tilde{X} \in F(p)$ for $\sigma \in Act^*$, if $p \xrightarrow{\sigma} p'$ and $\tilde{X} \in F(p')$.
- The failures preorder \leq_f is defined as:
$$p \leq_f q \text{ if and only if } F(p) \subseteq F(q).$$

Failures preorder

Refusals, Failure pairs and Failures preorder

- Refusals $R(Act) = \{\tilde{X} \mid X \subseteq Act\}$
- $Act_{ft} = Act \cup R(Act)$.
- For $\tilde{X} \in R(Act)$, X is called **refusal set**.
- Failure pairs are traces over Act_{ft} of the form $\sigma \cdot \tilde{X}$, where $\sigma \in Act^*$
- The failure pairs $F(p)$ of process $p \in \mathbb{P}$ are defined as:
 - $\tilde{X} \in F(p)$, if $p \not\ni a$ for all $a \in X$.
 - $\sigma \cdot \tilde{X} \in F(p)$ for $\sigma \in Act^*$, if $p \xrightarrow{\sigma} p'$ and $\tilde{X} \in F(p')$.
- The failures preorder \leq_f is defined as:
$$p \leq_f q \text{ if and only if } F(p) \subseteq F(q).$$

Failures preorder

Refusals, Failure pairs and Failures preorder

- Refusals $R(Act) = \{\tilde{X} \mid X \subseteq Act\}$
- $Act_{ft} = Act \cup R(Act)$.
- For $\tilde{X} \in R(Act)$, X is called **refusal set**.
- Failure pairs are traces over Act_{ft} of the form $\sigma \cdot \tilde{X}$, where $\sigma \in Act^*$
- The failure pairs $F(p)$ of process $p \in \mathbb{P}$ are defined as:
 - $\tilde{X} \in F(p)$, if $p \not\ni a$ for all $a \in X$.
 - $\sigma \cdot \tilde{X} \in F(p)$ for $\sigma \in Act^*$, if $p \xrightarrow{\sigma} p'$ and $\tilde{X} \in F(p')$.
- The failures preorder \leq_f is defined as:
$$p \leq_f q \text{ if and only if } F(p) \subseteq F(q).$$

Failures preorder

Refusals, Failure pairs and Failures preorder

- Refusals $R(Act) = \{\tilde{X} \mid X \subseteq Act\}$
- $Act_{ft} = Act \cup R(Act)$.
- For $\tilde{X} \in R(Act)$, X is called **refusal set**.
- Failure pairs are traces over Act_{ft} of the form $\sigma \cdot \tilde{X}$, where $\sigma \in Act^*$
- The failure pairs $F(p)$ of process $p \in \mathbb{P}$ are defined as:
 - $\tilde{X} \in F(p)$, if $p \not\ni a$ for all $a \in X$.
 - $\sigma \cdot \tilde{X} \in F(p)$ for $\sigma \in Act^*$, if $p \xrightarrow{\sigma} p'$ and $\tilde{X} \in F(p')$.
- The failures preorder \leq_f is defined as:
$$p \leq_f q \text{ if and only if } F(p) \subseteq F(q).$$

Failures preorder

Refusals, Failure pairs and Failures preorder

- Refusals $R(Act) = \{\tilde{X} \mid X \subseteq Act\}$
- $Act_{ft} = Act \cup R(Act)$.
- For $\tilde{X} \in R(Act)$, X is called **refusal set**.
- Failure pairs are traces over Act_{ft} of the form $\sigma \cdot \tilde{X}$, where $\sigma \in Act^*$
- The failure pairs $F(p)$ of process $p \in \mathbb{P}$ are defined as:
 - $\tilde{X} \in F(p)$, if $p \not\ni a$ for all $a \in X$.
 - $\sigma \cdot \tilde{X} \in F(p)$ for $\sigma \in Act^*$, if $p \xrightarrow{\sigma} p'$ and $\tilde{X} \in F(p')$.
- The failures preorder \leq_f is defined as:
$$p \leq_f q \text{ if and only if } F(p) \subseteq F(q).$$

Failures preorder

Notes

- Refusal \tilde{X} : special kind of action
- corresponds one-to-one to $X \subseteq \text{Act}$.
- $\sigma \cdot \tilde{X} \in F(p)$: there is a trace leading to state p' such that p' refuses X .
- p refuses Act : equivalent to p is deadlocked

Failures preorder

Notes

- Refusal \tilde{X} : special kind of action
- corresponds one-to-one to $X \subseteq \text{Act}$.
- $\sigma \cdot \tilde{X} \in F(p)$: there is a trace leading to state p' such that p' refuses X .
- p refuses Act : equivalent to p is deadlocked

Failures preorder

Notes

- Refusal \tilde{X} : special kind of action
- corresponds one-to-one to $X \subseteq \text{Act}$.
- $\sigma \cdot \tilde{X} \in F(p)$: there is a trace leading to state p' such that p' **refuses** X .
- p **refuses** Act : equivalent to p is deadlocked

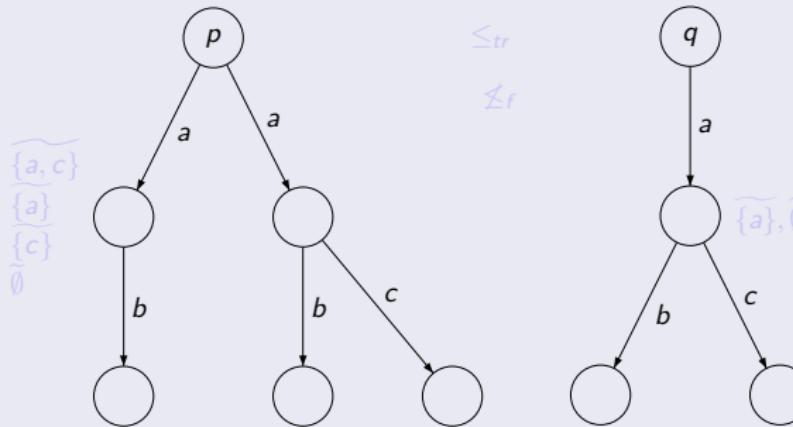
Failures preorder

Notes

- Refusal \tilde{X} : special kind of action
- corresponds one-to-one to $X \subseteq \text{Act}$.
- $\sigma \cdot \tilde{X} \in F(p)$: there is a trace leading to state p' such that p' refuses X .
- p refuses Act : equivalent to p is deadlocked

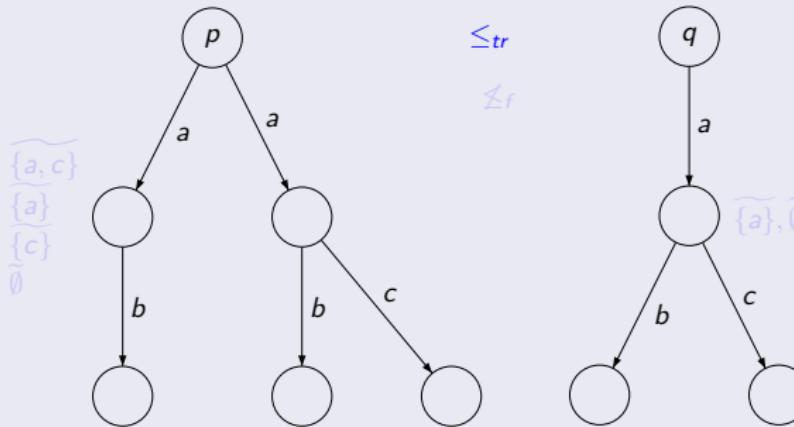
Failures preorder

Example

Let $Act = \{a, b, c\}$  $p \leq_{tr} q$ is obvious $p \nleq_f q$ since $\sigma = a \cdot \widetilde{\{a, c\}} \in F(p)$, but not $a \cdot \widetilde{\{a, c\}} \in F(q)$.

Failures preorder

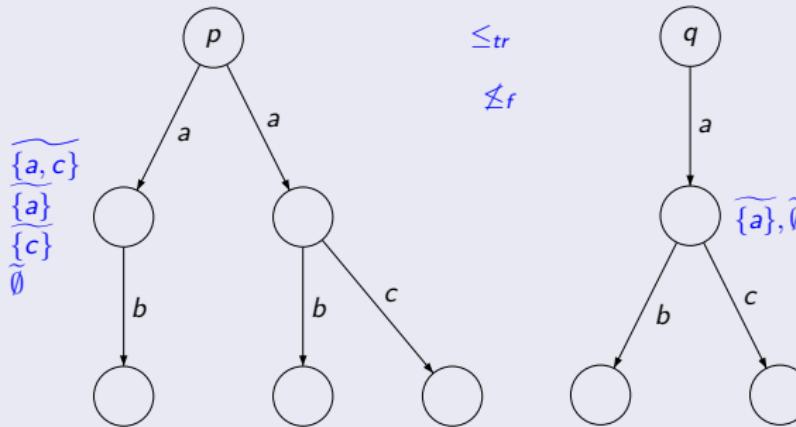
Example

Let $Act = \{a, b, c\}$  $p \leq_{tr} q$ is obvious $p \not\leq_f q$ since $\sigma = a \cdot \{\tilde{a}, \tilde{c}\} \in F(p)$, but not $a \cdot \{\tilde{a}, \tilde{c}\} \in F(q)$.

Failures preorder

Example

Let $Act = \{a, b, c\}$



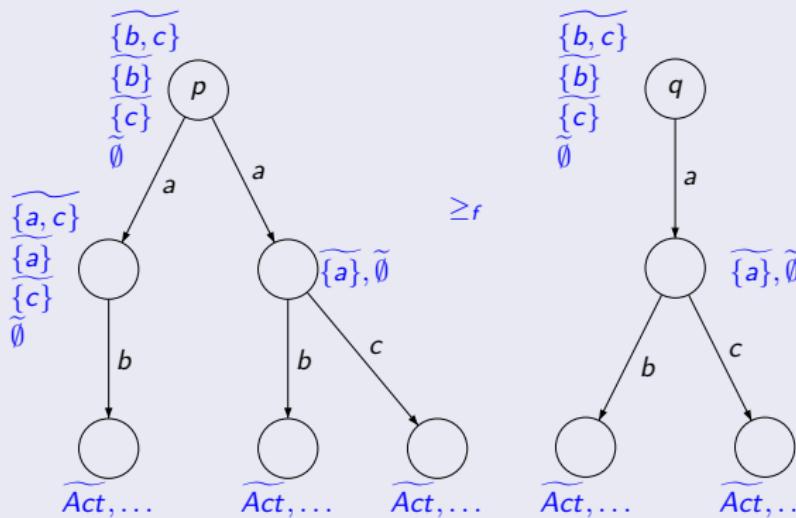
$p \leq_{tr} q$ is obvious

$p \not\leq_f q$ since $\sigma = a \cdot \widetilde{\{a, c\}} \in F(p)$, but not $a \cdot \widetilde{\{a, c\}} \in F(q)$. 3/2/2023

Failures preorder

Example (cont.)

$q \leq_f p$: we annotate the states with the set of refusal sets:



- Failure pairs of p e.g.: $\tilde{\emptyset}$, $\{\tilde{b}, \tilde{c}\}$, $a\{\tilde{a}, \tilde{c}\}$, $a\{\tilde{a}\}$, $ac\tilde{Act}, \dots$
- q is a part of p , $q \leq_f p$ obvious.

3.2.4 Example 3.2.1 continued

Coffee & Tea Dispenser Inc.:

- “Only implementations correct according to \leq_f are acceptable”
- “obviously $M_2 \not\leq_f M_1$ ”, therefore not acceptable

Right? Wrong!

3.2.4 Example 3.2.1 continued

Coffee & Tea Dispenser Inc.:

- “Only implementations correct according to \leq_f are acceptable”
- “obviously $M_2 \not\leq_f M_1$ ”, therefore not acceptable

Right? Wrong!

3.2.4 Example 3.2.1 continued

Coffee & Tea Dispenser Inc.:

- “Only implementations correct according to \leq_f are acceptable”
- “obviously $M_2 \not\leq_f M_1$ ”, therefore not acceptable

Right? Wrong!

3.2.4 Example 3.2.1 continued

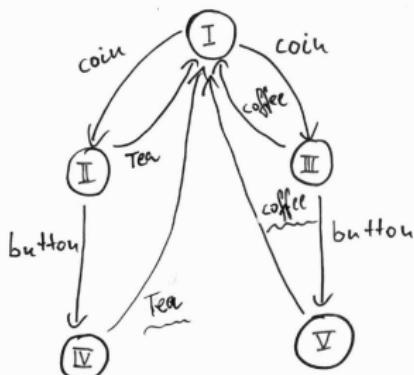
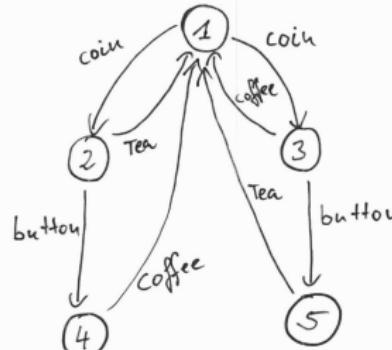
Coffee & Tea Dispenser Inc.:

- “Only implementations correct according to \leq_f are acceptable”
- “obviously $M_2 \not\leq_f M_1$ ”, therefore not acceptable

Right? Wrong!

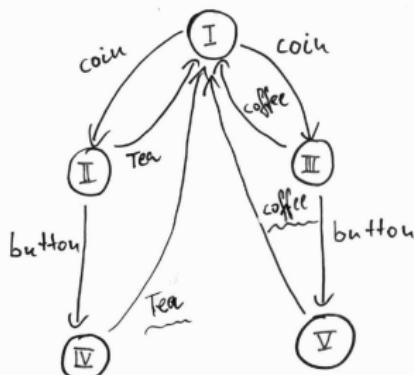
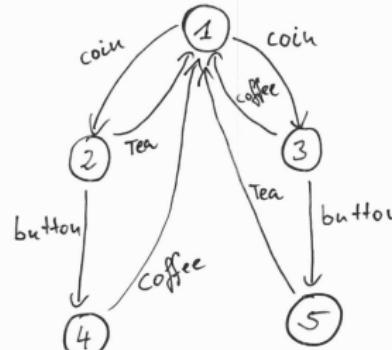
3.2.4 Example 3.2.1 continued

$$M_2 \leq_f M_1$$

$$M_2$$

$$M_1$$
Failure pairs of M_2
$$\text{COIN} \cdot \overbrace{\{\text{COIN}, \text{COFFEE}\}}$$

3.2.4 Example 3.2.1 continued

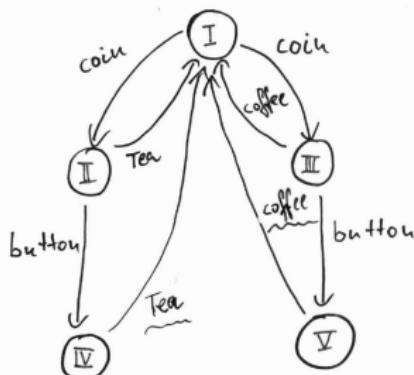
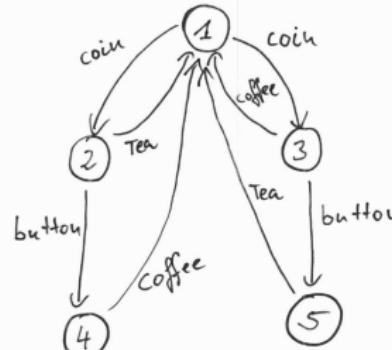
$$M_2 \leq_f M_1$$

$$M_2$$

$$M_1$$
Failure pairs of M_2

$$\text{COIN} \cdot \text{BUTTON} \cdot \overbrace{\{\text{COIN}, \text{COFFEE}\}}$$

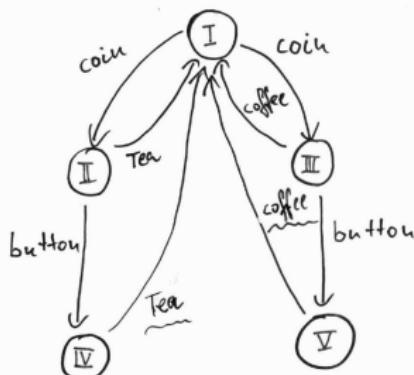
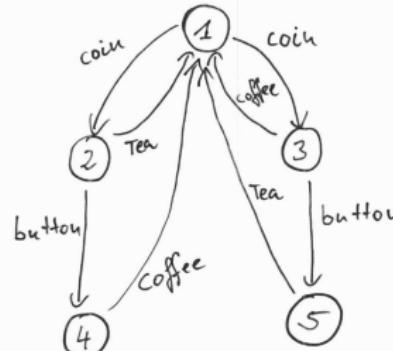
3.2.4 Example 3.2.1 continued

$$M_2 \leq_f M_1$$

$$M_2$$

$$M_1$$
Failure pairs of M_2
$$\overbrace{\text{COIN} \cdot \{\text{COIN, TEA}\}}$$

3.2.4 Example 3.2.1 continued

$$M_2 \leq_f M_1$$

$$M_2$$

$$M_1$$
Failure pairs of M_2
$$\text{COIN} \cdot \text{BUTTON} \cdot \{\text{COIN, TEA}\}$$

3.2.4 Example 3.2.1 continued

- not only refusal sets of **reached states** important
- also what states with which refusals **passed**
- seems to be important **to record** also the refusals of intermediate states.

⇒ failure traces

3.2.4 Example 3.2.1 continued

- not only refusal sets of **reached states** important
- also what states with which refusals **passed**
- seems to be important **to record** also the refusals of intermediate states.

⇒ failure traces

3.2.4 Example 3.2.1 continued

- not only refusal sets of **reached states** important
- also what states with which refusals **passed**
- seems to be important **to record** also the refusals of **intermediate states**.

⇒ failure traces

3.2.4 Example 3.2.1 continued

- not only refusal sets of **reached states** important
- also what states with which refusals **passed**
- seems to be important **to record** also the refusals of **intermediate states**.

⇒ failure traces

Failure traces and failure trace preorder

Definition

- 1 Failure traces are the elements of Act_{ft}^* .
- 2 Set of failure traces of $p \in \mathbb{P}$:
 - $\varepsilon \in ftraces(p)$;
 - $a \in ftraces(p)$, if $p \xrightarrow{a}$;
 - $\tilde{X} \in ftraces(p)$, if $p \not\xrightarrow{a}$ for all $a \in X$;
 - $a \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $a \in Act$, if
 $p \xrightarrow{a} p'$ and $\sigma \in ftraces(p')$;
 - $\tilde{X} \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $\tilde{X} \in R(Act)$, if
 $\tilde{X} \in ftraces(p)$ and $\sigma \in ftraces(p)$.
- 3 The failure trace preorder $\leq_{ft} \subseteq \mathbb{P} \times \mathbb{P}$ is defined as
$$p \leq_{ft} q \text{ iff } ftraces(p) \subseteq ftraces(q).$$

Failure traces and failure trace preorder

Definition

- 1 Failure traces are the elements of Act_{ft}^* .
- 2 Set of failure traces of $p \in \mathbb{P}$:
 - $\varepsilon \in ftraces(p)$;
 - $a \in ftraces(p)$, if $p \xrightarrow{a}$;
 - $\tilde{X} \in ftraces(p)$, if $p \not\xrightarrow{a}$ for all $a \in X$;
 - $a \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $a \in Act$, if
 $p \xrightarrow{a} p'$ and $\sigma \in ftraces(p')$;
 - $\tilde{X} \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $\tilde{X} \in R(Act)$, if
 $\tilde{X} \in ftraces(p)$ and $\sigma \in ftraces(p)$.
- 3 The failure trace preorder $\leq_{ft} \subseteq \mathbb{P} \times \mathbb{P}$ is defined as
$$p \leq_{ft} q \text{ iff } ftraces(p) \subseteq ftraces(q).$$

Failure traces and failure trace preorder

Definition

- 1 Failure traces are the elements of Act_{ft}^* .
- 2 Set of failure traces of $p \in \mathbb{P}$:
 - $\varepsilon \in ftraces(p)$;
 - $a \in ftraces(p)$, if $p \xrightarrow{a}$;
 - $\tilde{X} \in ftraces(p)$, if $p \not\xrightarrow{a}$ for all $a \in X$;
 - $a \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $a \in Act$, if
 $p \xrightarrow{a} p'$ and $\sigma \in ftraces(p')$;
 - $\tilde{X} \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $\tilde{X} \in R(Act)$, if
 $\tilde{X} \in ftraces(p)$ and $\sigma \in ftraces(p)$.
- 3 The failure trace preorder $\leq_{ft} \subseteq \mathbb{P} \times \mathbb{P}$ is defined as
$$p \leq_{ft} q \text{ iff } ftraces(p) \subseteq ftraces(q).$$

Failure traces and failure trace preorder

Definition

- 1 Failure traces are the elements of Act_{ft}^* .
- 2 Set of failure traces of $p \in \mathbb{P}$:
 - $\varepsilon \in ftraces(p)$;
 - $a \in ftraces(p)$, if $p \xrightarrow{a}$;
 - $\tilde{X} \in ftraces(p)$, if $p \not\xrightarrow{a}$ for all $a \in X$;
 - $a \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $a \in Act$, if
 $p \xrightarrow{a} p'$ and $\sigma \in ftraces(p')$;
 - $\tilde{X} \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $\tilde{X} \in R(Act)$, if
 $\tilde{X} \in ftraces(p)$ and $\sigma \in ftraces(p)$.
- 3 The failure trace preorder $\leq_{ft} \subseteq \mathbb{P} \times \mathbb{P}$ is defined as
$$p \leq_{ft} q \text{ iff } ftraces(p) \subseteq ftraces(q).$$

Failure traces and failure trace preorder

Definition

- 1 Failure traces are the elements of Act_{ft}^* .
- 2 Set of failure traces of $p \in \mathbb{P}$:
 - $\varepsilon \in ftraces(p)$;
 - $a \in ftraces(p)$, if $p \xrightarrow{a}$;
 - $\tilde{X} \in ftraces(p)$, if $p \not\xrightarrow{a}$ for all $a \in X$;
 - $a \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $a \in Act$, if
 $p \xrightarrow{a} p'$ and $\sigma \in ftraces(p')$;
 - $\tilde{X} \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $\tilde{X} \in R(Act)$, if
 $\tilde{X} \in ftraces(p)$ and $\sigma \in ftraces(p)$.
- 3 The failure trace preorder $\leq_{ft} \subseteq \mathbb{P} \times \mathbb{P}$ is defined as
$$p \leq_{ft} q \text{ iff } ftraces(p) \subseteq ftraces(q).$$

Failure traces and failure trace preorder

Definition

- 1 Failure traces are the elements of Act_{ft}^* .
- 2 Set of failure traces of $p \in \mathbb{P}$:
 - $\varepsilon \in ftraces(p)$;
 - $a \in ftraces(p)$, if $p \xrightarrow{a}$;
 - $\tilde{X} \in ftraces(p)$, if $p \not\xrightarrow{a}$ for all $a \in X$;
 - $a \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $a \in Act$, if
 $p \xrightarrow{a} p'$ and $\sigma \in ftraces(p')$;
 - $\tilde{X} \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $\tilde{X} \in R(Act)$, if
 $\tilde{X} \in ftraces(p)$ and $\sigma \in ftraces(p)$.
- 3 The failure trace preorder $\leq_{ft} \subseteq \mathbb{P} \times \mathbb{P}$ is defined as
$$p \leq_{ft} q \text{ iff } ftraces(p) \subseteq ftraces(q).$$

Failure traces and failure trace preorder

Definition

- 1 Failure traces are the elements of Act_{ft}^* .
- 2 Set of failure traces of $p \in \mathbb{P}$:
 - $\varepsilon \in ftraces(p)$;
 - $a \in ftraces(p)$, if $p \xrightarrow{a}$;
 - $\tilde{X} \in ftraces(p)$, if $p \not\xrightarrow{a}$ for all $a \in X$;
 - $a \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $a \in Act$, if
 $p \xrightarrow{a} p'$ and $\sigma \in ftraces(p')$;
 - $\tilde{X} \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $\tilde{X} \in R(Act)$, if
 $\tilde{X} \in ftraces(p)$ and $\sigma \in ftraces(p)$.
- 3 The failure trace preorder $\leq_{ft} \subseteq \mathbb{P} \times \mathbb{P}$ is defined as
$$p \leq_{ft} q \text{ iff } ftraces(p) \subseteq ftraces(q).$$

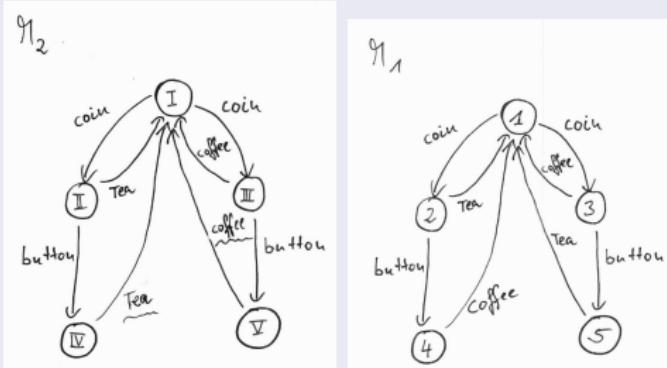
Failure traces and failure trace preorder

Definition

- 1 Failure traces are the elements of Act_{ft}^* .
- 2 Set of failure traces of $p \in \mathbb{P}$:
 - $\varepsilon \in ftraces(p)$;
 - $a \in ftraces(p)$, if $p \xrightarrow{a}$;
 - $\tilde{X} \in ftraces(p)$, if $p \not\xrightarrow{a}$ for all $a \in X$;
 - $a \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $a \in Act$, if
 $p \xrightarrow{a} p'$ and $\sigma \in ftraces(p')$;
 - $\tilde{X} \cdot \sigma \in ftraces(p)$ for $\sigma \in Act_{ft}^*$, $\tilde{X} \in R(Act)$, if
 $\tilde{X} \in ftraces(p)$ and $\sigma \in ftraces(p)$.
- 3 The failure trace preorder $\leq_{ft} \subseteq \mathbb{P} \times \mathbb{P}$ is defined as
$$p \leq_{ft} q \text{ iff } ftraces(p) \subseteq ftraces(q).$$

Failure traces and failure trace preorder

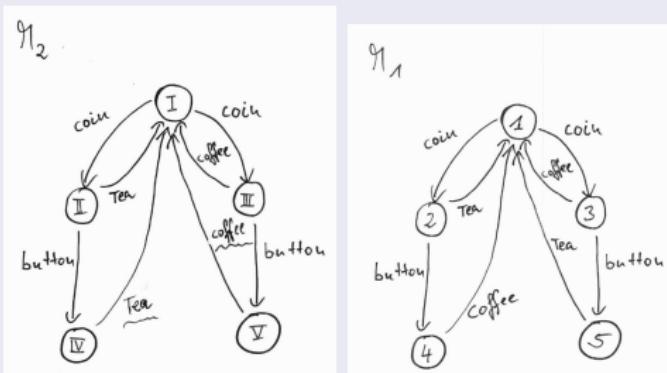
3.2.6 Example, 3.2.1 continued (2)



M_2 is not an implementation of M_1 according to \leq_{ft} !

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

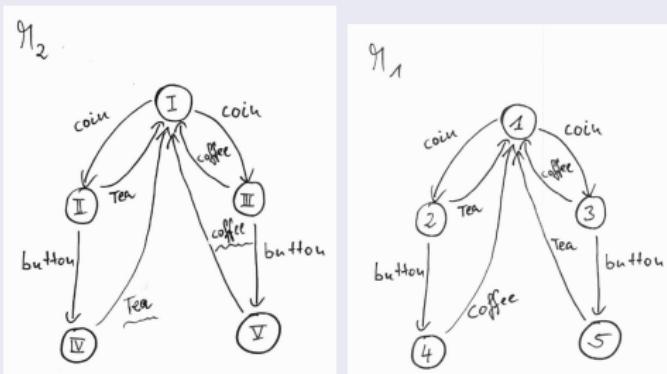


- $\sigma = \text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}\{\text{TEA}, \text{COIN}\} \in ftraces(1)$
- σ not an element of $ftraces(1)$:

- 1 $\xrightarrow{\text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}}$ 4
- 1 $\xrightarrow{\text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}}$ IV
- $\{\text{TEA}, \text{COIN}\} \in ftraces(4)$
- $\{\text{TEA}, \text{COIN}\} \notin ftraces(IV)$

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

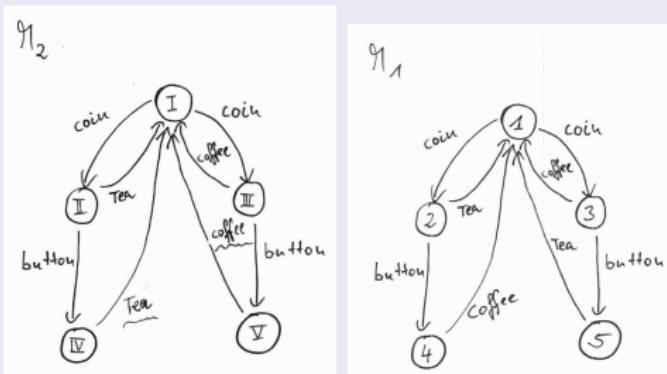


- $\sigma = \text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}\{\text{TEA}, \text{COIN}\} \in ftraces(1)$
- σ not an element of $ftraces(I)$:

- 1 $\xrightarrow{\text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}} 4$
- 1 $\xrightarrow{\text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}} IV$
- $\{\text{TEA}, \text{COIN}\} \in ftraces(4)$
- $\{\text{TEA}, \text{COIN}\} \notin ftraces(IV)$

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

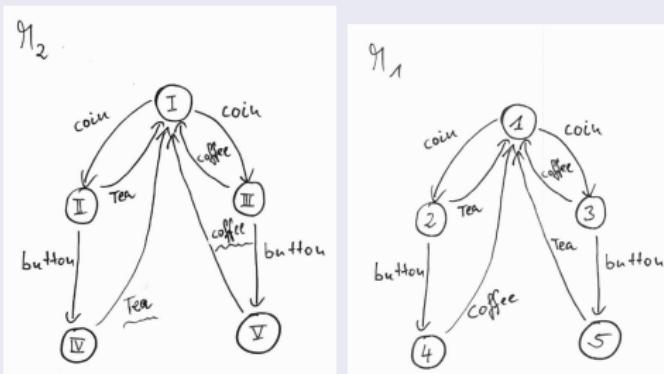


- $\sigma = \text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}\{\text{TEA}, \text{COIN}\} \in \text{ftraces}(1)$
- σ not an element of $\text{ftraces}(I)$:

- 1 $\xrightarrow{\text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}} 4$
- 1 $\xrightarrow{\text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}} IV$
- $\{\text{TEA}, \text{COIN}\} \in \text{ftraces}(4)$
- $\{\text{TEA}, \text{COIN}\} \notin \text{ftraces}(IV)$

Failure traces and failure trace preorder

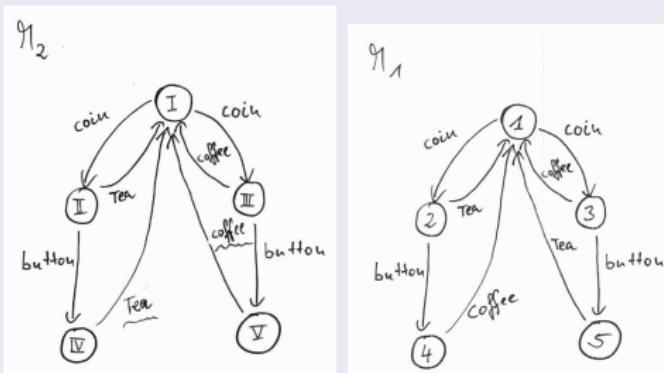
3.2.6 Example, 3.2.1 continued (2)



- $\sigma = \text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}\{\text{TEA}, \text{COIN}\} \in ftraces(1)$
- σ not an element of $ftraces(I)$:
 - 1 $\xrightarrow{\text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}} 4$
 - I $\xrightarrow{\text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}} IV$
 - $\{\text{TEA}, \text{COIN}\} \in ftraces(4)$
 - $\{\text{TEA}, \text{COIN}\} \notin ftraces(IV)$

Failure traces and failure trace preorder

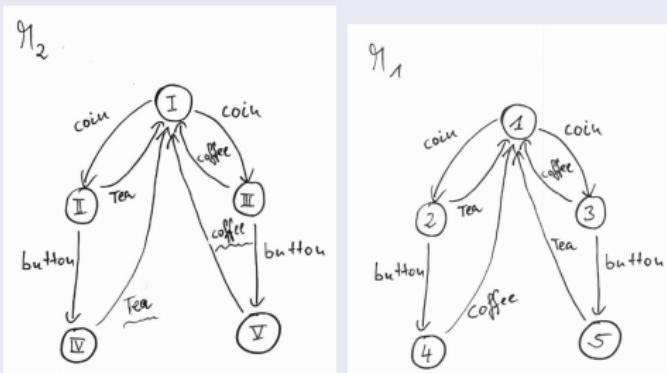
3.2.6 Example, 3.2.1 continued (2)



- $\sigma = \text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}\{\text{TEA}, \text{COIN}\} \in \text{ftraces}(1)$
- σ not an element of $\text{ftraces}(I)$:
 - 1 $\xrightarrow{\text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}} 4$
 - 1 $\xrightarrow{\text{COIN}\{\text{COFFEE}, \text{COIN}\} \text{BUTTON}} IV$
 - $\{\text{TEA}, \text{COIN}\} \in \text{ftraces}(4)$
 - $\{\text{TEA}, \text{COIN}\} \notin \text{ftraces}(IV)$

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)



- $\sigma = \overbrace{\text{COIN}\{\text{COFFEE}, \text{COIN}\}} \text{BUTTON}\{\overbrace{\text{TEA}, \text{COIN}}\} \in ftraces(1)$
- σ not an element of $ftraces(I)$:
 - 1 $\xrightarrow{\text{COIN}\{\text{COFFEE}, \text{COIN}\}} \text{BUTTON} \rightarrow 4$
 - I $\xrightarrow{\text{COIN}\{\text{COFFEE}, \text{COIN}\}} \text{BUTTON} \rightarrow IV$
 - $\{\text{TEA}, \text{COIN}\} \in ftraces(4)$
 - $\{\text{TEA}, \text{COIN}\} \notin ftraces(IV)$

Comparing the Implementation relations

3.2.7 Proposition

$$\leq_{ft} \preceq \leq_f \preceq \leq_{tr}$$

Proof: \implies Blackboard

Completed trace preorder

3.2.8 Definition \leq_{ct}

For $p, q \in \mathbb{IP}$, the completed trace preorder $\leq_{ct} \subseteq \mathbb{IP} \times \mathbb{IP}$ is defined as

$p \leq_{ct} q$ iff

$$\text{traces}(p) \subseteq \text{traces}(q)$$

and

$$F(p) \cap \text{Act}^* \cdot \widetilde{\text{Act}} \subseteq F(q) \cap \text{Act}^* \cdot \widetilde{\text{Act}}$$

Note

- If $\widetilde{\text{Act}} \in F(p)$, then p is deadlocked.
- If $\sigma \cdot \widetilde{\text{Act}} \in F(p)$, then σ is called a completed trace of p .
- Apparently, $\leq_f \preceq \leq_{ct} \preceq \leq_{tr}$.
- \leq_{ct} is finer than \leq_{tr} .

Completed trace preorder

3.2.8 Definition \leq_{ct}

For $p, q \in \mathbb{IP}$, the completed trace preorder $\leq_{ct} \subseteq \mathbb{IP} \times \mathbb{IP}$ is defined as

$p \leq_{ct} q$ iff

$$\text{traces}(p) \subseteq \text{traces}(q)$$

and

$$F(p) \cap \text{Act}^* \cdot \widetilde{\text{Act}} \subseteq F(q) \cap \text{Act}^* \cdot \widetilde{\text{Act}}$$

Note

- If $\widetilde{\text{Act}} \in F(p)$, then p is deadlocked.
- If $\sigma \cdot \widetilde{\text{Act}} \in F(p)$, then σ is called a completed trace of p .
- Apparently, $\leq_f \preceq \leq_{ct} \preceq \leq_{tr}$.
- \leq_{ct} is finer than \leq_{tr} .

Completed trace preorder

3.2.8 Definition \leq_{ct}

For $p, q \in \mathbb{IP}$, the completed trace preorder $\leq_{ct} \subseteq \mathbb{IP} \times \mathbb{IP}$ is defined as

$p \leq_{ct} q$ iff

$$\text{traces}(p) \subseteq \text{traces}(q)$$

and

$$F(p) \cap \text{Act}^* \cdot \widetilde{\text{Act}} \subseteq F(q) \cap \text{Act}^* \cdot \widetilde{\text{Act}}$$

Note

- If $\widetilde{\text{Act}} \in F(p)$, then p is deadlocked.
- If $\sigma \cdot \widetilde{\text{Act}} \in F(p)$, then σ is called a completed trace of p .
- Apparently, $\leq_f \preceq \leq_{ct} \preceq \leq_{tr}$.
- \leq_{ct} is finer than \leq_{tr} .

Completed trace preorder

3.2.8 Definition \leq_{ct}

For $p, q \in \mathbb{IP}$, the completed trace preorder $\leq_{ct} \subseteq \mathbb{IP} \times \mathbb{IP}$ is defined as

$p \leq_{ct} q$ iff

$$\text{traces}(p) \subseteq \text{traces}(q)$$

and

$$F(p) \cap \text{Act}^* \cdot \widetilde{\text{Act}} \subseteq F(q) \cap \text{Act}^* \cdot \widetilde{\text{Act}}$$

Note

- If $\widetilde{\text{Act}} \in F(p)$, then p is **deadlocked**.
- If $\sigma \cdot \widetilde{\text{Act}} \in F(p)$, then σ is called a **completed trace** of p .
- Apparently, $\leq_f \preceq \leq_{ct} \preceq \leq_{tr}$.
- \leq_{ct} is finer than \leq_{tr} .

Completed trace preorder

3.2.8 Definition \leq_{ct}

For $p, q \in \mathbb{IP}$, the completed trace preorder $\leq_{ct} \subseteq \mathbb{IP} \times \mathbb{IP}$ is defined as

$p \leq_{ct} q$ iff

$$\text{traces}(p) \subseteq \text{traces}(q)$$

and

$$F(p) \cap \text{Act}^* \cdot \widetilde{\text{Act}} \subseteq F(q) \cap \text{Act}^* \cdot \widetilde{\text{Act}}$$

Note

- If $\widetilde{\text{Act}} \in F(p)$, then p is deadlocked.
- If $\sigma \cdot \widetilde{\text{Act}} \in F(p)$, then σ is called a completed trace of p .
- Apparently, $\leq_f \preceq \leq_{ct} \preceq \leq_{tr}$.
- \leq_{ct} is finer than \leq_{tr} .

Completed trace preorder

3.2.8 Definition \leq_{ct}

For $p, q \in \mathbb{IP}$, the completed trace preorder $\leq_{ct} \subseteq \mathbb{IP} \times \mathbb{IP}$ is defined as

$p \leq_{ct} q$ iff

$$\text{traces}(p) \subseteq \text{traces}(q)$$

and

$$F(p) \cap \text{Act}^* \cdot \widetilde{\text{Act}} \subseteq F(q) \cap \text{Act}^* \cdot \widetilde{\text{Act}}$$

Note

- If $\widetilde{\text{Act}} \in F(p)$, then p is deadlocked.
- If $\sigma \cdot \widetilde{\text{Act}} \in F(p)$, then σ is called a completed trace of p .
- Apparently, $\leq_f \preceq \leq_{ct} \preceq \leq_{tr}$.
- \leq_{ct} is finer than \leq_{tr} .

Completed trace preorder

3.2.8 Definition \leq_{ct}

For $p, q \in \mathbb{IP}$, the completed trace preorder $\leq_{ct} \subseteq \mathbb{IP} \times \mathbb{IP}$ is defined as

$p \leq_{ct} q$ iff

$$\text{traces}(p) \subseteq \text{traces}(q)$$

and

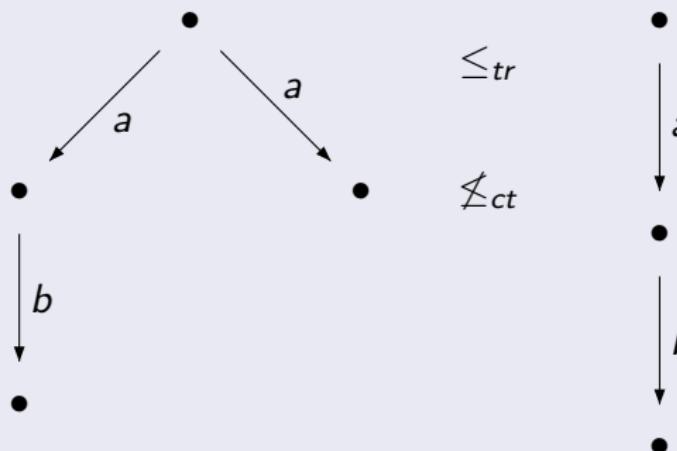
$$F(p) \cap \text{Act}^* \cdot \widetilde{\text{Act}} \subseteq F(q) \cap \text{Act}^* \cdot \widetilde{\text{Act}}$$

Note

- If $\widetilde{\text{Act}} \in F(p)$, then p is deadlocked.
- If $\sigma \cdot \widetilde{\text{Act}} \in F(p)$, then σ is called a completed trace of p .
- Apparently, $\leq_f \preceq \leq_{ct} \preceq \leq_{tr}$.
- \leq_{ct} is finer than \leq_{tr} .

\leq_{ct} is finer than \leq_{tr}

Example



1 Some more Implementation Relations

2 Failure Trace Preorder and Observers

Test Expressions for \leq_{ft}

Refusals become part of test expressions

Test Expressions \mathcal{O}_{ft}

$$o \longrightarrow a.o \mid t.\text{STOP} \mid \tilde{X}.o$$

with $a \in \text{Act}$, and $\tilde{X} \in R(\text{Act})$.

Test Expressions for \leq_{ft}

Refusals become part of test expressions

Test Expressions \mathcal{O}_{ft}

$$o \longrightarrow a.o \mid t.\text{STOP} \mid \tilde{X}.o$$

with $a \in \text{Act}$, and $\tilde{X} \in R(\text{Act})$.

Test Expressions for \leq_{ft}

Refusals become part of test expressions

Test Expressions \mathcal{O}_{ft}

$$o \longrightarrow a.o \mid t.\text{STOP} \mid \tilde{X}.o$$

with $a \in Act$, and $\tilde{X} \in R(Act)$.

Test Execution

Test Execution for \leq_{ft}

$$\frac{}{a.o \xrightarrow{a} o} (a \in Act_{ft}) \quad \frac{o \xrightarrow{a} o' \quad p \xrightarrow{a} p'}{o \mathbb{T} p \xrightarrow{a} o' \mathbb{T} p'} (a \in Act) \quad \frac{o \xrightarrow{t} o'}{o \mathbb{T} p \xrightarrow{t} \text{PASS}}$$

$$\frac{o \xrightarrow{\tilde{X}} o' \quad p \not\xrightarrow{a} \forall a \in X}{o \mathbb{T} p \xrightarrow{\tilde{X}} o' \mathbb{T} p}$$

$$\text{obs}_{ft}(p) = \{ o \in \mathcal{O}_{ft} \mid \exists \sigma \in Act_{ft}^* : o \mathbb{T} p \xrightarrow{\sigma \cdot t} \text{PASS} \}$$

Test Execution

Test Execution for \leq_{ft}

$$\frac{}{a.o \xrightarrow{a} o} (a \in Act_{ft}) \quad \frac{o \xrightarrow{a} o' \quad p \xrightarrow{a} p'}{o \mathbb{T} p \xrightarrow{a} o' \mathbb{T} p'} (a \in Act) \quad \frac{o \xrightarrow{t} o'}{o \mathbb{T} p \xrightarrow{t} \text{PASS}}$$

$$\frac{o \xrightarrow{\tilde{X}} o' \quad p \not\xrightarrow{a} \forall a \in X}{o \mathbb{T} p \xrightarrow{\tilde{X}} o' \mathbb{T} p}$$

$$\text{obs}_{ft}(p) = \{ o \in \mathcal{O}_{ft} \mid \exists \sigma \in Act_{ft}^*: o \mathbb{T} p \xrightarrow{\sigma \cdot t} \text{PASS} \}$$

Test Execution

Test Execution for \leq_{ft}

$$\frac{}{a.o \xrightarrow{a} o} (a \in Act_{ft}) \quad \frac{o \xrightarrow{a} o' \quad p \xrightarrow{a} p'}{o \mathbb{T} p \xrightarrow{a} o' \mathbb{T} p'} (a \in Act) \quad \frac{o \xrightarrow{t} o'}{o \mathbb{T} p \xrightarrow{t} \text{PASS}}$$

$$\frac{o \xrightarrow{\tilde{X}} o' \quad p \not\xrightarrow{a} \forall a \in X}{o \mathbb{T} p \xrightarrow{\tilde{X}} o' \mathbb{T} p}$$

$$\text{obs}_{ft}(p) = \{ o \in \mathcal{O}_{ft} \mid \exists \sigma \in Act_{ft}^* : o \mathbb{T} p \xrightarrow{\sigma \cdot t} \text{PASS} \}$$

Observing Failure Trace Preorder

3.2.10 Lemma

$p \leq_{ft} q$ iff $\text{obs}_{ft}(p) \subseteq \text{obs}_{ft}(q)$

Proof: blackboard