
Implementation Relations Observing ≤ft

Testing of Reactive Systems

Lecture 5: Some more Implementation Relations

Henrik Bohnenkamp

Lehrstuhl Informatik 2 (MOVES)
RWTH Aachen

Summer Semester 2009

1 / 25

Implementation Relations Observing ≤ft

What happened so far?

Bisimulation

Comparison of preorders/equivalences (finer/coarser)

Linear-Time/Branching-Time spectrum

Effect of nondeterminism on the LTBT spectrum

Observing and Manipulating Processes: The Generative
Machine

· · ·

a b z

c

replicate

active

action

free

blocked

free

blocked

free

blocked

2 / 25

Implementation Relations Observing ≤ft

What is coming?

We will

formalise notion of (primitive) observation

introduce so-called observers

observers will be special processes: test expressions

observers will manipulate and observe, i.e.: test

characterise a few simple preorders by observers

establish order in LTBT spectrum

3 / 25

Implementation Relations Observing ≤ft

What is coming?

We will

formalise notion of (primitive) observation

introduce so-called observers

observers will be special processes: test expressions

observers will manipulate and observe, i.e.: test

characterise a few simple preorders by observers

establish order in LTBT spectrum

3 / 25

Implementation Relations Observing ≤ft

What is coming?

We will

formalise notion of (primitive) observation

introduce so-called observers

observers will be special processes: test expressions

observers will manipulate and observe, i.e.: test

characterise a few simple preorders by observers

establish order in LTBT spectrum

3 / 25

Implementation Relations Observing ≤ft

What is coming?

We will

formalise notion of (primitive) observation

introduce so-called observers

observers will be special processes: test expressions

observers will manipulate and observe, i.e.: test

characterise a few simple preorders by observers

establish order in LTBT spectrum

3 / 25

Implementation Relations Observing ≤ft

What is coming?

We will

formalise notion of (primitive) observation

introduce so-called observers

observers will be special processes: test expressions

observers will manipulate and observe, i.e.: test

characterise a few simple preorders by observers

establish order in LTBT spectrum

3 / 25

Implementation Relations Observing ≤ft

What is coming?

We will

formalise notion of (primitive) observation

introduce so-called observers

observers will be special processes: test expressions

observers will manipulate and observe, i.e.: test

characterise a few simple preorders by observers

establish order in LTBT spectrum

3 / 25

Implementation Relations Observing ≤ft

1 Some more Implementation Relations

2 Failure Trace Preorder and Observers

4 / 25

Implementation Relations Observing ≤ft

We assume (again): no τ -steps

5 / 25

Implementation Relations Observing ≤ft

Trace preorder

Otr

Let Otr be the set of test expressions defined by the following
grammar:

o −→ a.o | t.STOP,

where a ∈ Act , and t 6∈ Act is a special action which denotes the
end of the observation.

Example

For Act = {a, b, c}, the following are typical test expressions:

t.STOP, a.c .a.b.t.STOP, etc.

Convention

We write t.STOP just as t

We write Act tr = Act ∪ {t}.

6 / 25

Implementation Relations Observing ≤ft

Trace preorder

Otr

Let Otr be the set of test expressions defined by the following
grammar:

o −→ a.o | t.STOP,

where a ∈ Act , and t 6∈ Act is a special action which denotes the
end of the observation.

Example

For Act = {a, b, c}, the following are typical test expressions:

t.STOP, a.c .a.b.t.STOP, etc.

Convention

We write t.STOP just as t

We write Act tr = Act ∪ {t}.

6 / 25

Implementation Relations Observing ≤ft

Trace preorder

Otr

Let Otr be the set of test expressions defined by the following
grammar:

o −→ a.o | t.STOP,

where a ∈ Act , and t 6∈ Act is a special action which denotes the
end of the observation.

Example

For Act = {a, b, c}, the following are typical test expressions:

t.STOP, a.c .a.b.t.STOP, etc.

Convention

We write t.STOP just as t

We write Act tr = Act ∪ {t}.

6 / 25

Implementation Relations Observing ≤ft

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p′ processes. Test execution is
described by the test-operator

�

, whose behaviour is defined by
the following rules:

a.o a→ o
(a ∈ Act tr)

o a→ o′ p a→ p′

o

�

p a→ o′

�

p′
(a ∈ Act)

o t→ o′

o

�

p t→ pass

Observations of o and p:

obstr (o, p) := {σ | o

�

p σ→ pass}

All observations for p:

obstr (p) =
⋃

obstr (o, p). 7 / 25

Implementation Relations Observing ≤ft

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p′ processes. Test execution is
described by the test-operator

�

, whose behaviour is defined by
the following rules:

a.o a→ o
(a ∈ Act tr)

o a→ o′ p a→ p′

o

�

p a→ o′

�

p′
(a ∈ Act)

o t→ o′

o

�

p t→ pass

Observations of o and p:

obstr (o, p) := {σ | o

�

p σ→ pass}

All observations for p:

obstr (p) =
⋃

obstr (o, p). 7 / 25

Implementation Relations Observing ≤ft

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p′ processes. Test execution is
described by the test-operator

�

, whose behaviour is defined by
the following rules:

a.o a→ o
(a ∈ Act tr)

o a→ o′ p a→ p′

o

�

p a→ o′

�

p′
(a ∈ Act)

o t→ o′

o

�

p t→ pass

Observations of o and p:

obstr (o, p) := {σ | o

�

p σ→ pass}

All observations for p:

obstr (p) =
⋃

obstr (o, p). 7 / 25

Implementation Relations Observing ≤ft

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p′ processes. Test execution is
described by the test-operator

�

, whose behaviour is defined by
the following rules:

a.o a→ o
(a ∈ Act tr)

o a→ o′ p a→ p′

o

�

p a→ o′

�

p′
(a ∈ Act)

o t→ o′

o

�

p t→ pass

Observations of o and p:

obstr (o, p) := {σ | o

�

p σ→ pass}

All observations for p:

obstr (p) =
⋃

obstr (o, p). 7 / 25

Implementation Relations Observing ≤ft

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p′ processes. Test execution is
described by the test-operator

�

, whose behaviour is defined by
the following rules:

a.o a→ o
(a ∈ Act tr)

o a→ o′ p a→ p′

o

�

p a→ o′

�

p′
(a ∈ Act)

o t→ o′

o

�

p t→ pass

Observations of o and p:

obstr (o, p) := {σ | o

�

p σ→ pass}

All observations for p:

obstr (p) =
⋃

obstr (o, p). 7 / 25

Implementation Relations Observing ≤ft

Test Execution

Definition 3.1.2: Test execution

Let o be a test-expression and p, p′ processes. Test execution is
described by the test-operator

�

, whose behaviour is defined by
the following rules:

a.o a→ o
(a ∈ Act tr)

o a→ o′ p a→ p′

o

�

p a→ o′

�

p′
(a ∈ Act)

o t→ o′

o

�

p t→ pass

Observations of o and p:

obstr (o, p) := {σ | o

�

p σ→ pass}

All observations for p:

obstr (p) =
⋃

obstr (o, p). 7 / 25

Implementation Relations Observing ≤ft

Test Execution

Example 3.1.3

Let P =̂ b.c .Q + a.b.Q + b.Q and Q =̂ c .P and o = b.c .c .t.

P

Q

• •

a

b

b

c

bc

b.c .c .t

�

P b→ c .c .t
�

c .Q c→ c .t

�

Q c→ t

�

P t→ pass,

but also
b.c .c .t

�
P b→ c .c .t

�

Q c→ c .t

�

P 6→ .

Observations: obstr (o,P) = {bcct}.
8 / 25

Implementation Relations Observing ≤ft

Test Execution

Example 3.1.3

Let P =̂ b.c .Q + a.b.Q + b.Q and Q =̂ c .P and o = b.c .c .t.

P

Q

• •

a

b

b

c

bc

b.c .c .t

�

P b→ c .c .t
�

c .Q c→ c .t

�

Q c→ t

�

P t→ pass,

but also
b.c .c .t

�
P b→ c .c .t

�

Q c→ c .t

�

P 6→ .

Observations: obstr (o,P) = {bcct}.
8 / 25

Implementation Relations Observing ≤ft

Test Execution

Example 3.1.3

Let P =̂ b.c .Q + a.b.Q + b.Q and Q =̂ c .P and o = b.c .c .t.

P

Q

• •

a

b

b

c

bc

b.c .c .t

�

P b→ c .c .t
�

c .Q c→ c .t

�

Q c→ t

�

P t→ pass,

but also
b.c .c .t

�
P b→ c .c .t

�

Q c→ c .t

�

P 6→ .

Observations: obstr (o,P) = {bcct}.
8 / 25

Implementation Relations Observing ≤ft

Test Execution

Example 3.1.3

Let P =̂ b.c .Q + a.b.Q + b.Q and Q =̂ c .P and o = b.c .c .t.

P

Q

• •

a

b

b

c

bc

b.c .c .t

�

P b→ c .c .t
�

c .Q c→ c .t

�

Q c→ t

�

P t→ pass,

but also
b.c .c .t

�
P b→ c .c .t

�

Q c→ c .t

�

P 6→ .

Observations: obstr (o,P) = {bcct}.
8 / 25

Implementation Relations Observing ≤ft

Test Execution

Example 3.1.3

Let P =̂ b.c .Q + a.b.Q + b.Q and Q =̂ c .P and o = b.c .c .t.

P

Q

• •

a

b

b

c

bc

b.c .c .t

�

P b→ c .c .t
�

c .Q c→ c .t

�

Q c→ t

�

P t→ pass,

but also
b.c .c .t

�
P b→ c .c .t

�

Q c→ c .t

�

P 6→ .

Observations: obstr (o,P) = {bcct}.
8 / 25

Implementation Relations Observing ≤ft

Test Execution

Example 3.1.3

Let P =̂ b.c .Q + a.b.Q + b.Q and Q =̂ c .P and o = b.c .c .t.

P

Q

• •

a

b

b

c

bc

b.c .c .t

�

P b→ c .c .t
�

c .Q c→ c .t

�

Q c→ t

�

P t→ pass,

but also
b.c .c .t

�
P b→ c .c .t

�

Q c→ c .t

�

P 6→ .

Observations: obstr (o,P) = {bcct}.
8 / 25

Implementation Relations Observing ≤ft

Test Execution

Example 3.1.3

Let P =̂ b.c .Q + a.b.Q + b.Q and Q =̂ c .P and o = b.c .c .t.

P

Q

• •

a

b

b

c

bc

b.c .c .t

�

P b→ c .c .t
�

c .Q c→ c .t

�

Q c→ t

�

P t→ pass,

but also
b.c .c .t

�
P b→ c .c .t

�

Q c→ c .t

�

P 6→ .

Observations: obstr (o,P) = {bcct}.
8 / 25

Implementation Relations Observing ≤ft

Test Execution

Example 3.1.3

Let P =̂ b.c .Q + a.b.Q + b.Q and Q =̂ c .P and o = b.c .c .t.

P

Q

• •

a

b

b

c

bc

b.c .c .t

�

P b→ c .c .t
�

c .Q c→ c .t

�

Q c→ t

�

P t→ pass,

but also
b.c .c .t

�
P b→ c .c .t

�

Q c→ c .t

�

P 6→ .

Observations: obstr (o,P) = {bcct}.
8 / 25

Implementation Relations Observing ≤ft

Test Execution

Example 3.1.3

Let P =̂ b.c .Q + a.b.Q + b.Q and Q =̂ c .P and o = b.c .c .t.

P

Q

• •

a

b

b

c

bc

b.c .c .t

�

P b→ c .c .t
�

c .Q c→ c .t

�

Q c→ t

�

P t→ pass,

but also
b.c .c .t

�
P b→ c .c .t

�

Q c→ c .t

�

P 6→ .

Observations: obstr (o,P) = {bcct}.
8 / 25

Implementation Relations Observing ≤ft

Trace preorder

Lemma 3.1.4

For p, q ∈ IP:

p ≤tr q iff obstr (p) ⊆ obstr (q)

Proof

Exercise.

Note

p ≤tr q iff ∀o ∈ Otr : obstr (o, p) ⊆ obstr (o, q).

9 / 25

Implementation Relations Observing ≤ft

Trace preorder

Lemma 3.1.4

For p, q ∈ IP:

p ≤tr q iff obstr (p) ⊆ obstr (q)

Proof

Exercise.

Note

p ≤tr q iff ∀o ∈ Otr : obstr (o, p) ⊆ obstr (o, q).

9 / 25

Implementation Relations Observing ≤ft

Trace preorder

Lemma 3.1.4

For p, q ∈ IP:

p ≤tr q iff obstr (p) ⊆ obstr (q)

Proof

Exercise.

Note

p ≤tr q iff ∀o ∈ Otr : obstr (o, p) ⊆ obstr (o, q).

9 / 25

Implementation Relations Observing ≤ft

Failures Preorder

Example 3.2.1: Crummy Tea & Coffee Inc.

Coffee & Tea Dispenser Inc. (CTD) Specification:

“Inviting offers for implemen-
tation, correct wrt. ≤tr”

10 / 25

Implementation Relations Observing ≤ft

Failures Preorder

Example 3.2.1: Crummy Tea & Coffee Inc.

Crummy Tea & Coffee Inc. offers CTD the following:

10 / 25

Implementation Relations Observing ≤ft

Failures Preorder

On first sight: M2 seems ok

I ≤tr 1
10 / 25

Implementation Relations Observing ≤ft

Failures Preorder

On first sight: M2 seems ok

But trace inclusion is not enough! button in M2 has no effect!
10 / 25

Implementation Relations Observing ≤ft

Failures Preorder

On first sight: M2 seems ok

We need a finer implementation relation.

Approach: which actions can not be performed in the states?

refusal sets

refusal sets of state 1 and I are {button,coffee,tea}

10 / 25

Implementation Relations Observing ≤ft

Failures Preorder

On first sight: M2 seems ok

We need a finer implementation relation.

Approach: which actions can not be performed in the states?

refusal sets

refusal sets of state 1 and I are {button,coffee,tea}

10 / 25

Implementation Relations Observing ≤ft

Failures Preorder

On first sight: M2 seems ok

We need a finer implementation relation.

Approach: which actions can not be performed in the states?

refusal sets

refusal sets of state 1 and I are {button,coffee,tea}

10 / 25

Implementation Relations Observing ≤ft

Failures Preorder

On first sight: M2 seems ok

We need a finer implementation relation.

Approach: which actions can not be performed in the states?

refusal sets

refusal sets of state 1 and I are {button,coffee,tea}

10 / 25

Implementation Relations Observing ≤ft

Failures preorder

Refusals, Failure pairs and Failures preorder

Refusals R(Act) = {X̃ | X ⊆ Act}

Act ft = Act ∪ R(Act).

For X̃ ∈ R(Act), X is called refusal set.

Failure pairs are traces over Act ft of the form σ · X̃ , where
σ ∈ Act ∗

The failure pairs F (p) of process p ∈ IP are defined as:

X̃ ∈ F (p), if p 6 a→ for all a ∈ X .

σ · X̃ ∈ F (p) for σ ∈ Act ∗, if p σ→ p′ and X̃ ∈ F (p′).

The failures preorder ≤f is defined as:

p ≤f q if and only if F (p) ⊆ F (q).

11 / 25

Implementation Relations Observing ≤ft

Failures preorder

Refusals, Failure pairs and Failures preorder

Refusals R(Act) = {X̃ | X ⊆ Act}

Act ft = Act ∪ R(Act).

For X̃ ∈ R(Act), X is called refusal set.

Failure pairs are traces over Act ft of the form σ · X̃ , where
σ ∈ Act ∗

The failure pairs F (p) of process p ∈ IP are defined as:

X̃ ∈ F (p), if p 6 a→ for all a ∈ X .

σ · X̃ ∈ F (p) for σ ∈ Act ∗, if p σ→ p′ and X̃ ∈ F (p′).

The failures preorder ≤f is defined as:

p ≤f q if and only if F (p) ⊆ F (q).

11 / 25

Implementation Relations Observing ≤ft

Failures preorder

Refusals, Failure pairs and Failures preorder

Refusals R(Act) = {X̃ | X ⊆ Act}

Act ft = Act ∪ R(Act).

For X̃ ∈ R(Act), X is called refusal set.

Failure pairs are traces over Act ft of the form σ · X̃ , where
σ ∈ Act ∗

The failure pairs F (p) of process p ∈ IP are defined as:

X̃ ∈ F (p), if p 6 a→ for all a ∈ X .

σ · X̃ ∈ F (p) for σ ∈ Act ∗, if p σ→ p′ and X̃ ∈ F (p′).

The failures preorder ≤f is defined as:

p ≤f q if and only if F (p) ⊆ F (q).

11 / 25

Implementation Relations Observing ≤ft

Failures preorder

Refusals, Failure pairs and Failures preorder

Refusals R(Act) = {X̃ | X ⊆ Act}

Act ft = Act ∪ R(Act).

For X̃ ∈ R(Act), X is called refusal set.

Failure pairs are traces over Act ft of the form σ · X̃ , where
σ ∈ Act ∗

The failure pairs F (p) of process p ∈ IP are defined as:

X̃ ∈ F (p), if p 6 a→ for all a ∈ X .

σ · X̃ ∈ F (p) for σ ∈ Act ∗, if p σ→ p′ and X̃ ∈ F (p′).

The failures preorder ≤f is defined as:

p ≤f q if and only if F (p) ⊆ F (q).

11 / 25

Implementation Relations Observing ≤ft

Failures preorder

Refusals, Failure pairs and Failures preorder

Refusals R(Act) = {X̃ | X ⊆ Act}

Act ft = Act ∪ R(Act).

For X̃ ∈ R(Act), X is called refusal set.

Failure pairs are traces over Act ft of the form σ · X̃ , where
σ ∈ Act ∗

The failure pairs F (p) of process p ∈ IP are defined as:

X̃ ∈ F (p), if p 6 a→ for all a ∈ X .

σ · X̃ ∈ F (p) for σ ∈ Act ∗, if p σ→ p′ and X̃ ∈ F (p′).

The failures preorder ≤f is defined as:

p ≤f q if and only if F (p) ⊆ F (q).

11 / 25

Implementation Relations Observing ≤ft

Failures preorder

Refusals, Failure pairs and Failures preorder

Refusals R(Act) = {X̃ | X ⊆ Act}

Act ft = Act ∪ R(Act).

For X̃ ∈ R(Act), X is called refusal set.

Failure pairs are traces over Act ft of the form σ · X̃ , where
σ ∈ Act ∗

The failure pairs F (p) of process p ∈ IP are defined as:

X̃ ∈ F (p), if p 6 a→ for all a ∈ X .

σ · X̃ ∈ F (p) for σ ∈ Act ∗, if p σ→ p′ and X̃ ∈ F (p′).

The failures preorder ≤f is defined as:

p ≤f q if and only if F (p) ⊆ F (q).

11 / 25

Implementation Relations Observing ≤ft

Failures preorder

Notes

Refusal X̃ : special kind of action

corresponds one-to-one to X ⊆ Act .

σ · X̃ ∈ F (p): there is a trace leading to state p′ such that
p′

refuses X .

p refuses Act : equivalent to p is deadlocked

12 / 25

Implementation Relations Observing ≤ft

Failures preorder

Notes

Refusal X̃ : special kind of action

corresponds one-to-one to X ⊆ Act .

σ · X̃ ∈ F (p): there is a trace leading to state p′ such that
p′

refuses X .

p refuses Act : equivalent to p is deadlocked

12 / 25

Implementation Relations Observing ≤ft

Failures preorder

Notes

Refusal X̃ : special kind of action

corresponds one-to-one to X ⊆ Act .

σ · X̃ ∈ F (p): there is a trace leading to state p′ such that
p′

refuses X .

p refuses Act : equivalent to p is deadlocked

12 / 25

Implementation Relations Observing ≤ft

Failures preorder

Notes

Refusal X̃ : special kind of action

corresponds one-to-one to X ⊆ Act .

σ · X̃ ∈ F (p): there is a trace leading to state p′ such that
p′

refuses X .

p refuses Act : equivalent to p is deadlocked

12 / 25

Implementation Relations Observing ≤ft

Failures preorder

Example

Let Act = {a, b, c}

p

a

b
c

a

b

q

a

b
c

≤tr

6≤f

{̃a, c}

{̃a}

{̃c}

∅̃

{̃a}, ∅̃

p ≤tr q is obvious

p 6≤f q since σ = a · {̃a, c} ∈ F (p), but not a · {̃a, c} ∈ F (q).
13 / 25

Implementation Relations Observing ≤ft

Failures preorder

Example

Let Act = {a, b, c}

p

a

b
c

a

b

q

a

b
c

≤tr

6≤f

{̃a, c}

{̃a}

{̃c}

∅̃

{̃a}, ∅̃

p ≤tr q is obvious

p 6≤f q since σ = a · {̃a, c} ∈ F (p), but not a · {̃a, c} ∈ F (q).
13 / 25

Implementation Relations Observing ≤ft

Failures preorder

Example

Let Act = {a, b, c}

p

a

b
c

a

b

q

a

b
c

≤tr

6≤f

{̃a, c}

{̃a}

{̃c}

∅̃

{̃a}, ∅̃

p ≤tr q is obvious

p 6≤f q since σ = a · {̃a, c} ∈ F (p), but not a · {̃a, c} ∈ F (q).
13 / 25

Implementation Relations Observing ≤ft

Failures preorder

Example (cont.)

q ≤f p: we annotate the states with the set of refusal sets:

p

a

b
c

a

b

q

a

b
c

≥f{̃a, c}

{̃a}

{̃c}

∅̃

{̃a}, ∅̃{̃a}, ∅̃

{̃b, c}

{̃b}

{̃c}

∅̃

{̃b, c}

{̃b}

{̃c}

∅̃

Ãct , . . . Ãct , . . .Ãct , . . . Ãct , . . . Ãct , . . .

Failure pairs of p e.g.: ∅̃, {̃b, c}, a{̃a, c}, a{̃a}, acÃct ,

q is a part of p, q ≤f p obvious. 14 / 25

Implementation Relations Observing ≤ft

3.2.4 Example 3.2.1 continued

Coffee & Tea Dispenser Inc.:

“Only implementations correct according to ≤f are
acceptable”

“obviously M2 6≤f M1”, therefore not acceptable

Right? Wrong!

15 / 25

Implementation Relations Observing ≤ft

3.2.4 Example 3.2.1 continued

Coffee & Tea Dispenser Inc.:

“Only implementations correct according to ≤f are
acceptable”

“obviously M2 6≤f M1”, therefore not acceptable

Right? Wrong!

15 / 25

Implementation Relations Observing ≤ft

3.2.4 Example 3.2.1 continued

Coffee & Tea Dispenser Inc.:

“Only implementations correct according to ≤f are
acceptable”

“obviously M2 6≤f M1”, therefore not acceptable

Right? Wrong!

15 / 25

Implementation Relations Observing ≤ft

3.2.4 Example 3.2.1 continued

Coffee & Tea Dispenser Inc.:

“Only implementations correct according to ≤f are
acceptable”

“obviously M2 6≤f M1”, therefore not acceptable

Right? Wrong!

15 / 25

Implementation Relations Observing ≤ft

3.2.4 Example 3.2.1 continued

M2 ≤f M1

Failure pairs of M2

coin · ˜{coin,coffee}

16 / 25

Implementation Relations Observing ≤ft

3.2.4 Example 3.2.1 continued

M2 ≤f M1

Failure pairs of M2

coin · button · ˜{coin,coffee}

16 / 25

Implementation Relations Observing ≤ft

3.2.4 Example 3.2.1 continued

M2 ≤f M1

Failure pairs of M2

coin · ˜{coin,tea}

16 / 25

Implementation Relations Observing ≤ft

3.2.4 Example 3.2.1 continued

M2 ≤f M1

Failure pairs of M2

coin · button · ˜{coin,tea}

16 / 25

Implementation Relations Observing ≤ft

3.2.4 Example 3.2.1 continued

not only refusal sets of reached states important

also what states with which refusals passed

seems to be important to record also the refusals of
intermediate states.

=⇒ failure traces

16 / 25

Implementation Relations Observing ≤ft

3.2.4 Example 3.2.1 continued

not only refusal sets of reached states important

also what states with which refusals passed

seems to be important to record also the refusals of
intermediate states.

=⇒ failure traces

16 / 25

Implementation Relations Observing ≤ft

3.2.4 Example 3.2.1 continued

not only refusal sets of reached states important

also what states with which refusals passed

seems to be important to record also the refusals of
intermediate states.

=⇒ failure traces

16 / 25

Implementation Relations Observing ≤ft

3.2.4 Example 3.2.1 continued

not only refusal sets of reached states important

also what states with which refusals passed

seems to be important to record also the refusals of
intermediate states.

=⇒ failure traces

16 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

Definition

1 Failure traces are the elements of Act∗
ft
.

2 Set of failure traces of p ∈ IP:

ε ∈ ftraces(p);
a ∈ ftraces(p), if p a→;

X̃ ∈ ftraces(p), if p 6 a→ for all a ∈ X ;
a · σ ∈ ftraces(p) for σ ∈ Act∗ft , a ∈ Act , if

p a→ p′ and σ ∈ ftraces(p′);

X̃ · σ ∈ ftraces(p) for σ ∈ Act
∗
ft , X̃ ∈ R(Act), if

X̃ ∈ ftraces(p) and σ ∈ ftraces(p).

3 The failure trace preorder ≤ft⊆ IP × IP is defined as

p ≤ft q iff ftraces(p) ⊆ ftraces(q).

17 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

Definition

1 Failure traces are the elements of Act∗
ft
.

2 Set of failure traces of p ∈ IP:

ε ∈ ftraces(p);
a ∈ ftraces(p), if p a→;

X̃ ∈ ftraces(p), if p 6 a→ for all a ∈ X ;
a · σ ∈ ftraces(p) for σ ∈ Act∗ft , a ∈ Act , if

p a→ p′ and σ ∈ ftraces(p′);

X̃ · σ ∈ ftraces(p) for σ ∈ Act
∗
ft , X̃ ∈ R(Act), if

X̃ ∈ ftraces(p) and σ ∈ ftraces(p).

3 The failure trace preorder ≤ft⊆ IP × IP is defined as

p ≤ft q iff ftraces(p) ⊆ ftraces(q).

17 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

Definition

1 Failure traces are the elements of Act∗
ft
.

2 Set of failure traces of p ∈ IP:

ε ∈ ftraces(p);
a ∈ ftraces(p), if p a→;

X̃ ∈ ftraces(p), if p 6 a→ for all a ∈ X ;
a · σ ∈ ftraces(p) for σ ∈ Act∗ft , a ∈ Act , if

p a→ p′ and σ ∈ ftraces(p′);

X̃ · σ ∈ ftraces(p) for σ ∈ Act
∗
ft , X̃ ∈ R(Act), if

X̃ ∈ ftraces(p) and σ ∈ ftraces(p).

3 The failure trace preorder ≤ft⊆ IP × IP is defined as

p ≤ft q iff ftraces(p) ⊆ ftraces(q).

17 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

Definition

1 Failure traces are the elements of Act∗
ft
.

2 Set of failure traces of p ∈ IP:

ε ∈ ftraces(p);
a ∈ ftraces(p), if p a→;

X̃ ∈ ftraces(p), if p 6 a→ for all a ∈ X ;
a · σ ∈ ftraces(p) for σ ∈ Act∗ft , a ∈ Act , if

p a→ p′ and σ ∈ ftraces(p′);

X̃ · σ ∈ ftraces(p) for σ ∈ Act
∗
ft , X̃ ∈ R(Act), if

X̃ ∈ ftraces(p) and σ ∈ ftraces(p).

3 The failure trace preorder ≤ft⊆ IP × IP is defined as

p ≤ft q iff ftraces(p) ⊆ ftraces(q).

17 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

Definition

1 Failure traces are the elements of Act∗
ft
.

2 Set of failure traces of p ∈ IP:

ε ∈ ftraces(p);
a ∈ ftraces(p), if p a→;

X̃ ∈ ftraces(p), if p 6 a→ for all a ∈ X ;
a · σ ∈ ftraces(p) for σ ∈ Act∗ft , a ∈ Act , if

p a→ p′ and σ ∈ ftraces(p′);

X̃ · σ ∈ ftraces(p) for σ ∈ Act
∗
ft , X̃ ∈ R(Act), if

X̃ ∈ ftraces(p) and σ ∈ ftraces(p).

3 The failure trace preorder ≤ft⊆ IP × IP is defined as

p ≤ft q iff ftraces(p) ⊆ ftraces(q).

17 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

Definition

1 Failure traces are the elements of Act∗
ft
.

2 Set of failure traces of p ∈ IP:

ε ∈ ftraces(p);
a ∈ ftraces(p), if p a→;

X̃ ∈ ftraces(p), if p 6 a→ for all a ∈ X ;
a · σ ∈ ftraces(p) for σ ∈ Act∗ft , a ∈ Act , if

p a→ p′ and σ ∈ ftraces(p′);

X̃ · σ ∈ ftraces(p) for σ ∈ Act
∗
ft , X̃ ∈ R(Act), if

X̃ ∈ ftraces(p) and σ ∈ ftraces(p).

3 The failure trace preorder ≤ft⊆ IP × IP is defined as

p ≤ft q iff ftraces(p) ⊆ ftraces(q).

17 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

Definition

1 Failure traces are the elements of Act∗
ft
.

2 Set of failure traces of p ∈ IP:

ε ∈ ftraces(p);
a ∈ ftraces(p), if p a→;

X̃ ∈ ftraces(p), if p 6 a→ for all a ∈ X ;
a · σ ∈ ftraces(p) for σ ∈ Act∗ft , a ∈ Act , if

p a→ p′ and σ ∈ ftraces(p′);

X̃ · σ ∈ ftraces(p) for σ ∈ Act
∗
ft , X̃ ∈ R(Act), if

X̃ ∈ ftraces(p) and σ ∈ ftraces(p).

3 The failure trace preorder ≤ft⊆ IP × IP is defined as

p ≤ft q iff ftraces(p) ⊆ ftraces(q).

17 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

Definition

1 Failure traces are the elements of Act∗
ft
.

2 Set of failure traces of p ∈ IP:

ε ∈ ftraces(p);
a ∈ ftraces(p), if p a→;

X̃ ∈ ftraces(p), if p 6 a→ for all a ∈ X ;
a · σ ∈ ftraces(p) for σ ∈ Act∗ft , a ∈ Act , if

p a→ p′ and σ ∈ ftraces(p′);

X̃ · σ ∈ ftraces(p) for σ ∈ Act
∗
ft , X̃ ∈ R(Act), if

X̃ ∈ ftraces(p) and σ ∈ ftraces(p).

3 The failure trace preorder ≤ft⊆ IP × IP is defined as

p ≤ft q iff ftraces(p) ⊆ ftraces(q).

17 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

M2 is not an implementation of M1 according to ≤ft!

18 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

σ = coin
˜{coffee,coin}button

˜{tea,coin} ∈ ftraces(1)

σ not an element of ftraces(I):

1
coin

˜{coffee,coin}button

−−−−−−−−−−−−−−−−−−−−−−−−−−→ 4

I
coin

˜{coffee,coin}button

−−−−−−−−−−−−−−−−−−−−−−−−−−→ IV
˜{tea,coin} ∈ ftraces(4)
˜{tea,coin} 6∈ ftraces(IV)

18 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

σ = coin
˜{coffee,coin}button

˜{tea,coin} ∈ ftraces(1)

σ not an element of ftraces(I):

1
coin

˜{coffee,coin}button

−−−−−−−−−−−−−−−−−−−−−−−−−−→ 4

I
coin

˜{coffee,coin}button

−−−−−−−−−−−−−−−−−−−−−−−−−−→ IV
˜{tea,coin} ∈ ftraces(4)
˜{tea,coin} 6∈ ftraces(IV)

18 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

σ = coin
˜{coffee,coin}button

˜{tea,coin} ∈ ftraces(1)

σ not an element of ftraces(I):

1
coin

˜{coffee,coin}button

−−−−−−−−−−−−−−−−−−−−−−−−−−→ 4

I
coin

˜{coffee,coin}button

−−−−−−−−−−−−−−−−−−−−−−−−−−→ IV
˜{tea,coin} ∈ ftraces(4)
˜{tea,coin} 6∈ ftraces(IV)

18 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

σ = coin
˜{coffee,coin}button

˜{tea,coin} ∈ ftraces(1)

σ not an element of ftraces(I):

1
coin

˜{coffee,coin}button

−−−−−−−−−−−−−−−−−−−−−−−−−−→ 4

I
coin

˜{coffee,coin}button

−−−−−−−−−−−−−−−−−−−−−−−−−−→ IV
˜{tea,coin} ∈ ftraces(4)
˜{tea,coin} 6∈ ftraces(IV)

18 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

σ = coin
˜{coffee,coin}button

˜{tea,coin} ∈ ftraces(1)

σ not an element of ftraces(I):

1
coin

˜{coffee,coin}button

−−−−−−−−−−−−−−−−−−−−−−−−−−→ 4

I
coin

˜{coffee,coin}button

−−−−−−−−−−−−−−−−−−−−−−−−−−→ IV
˜{tea,coin} ∈ ftraces(4)
˜{tea,coin} 6∈ ftraces(IV)

18 / 25

Implementation Relations Observing ≤ft

Failure traces and failure trace preorder

3.2.6 Example, 3.2.1 continued (2)

σ = coin
˜{coffee,coin}button

˜{tea,coin} ∈ ftraces(1)

σ not an element of ftraces(I):

1
coin

˜{coffee,coin}button

−−−−−−−−−−−−−−−−−−−−−−−−−−→ 4

I
coin

˜{coffee,coin}button

−−−−−−−−−−−−−−−−−−−−−−−−−−→ IV
˜{tea,coin} ∈ ftraces(4)
˜{tea,coin} 6∈ ftraces(IV)

18 / 25

Implementation Relations Observing ≤ft

Comparing the Implementation relations

3.2.7 Proposition

≤ft � ≤f � ≤tr

Proof: =⇒ Blackboaord

19 / 25

Implementation Relations Observing ≤ft

Completed trace preorder

3.2.8 Definition ≤ct

For p, q ∈ IP, the completed trace preorder ≤ct⊆ IP× IP is defined
as
p ≤ct q iff

traces(p) ⊆ traces(q)
and

F (p) ∩ Act∗ · Ãct ⊆ F (q) ∩ Act∗ · Ãct

Note

If Ãct ∈ F (p), then p is deadlocked.

If σ · Ãct ∈ F (p), then σ is called a completed trace of p.

Apparently, ≤f � ≤ct � ≤tr .

≤ct is finer than ≤tr .

20 / 25

Implementation Relations Observing ≤ft

Completed trace preorder

3.2.8 Definition ≤ct

For p, q ∈ IP, the completed trace preorder ≤ct⊆ IP× IP is defined
as
p ≤ct q iff

traces(p) ⊆ traces(q)
and

F (p) ∩ Act∗ · Ãct ⊆ F (q) ∩ Act∗ · Ãct

Note

If Ãct ∈ F (p), then p is deadlocked.

If σ · Ãct ∈ F (p), then σ is called a completed trace of p.

Apparently, ≤f � ≤ct � ≤tr .

≤ct is finer than ≤tr .

20 / 25

Implementation Relations Observing ≤ft

Completed trace preorder

3.2.8 Definition ≤ct

For p, q ∈ IP, the completed trace preorder ≤ct⊆ IP× IP is defined
as
p ≤ct q iff

traces(p) ⊆ traces(q)
and

F (p) ∩ Act∗ · Ãct ⊆ F (q) ∩ Act∗ · Ãct

Note

If Ãct ∈ F (p), then p is deadlocked.

If σ · Ãct ∈ F (p), then σ is called a completed trace of p.

Apparently, ≤f � ≤ct � ≤tr .

≤ct is finer than ≤tr .

20 / 25

Implementation Relations Observing ≤ft

Completed trace preorder

3.2.8 Definition ≤ct

For p, q ∈ IP, the completed trace preorder ≤ct⊆ IP× IP is defined
as
p ≤ct q iff

traces(p) ⊆ traces(q)
and

F (p) ∩ Act∗ · Ãct ⊆ F (q) ∩ Act∗ · Ãct

Note

If Ãct ∈ F (p), then p is deadlocked.

If σ · Ãct ∈ F (p), then σ is called a completed trace of p.

Apparently, ≤f � ≤ct � ≤tr .

≤ct is finer than ≤tr .

20 / 25

Implementation Relations Observing ≤ft

Completed trace preorder

3.2.8 Definition ≤ct

For p, q ∈ IP, the completed trace preorder ≤ct⊆ IP× IP is defined
as
p ≤ct q iff

traces(p) ⊆ traces(q)
and

F (p) ∩ Act∗ · Ãct ⊆ F (q) ∩ Act∗ · Ãct

Note

If Ãct ∈ F (p), then p is deadlocked.

If σ · Ãct ∈ F (p), then σ is called a completed trace of p.

Apparently, ≤f � ≤ct � ≤tr .

≤ct is finer than ≤tr .

20 / 25

Implementation Relations Observing ≤ft

Completed trace preorder

3.2.8 Definition ≤ct

For p, q ∈ IP, the completed trace preorder ≤ct⊆ IP× IP is defined
as
p ≤ct q iff

traces(p) ⊆ traces(q)
and

F (p) ∩ Act∗ · Ãct ⊆ F (q) ∩ Act∗ · Ãct

Note

If Ãct ∈ F (p), then p is deadlocked.

If σ · Ãct ∈ F (p), then σ is called a completed trace of p.

Apparently, ≤f � ≤ct � ≤tr .

≤ct is finer than ≤tr .

20 / 25

Implementation Relations Observing ≤ft

Completed trace preorder

3.2.8 Definition ≤ct

For p, q ∈ IP, the completed trace preorder ≤ct⊆ IP× IP is defined
as
p ≤ct q iff

traces(p) ⊆ traces(q)
and

F (p) ∩ Act∗ · Ãct ⊆ F (q) ∩ Act∗ · Ãct

Note

If Ãct ∈ F (p), then p is deadlocked.

If σ · Ãct ∈ F (p), then σ is called a completed trace of p.

Apparently, ≤f � ≤ct � ≤tr .

≤ct is finer than ≤tr .

20 / 25

Implementation Relations Observing ≤ft

≤ct is finer than ≤tr

Example

•

•

•

•

•

•

•

a

b

a
a

b

≤tr

6≤ct

21 / 25

Implementation Relations Observing ≤ft

1 Some more Implementation Relations

2 Failure Trace Preorder and Observers

22 / 25

Implementation Relations Observing ≤ft

Test Expressions for ≤ft

Refusals become part of test expressions

Test Expressions Oft

o −→ a.o | t.STOP | X̃ .o

with a ∈ Act , and X̃ ∈ R(Act).

23 / 25

Implementation Relations Observing ≤ft

Test Expressions for ≤ft

Refusals become part of test expressions

Test Expressions Oft

o −→ a.o | t.STOP | X̃ .o

with a ∈ Act , and X̃ ∈ R(Act).

23 / 25

Implementation Relations Observing ≤ft

Test Expressions for ≤ft

Refusals become part of test expressions

Test Expressions Oft

o −→ a.o | t.STOP | X̃ .o

with a ∈ Act , and X̃ ∈ R(Act).

23 / 25

Implementation Relations Observing ≤ft

Test Execution

Test Execution for ≤ft

a.o a→ o
(a ∈ Act ft)

o a→ o′ p a→ p′

o

�

p a→ o′

�

p′
(a ∈ Act)

o t→ o′

o

�

p t→ pass

o
eX→ o′ p 6 a→ ∀a ∈ X

o

�

p
eX→ o′

�

p

obsft(p) = { o ∈ Oft | ∃σ ∈ Act∗
ft

: o

�

p
σ·t

==⇒ pass }

24 / 25

Implementation Relations Observing ≤ft

Test Execution

Test Execution for ≤ft

a.o a→ o
(a ∈ Act ft)

o a→ o′ p a→ p′

o

�

p a→ o′

�

p′
(a ∈ Act)

o t→ o′

o

�

p t→ pass

o
eX→ o′ p 6 a→ ∀a ∈ X

o

�

p
eX→ o′

�

p

obsft(p) = { o ∈ Oft | ∃σ ∈ Act∗
ft

: o

�

p
σ·t

==⇒ pass }

24 / 25

Implementation Relations Observing ≤ft

Test Execution

Test Execution for ≤ft

a.o a→ o
(a ∈ Act ft)

o a→ o′ p a→ p′

o

�

p a→ o′

�

p′
(a ∈ Act)

o t→ o′

o

�

p t→ pass

o
eX→ o′ p 6 a→ ∀a ∈ X

o

�

p
eX→ o′

�

p

obsft(p) = { o ∈ Oft | ∃σ ∈ Act∗
ft

: o

�

p
σ·t

==⇒ pass }

24 / 25

Implementation Relations Observing ≤ft

Observing Failure Trace Preorder

3.2.10 Lemma

p ≤ft q iff obsft(p) ⊆ obsft(q)

Proof: blackboard

25 / 25

	Some more Implementation Relations
	

	Failure Trace Preorder and Observers
	

