
Chapter 1 Modelling Reactive Systems 11

1.4 Structural Operational Semantics

In Examples 1.3.2 and 1.3.3 we have demonstrated the general idea on how to derive LTS
from processes. This idea will now be formalised. Transitions are derived inductively over
the syntactic structure of processes. In fact, rather than defining an LTS for each process
separately, we just define one big LTS with the (infinite) state set IP. However, we always
will only consider processes of which set of reachable states is finite (cf. Definition 1.2.7
and the comment following it).

1.4.1 Definition (LIP) We define the transition system LIP = (S,Act ∪ {τ},→), where:

• state space S = IP, the processes;

• the actions set Act the same as used to define IP;

• → contains all and only those transitions that can be derived with the following rules:

1. for all a ∈ Act τ , p ∈ IP: a.p a→ p

2. for p, q ∈ IP: if p a→ p′ for a ∈ Act τ , then

p + q a→ p′

3. Similarly: if q a→ q′ for a ∈ Act τ , then

p + q a→ q′

4. For P ∈ P: if P =̂ p and p a→ p′, then

P a→ p′

5. For A ⊆ Act and p‖Aq ∈ IP: if p a→ p′ and a 6∈ A, then

p‖Aq a→ p′‖Aq

6. for q analogously

7. if p a→ p′, q a→ q′, and a ∈ A, then

p‖Aq a→ p′‖Aq′

A more compact way to write the rules: SOS-Rules (slide #5)

1)
a.p a→ p

2)
p a→ p′

p + q a→ p′
3)

q a→ q′

p + q a→ q′

4)
p a→ p′

P a→ p′
(P =̂ p)

5)
p a→ p′

p‖Aq a→ p′‖Aq
(a 6∈ A) 6)

q a→ q′

p‖Aq a→ p‖Aq′
(a 6∈ A)

7)
p a→ p′ q a→ q′

p‖Aq a→ p′‖Aq′
(a ∈ A)

Note: All material on the slides used in the lecture is in the script.



12 Testing of Reactive Systems—Course Notes

1.4.2 Example (Semantics of IP)
Three process equations:

X =̂ a.b.X

Y =̂ a.c.Y + a.a.Y

Z =̂ X‖{a}Y

We begin simple: the transition following X:

4)
a.b.X a→ b.X

X a→ b.X

More complicated: one transition from Y (we forget rule 4), when possible):

2)
a.c.Y a→ c.Y

a.c.Y + a.a.Y a→ c.Y

Another from Y :

3)
a.a.Y a→ a.Y

a.c.Y + a.a.Y a→ a.Y

The big one: one transition from Z:

7)
4)

a.b.X a→ b.X

X a→ b.X
4)

2)
a.c.Y a→ c.Y

a.c.Y + a.a.Y a→ c.Y

Y a→ c.Y
X‖{a}Y

a→ b.X‖{a}c.Y

The complete transitions system of Z (slide #6):

Z

b.X‖{a}c.Y

b.X‖{a}a.Y

X‖{a}c.Y

b.X‖{a}Y

X‖{a}a.Y

a

a

b

a

b

c

bc

End Example

Note: All material on the slides used in the lecture is in the script.



Chapter 1 Modelling Reactive Systems 13

1.4.3 Example (More fun with processes)

Parallel execution and Nondeterminism:

X =̂ a.X

Y =̂ a.b.Y

Z =̂ a.c.Z

Initial transitions X‖{a}(Y ‖∅Z):

X‖{a}(Y ‖∅Z)

X‖{a}(b.Y ‖∅Z)

X‖{a}(Y ‖∅c.Z)

a

a

X, Y, Z are all deterministic. Parallelism causes apparently non-determinism.

Deadlock: (a.STOP‖{a,b}b.STOP) 6 c→ for all c ∈ Act τ .

End Example

Note:

• The structure of LIP depends actually on the given process definitions, which are
part of the process specification.

• If there are no process definitions, then LIP is still well defined (why?).

Note: All material on the slides used in the lecture is in the script.



Chapter 2

Differentiating Behaviour

The lecture is about a formal approach to testing, which, in our case, means that we are
interested in establishing whether a given implementation is correct (or incorrect) with
respect to a given specification. In the following we will introduce mathematical notions
of correctness, the so-called implementation relations. In our setting here, implementation
relations are relations ≤⊆ IP×IP. We say that, if p ≤ p′, then p is an implementation of p′.
There are a great many different definitions for implementation relations, each describing
a different notion of correctness: some are more picky, some more lenient in comparing two
processes. Quite frequently, implementation relations are preorders.

2.1 Preorders

2.1.1 Definition Let X be a set. ≤⊆ X × X is called a preorder, iff

1. (x, x) ∈≤ (reflexivity)

2. (x, y), (y, z) ∈≤ =⇒ (x, z) ∈≤ (transitivity)

We write x ≤ y for (x, y) ∈≤

2.1.2 Lemma Let ≤ be a preorder. Define ∼≤⊆ X × X as {(x, y)| (x ≤ y and y ≤ x}.
∼≤ is an equivalence relation, called the kernel of preorder ≤.

Proof: Reflexivity is inherited from ≤. The construction demands that x ∼≤ y =⇒ y ∼≤

x, thus symmetry holds as well. Transitivity: x ∼≤ y and y ∼≤ z imply x≤y, y≤z, and
thus x ≤ z. It also holds that z≤y, y≤x, thus also z ≤ x, and x ∼≤ z. End Proof

14



Chapter 2 Differentiating Behaviour 15

• Preorders on IP will play a role as so-called implementation relations: if ≤ is a
preorder on processes, and p ≤ q, then we say that p is an implementation of q.

• The kernels of preorders on IP are then equivalences on processes: if p ∼≤ q, then
p, q behave the same, according of the chosen preorder.

• Usually it is easier to reason about preorders, rather than the respective kernels.

2.2 Some implementation relations

Until further notice we consider only processes that do not make any τ-steps!

Leaving out τ -steps has the following consequences:

1. =⇒ = → ∪{(p, ε, p) | p ∈ IP}

2. For consistency sake, we write then also p ε→ p′ iff p
ε

=⇒ p′.

2.2.1 Definition (Trace preorder (trace inclusion)) Let p, q be processes. We define

p ≤tr q : ⇐⇒ traces(p) ⊆ traces(q)

• ≤tr is a preorder: it follows from reflexivity and transitivity of ⊆.

• if p ≤ q and p can execute σ ∈ Act ∗, then q can as well.

• q describes the legal traces that an implementation is allowed to do.

• An implementation does not need to be complete.

• The kernel is set equality of the trace sets, called trace equivalence.

2.2.2 Example (Trace preorder)

1. State s1 of the LTS in Example 1.2.9 (slide #4) and states q1 and q3 in the following
LTS (slide #7) are trace equivalent (also state s1 in Example 1.2.2, but that one
contains τ -steps, which we agreed to neglect for the moment).

Note: All material on the slides used in the lecture is in the script.



16 Testing of Reactive Systems—Course Notes

q1

q2

q3

button

coffee
tea

button

2. Consider this LTS:

p1 p2

button

coffee

Apparently, p1 is an implementation of q1 above with respect to ≤tr (i.e., p1 ≤tr

q1). Also, p2 ≤tr q2. However, the opposite is not true: q1 6≤tr p1, since e.g.,

button · tea ∈ traces(q1), but button · tea 6∈ traces(p1).

End Example

Another preorder, which is its own kernel.

2.2.3 Definition (Bisimulation equivalence) A bisimulation is a binary relation R ⊆
IP × IP on processes, satisfying for a ∈ Act τ :

• if pRq and p a→ p′, then ∃q′ ∈ IP : q a→ q′ and p′Rq′.

• if pRq and q a→ q′, then ∃p′ ∈ IP : p a→ p′ and p′Rq′.

We call p bisimulation equivalent to q (∼B) if there is a bisimulation R such that pRq.

The fact that we allow a = τ means that we consider τ an ordinary action. So even if we
would consider LTS with internal steps, the definition would still be valid.

2.2.4 Example (Bisimulations (slide #8))
Consider the two LTS L1 and L2 in Figure 2.1 over action set Act = {a, b, c}. Let S =
{p1, p2, p3, q1, . . . , q4}. The following relation R ⊆ S × S is a bisimulation:

p1Rq1 p2Rq2 p3Rq3 p1Rq4

Note: All material on the slides used in the lecture is in the script.



Chapter 2 Differentiating Behaviour 17

L1 :

p1

p2 p3

a

b

a

c

L2 :

q1

q2 q3

q4

a

b

a

c

a

a

Figure 2.1: Example 2.2.4: Transition Systems

To prove this, we have to check that for all transitions in L1, L2 the conditions of Defi-
nition 2.2.3 are fulfilled. This is demonstrated in Figure 2.2. There, read pi · · · · · · qj as
piRqj .

End Example

End of Lecture #2

Note: All material on the slides used in the lecture is in the script.


