
Chapter 2 Differentiating Behaviour 17

L1 :

p1

p2 p3

a

b

a

c

L2 :

q1

q2 q3

q4

a

b

a

c

a

a

Figure 2.1: Example 2.2.4: Transition Systems

To prove this, we have to check that for all transitions in L1, L2 the conditions of Defi-
nition 2.2.3 are fulfilled. This is demonstrated in Figure 2.2. There, read pi · · · · · · qj as
piRqj .

End Example

End of Lecture #2

2.2.5 Lemma (Lifting bisimulation to σ→) R is a bisimulation iff, for σ ∈ Act ∗τ :

• if pRq and p σ→ p′, then ∃q′ ∈ IP : q σ→ q′ and p′Rq′.

• if pRq and q σ→ q′, then ∃p′ ∈ IP : p σ→ p′ and p′Rq′.

Proof: The “⇐” direction is straightforward: since the two conditions hold not only for
all σ ∈ Act ∗τ , but especially for those with length 1, R must be a bisimulation.
We show the “⇒” direction with induction over the length of σ.
We want to show that

if p σ→ p′ then ∃q′ : q σ→ q′ and p′Rq′. (*)

Let R be a bisimulation and pRq.
The induction start, i.e., the case σ = ε, is trivial. Naturally, also the case |σ| = 1 is
fulfilled by definition.
For the induction step we assume that we have shown for all σ ∈ Act ∗τ with |σ| ≤ n that (*)
holds. We assume a word σ · a with |σ · a| = n + 1, and that p σ·a−→ p′ Thus, by hypotheses,
there is a p′′ such that p σ→ p′′ and p′′ a→ p′, and a q′′ such that q σ→ q′′ and p′′Rq′′. Since
p′′ a→ p′ and p′′Rq′′, then there must be a q′ such that q′′ a→ q′ and p′Rq′. Thus, for p σ·a−→ p′,
there is a q′ with q σ·a−→ q′ and p′Rq′.

Note: All material on the slides used in the lecture is in the script.

18 Testing of Reactive Systems—Course Notes

Figure 2.2: Example 2.2.4: R is a Bisimulation

Note: All material on the slides used in the lecture is in the script.

Chapter 2 Differentiating Behaviour 19

The second statement works the same. End Proof

End of Lecture #3

2.2.6 Example (Generalised bisimilarity)
Recall Example 2.2.4. q1 after aca = {q2, q3}, and the (derived) transition q1

aca−→ q2 in L2

corresponds to p1
aca−→ p2, and p2Rq2. Similarly, q1

aca−→ q3 corresponds to p1
aca−→ p3, and

p3Rq3.

End Example

A preorder is a set, thus we can relate different preorders with each other by set inclusion.

2.2.7 Definition (Finer and coarser) Let ≤, ≤′ be preorders and ≤⊆≤′. We say that
≤ is finer than ≤′, and that ≤′ is coarser than ≤. Analogously for equivalences.

The definition of finer and coarser reflects what was already mentioned in the introduction
of this section. A finer implementation relation is more “picky” in comparing the behaviour
of processes: fewer processes are accepted as implementations. A coarser implementation
relation, on the other hand, is more “generous”: more processes are accepted as implemen-
tations. If then ≤ finer than ≤′, then this implies that p ≤ q =⇒ p ≤′ q. Since ⊆ is a
partial order, there are incomparable preorders.
The next proposition compares bisimilarity and trace equivalence.

2.2.8 Proposition (Bisimulation and trace equivalence) ∼tr is coarser than ∼B, but
not finer.

Proof:

Coarser means that we want to show that ∼B⊆∼tr , and therefore, if for p, q ∈ IP, if
p ∼B q, then p ∼tr q.

Proof overview:

1. We assume p ∼B q

2. We show by induction over the length of σ that, whenever σ ∈ traces(p), then
σ ∈ traces(q), i.e., traces(p) ⊆ traces(q);

3. It is the easy to see that the proof can be reused to show that whenever σ ∈
traces(q), then σ ∈ traces(p), i.e., traces(q) ⊆ traces(p);

4. The conclusion is then of course that traces(q) = traces(p), i.e., p ∼tr q.

ad 1.) So, given p ∼B q, we know there is a bisimulation relation R such that pRq.

ad 2.) Let σ ∈ traces(p). Induction start: |σ| = 0, i.e., σ = ε. ε ∈ traces(q) is
trivial.

The induction hypothesis is now that we have shown for all σ ∈ traces(p) with
|σ| = n that σ ∈ traces(q). Let us now assume that σ ·a ∈ traces(p) for a ∈ Act ,

Note: All material on the slides used in the lecture is in the script.

20 Testing of Reactive Systems—Course Notes

i.e., |σ · a| = n+1. So there is a p′ ∈ IP with p σ→ p′ and p′ a→. Since p ∼B q and
p σ→ p′, there is a q′ ∈ IP such that q σ→ q′ and p′Rq′. Since R is a bisimulation,
p′Rq′ implies that if p′ a→, then q′ a→ as well. Therefore, σ · a ∈ traces(q).

ad 3.) Since ∼B is an equivalence relation, also q ∼B p holds, and we can repeat
the proof in steps 1.)/2.) for the other direction.

ad 4.) as said above: traces(q) = traces(p), i.e., p ∼tr q.

Not finer can be shown with the following counterexample: it proves that p ∼tr q does
not imply p ∼B q.

•

•

• •

a

b c

•

• •

• •

a

b

a

c

≤tr

6∼B

End Proof

Note that in step 2.) in the previous proof, if there is no σ·a ∈ traces(p) with |σ·a| = n+1,
then the statement is vacuously true.

2.2.9 Definition For two preorders (or equivalences) pre1, pre2 with pre1 ⊆ pre2, we write
pre1 � pre2

Since � is a directly related to set inclusion, � is a partial order.

Up til now:

�

bisimulation

equivalence

trace equivalence

Note: All material on the slides used in the lecture is in the script.

Chapter 2 Differentiating Behaviour 21

The whole picture: The linear time – branching time spectrum
Van Glabbeek [vG01] has found a more complete picture. See Figure 2.3. Read “seman-
tics” as “equivalence” and arrow as �.
This means that in-between trace- and bisimulation equivalence there are 10 other mean-
ingful equivalences with different degrees of coarseness.

2.3 A little surprise

Let IPdet be the set of all deterministic processes.

2.3.1 Proposition ∼B and ∼tr , both restricted on IPdet, coincide.

Restricted means: ∼B |IPdet
= {(p, q) | p ∼B q and p, q ∈ IPdet}, and thus, ∼B |IPdet

=≤tr

|IPdet
.

This proposition has the following implications:

1. The linear time – branching time spectrum for deterministic processes has therefore
only one element.

2. It also means that the different equivalences differ in essence in the way how they
treat nondeterminism in processes, and how much of it.

3. The position in the diagram gives a hint on how much nondeterminism is taken into
account.

4. trace equivalence apparently ignores non-determinism altogether (because nondeter-
ministic and deterministic processes with the same set of traces are identified)

5. bisimulation on the other hand takes much of the information on nondeterminism
into account to differentiate between processes.

6. trace equivalence works on traces, linear sequences of actions =⇒ “linear time”

7. bisimulation takes branching, esp. nondeterministic branching into account =⇒
“branching time”

8. Studying preorders and implementation relations on processes are thus studies in
nondeterminism

9. Some of the preorders in detail and the connection to testing later

Proof of Proposition 2.3.1: We assume that processes p, q ∈ IPdet. We must show that,
if p ∼tr q, then p ∼B q (the other direction we know already to be true). The technique to
prove this is very classical: we construct a relation R on the processes such that pRq, and
show that R is a bisimulation. From the definition of bisimulation equivalence it follows
then that p ∼B q. First, note that for all σ ∈ traces(p), p after σ is a singleton (due to

the determinism of p), i.e., a set {p′} with p′ ∈ IP. In the following we identify p′ and {p′}.

Note: All material on the slides used in the lecture is in the script.

22 Testing of Reactive Systems—Course Notes

Figure 2.3: The linear time – branching time spectrum (slide #10) (copied from [vG01])
.

Note: All material on the slides used in the lecture is in the script.

Chapter 2 Differentiating Behaviour 23

Definition of R: Let R ⊆ IP × IP be the relation

R =
⋃

σ∈traces(p)

{

(p′, q′) | p′ = p after σ, q′ = q after σ
}

R is a bisimulation: Let (p′, q′) ∈ R. There is thus a trace σ ∈ traces(p) = traces(q)
with p′ = p after σ and q′ = q after σ. If now p′ a→ p′′ for some a ∈ Act and p′′ ∈ IP,
then σ · a ∈ traces(p), thus also σ · a ∈ traces(q). Therefore, also q′ a→ q′′ for some
q′′ ∈ IP. Since p and q are deterministic, p′′ = p after σ · a and q′′ = q after σ · a,
and thus (p′′, q′′) ∈ R, due to the definition of R.

To show the “bi” in bisimulation, we must repeat the previous argument, with q, q′, q′′

changing the places with p, p′, p′′ in the appropriate places, respectively.

Thus, R is a bisimulation, and since (p, q) ∈ R, p ∼B q holds.

End Proof

Note that Figure 2.3 depicts the linear time – branching time spectrum I, which only holds
for the set of processes with no internal steps. Linear time – branching time spectrum II
is more complicated. See Figure 2.4

Note: All material on the slides used in the lecture is in the script.

24 Testing of Reactive Systems—Course Notes

Figure 2.4: The linear time – branching time spectrum II (slide #11)
Note: All material on the slides used in the lecture is in the script.

Chapter 3

Distinguishing Processes by
Observation

In the previous sections we have learned how to describe behaviour in terms of processes and
labelled transition systems, and the elementary concept on how to distinguish behaviour
of processes: implementation relations.
The next step is now to combine these concepts with testing.
As has been mentioned before, testing has much of an experiment : the test-object is
manipulated in some way, and the reactions are observed. We will now adopt this view and
define how we can compare the behaviour of processes by manipulation and observation.
In order to do this we will define precisely the different ways that allow us to manipulate
a process and the different types of observations that we can make. We will in general
assume that we have no knowledge of the inner structure of the process that we observe,
but can only see its different kind of interactions with the environment. The question that
we want to answer is:

• how can we, by means of manipulating and observing two processes p, q ∈ IP, find
out whether they behave the same or not?

• Can we, and, if yes, how can we characterise implementation relations in terms of
the experiments, manipulations and observations?

In [vG01], v. Glabbeek describes the generative machine, an abstract, but intuitive frame-
work to describe manipulations, observations of, and experiments on processes. His idea is
the following: the process is put in a black box, and can only be accessed by a panel (see
Figure 3.1) with different lights, displays, switches and buttons.
How can we characterise implementation relations in terms of testing?

• We consider a set of observers, O.

• Observers can be processes, logical formulae, . . .

• observers make primitive observations: e.g., the system can execute an action a right

now, can not execute an action a, cannot make any action at all, etc.

25

26 Testing of Reactive Systems—Course Notes

· · ·

a b z

c

replicate

active

action

free

blocked

free

blocked

free

blocked

Figure 3.1: User panel of the generative machine

• Observers o ∈ O generate observations obs(o, p) from the primitive observations of
the observed system p: traces, verdicts, . . .

• In general: implementation relations are defined by relating observations to each
other:

p imp q : ⇐⇒ ∀o ∈ O : obs(o, p) ∗ obs(o, q)

where ∗ is some relation like e.g., ⊆.

In this chapter:

• Observers will be special processes

• observations syntactic ingredients of observers

• outcomes will be derived with a special parallel operator.

Again: no τ-steps!

End of Lecture #4

3.1 Trace inclusion

Our observers will be a special kind of processes, also called test expressions

Note: All material on the slides used in the lecture is in the script.

