Testing of Reactive Systems
Lecture 1:

Henrik Bohnenkamp

Lehrstuhl Informatik 2 (MOVES)
RWTH Aachen

Summer Semester 2009

1/48

Technical Info

e Technical Information

2/48

Technical Info
@00

Testing of Reactive Systems

@ Course in Theoretical Computer Science

@ Prerequisites: Automata Theory (ATFS, FSAP)

@ Language: English

@ Complementary to Model-Checking (overlap in basics)

3/48

Technical Info
@00

Testing of Reactive Systems

Overview

@ Course in Theoretical Computer Science

@ Prerequisites: Automata Theory (ATFS, FSAP)

@ Language: English

@ Complementary to Model-Checking (overlap in basics)

@ Some slides but very much on blackboard
@ Concise script on the web page (.pdf)
@ Plus accompanying slides and handouts

3/48

Technical Info
(o] le}

Organisation

@ Lecture:
@ Mondays, 12:30 — 14:00, AH 3
@ Tuesdays, 11:45 —13:15, AH 3
@ ~ 18 sessions
@ Exercise class:
@ Bi-weekly
@ Usually on Mondays instead of the lecture
@ Exception: first exercise Tuesday, 28. April
@ Sheets on the web page, one week in advance
@ Theory course in “Hauptstudium Informatik Diplom”,
“Master Informatik”, “Master Software Systems
Engineering”
@ Homework in Groups of at most 3 (for those who want to
take the exam mandatory!)
@ Written exam at end of semester (or oral exam, depending
on demand)

4148

Technical Info
[efe]]

Contact

My Coordinates

Henrik Bohnenkamp

El, Room 4210

Tel 0241 80-21203

e-mail henrik@cs.rwth-aachen.de

In case of questions
@ Pop in when you like
@ Write an e-mail

Up-to-date information
http://www-i2.informatik.rwth-aachen.de/i2/testing09/

5/48

e Motivation

6/48

Motivation
[1]

Correctness of Software Systems

Infamous Examples
Ariane 5 disaster, 1996

@ June 4, 1996

@ in essence: An integer
overflow

W, €

7148

Motivation
[1]

Correctness of Software Systems

Infamous Examples
Therac 25 accidents

@ medical device for radiation
treatment of cancer patients,
11 installed mid 1980’s

@ radiation overdose
@ six patients injured or killed

@ in essence: a race condition
overlooked

Treatment table

Display " Motion enable

Beam orloflight Interlock
terminal | switch (footswitch) .

W

7148

Motivation
oe

Correctness of Software Systems

Heathrow Terminal 5: random quotes from the web

400,000 hours of software engineering
went into the baggage handling system

8/48

Motivation
oe

Correctness of Software Systems

Heathrow Terminal 5: random quotes from the web

“180 IT suppliers and run 163 IT systems,
546 interfaces, more than 9,000 con-
nected devices, 2,100 PCs and 'enough

cable to lay to Istanbul and back’ ”.

nnnnnnn

8/48

Motivation
oe

Correctness of Software Systems

Heathrow Terminal 5: random quotes from the web

“Apparently the computer software told
the baggage people that the flight had
taken off. So everyone in the plane just
watched as all their suitcases were taken
back into the terminal instead of being
loaded on.”

8/48

Motivation
oe

Correctness of Software Systems

Heathrow Terminal 5: random quotes from the web

“They have been doing tests on the belt
system for the last few weeks and knew
it wasn’t going right. The computer can-
not cope with the number of bags going
through.”

8/48

Motivation
oe

Correctness of Software Systems

Heathrow Terminal 5: random quotes from the web

The system was tested for one year!

8/48

Formal Methods

e Formal Methods

9/48

Formal Methods
@000

What are “Formal Methods”?

It is all about software and systems development

Primary Idea

@ Writing a precise specification of a system

10/48

Formal Methods
@000

What are “Formal Methods”?

It is all about software and systems development

Primary Idea

@ Writing a precise specification of a system
@ Using a formal or mathematical syntax to do so

10/48

Formal Methods
@000

What are “Formal Methods”?

It is all about software and systems development

Primary Idea

@ Writing a precise specification of a system
@ Using a formal or mathematical syntax to do so
@ Textual or graphical

10/48

Formal Methods
@000

What are “Formal Methods”?

It is all about software and systems development

Primary Idea

@ Writing a precise specification of a system

@ Using a formal or mathematical syntax to do so

@ Textual or graphical

@ Semantics, i.e., a precise meaning of the language

10/48

Formal Methods
@000

What are “Formal Methods”?

It is all about software and systems development

Primary Idea

@ Writing a precise specification of a system

@ Using a formal or mathematical syntax to do so

@ Textual or graphical

@ Semantics, i.e., a precise meaning of the language
@ Formal specification eliminates ambiguity

10/48

Formal Methods
@000

What are “Formal Methods”?

It is all about software and systems development

Primary Idea

@ Writing a precise specification of a system

@ Using a formal or mathematical syntax to do so

@ Textual or graphical

@ Semantics, i.e., a precise meaning of the language

@ Formal specification eliminates ambiguity

@ Reduces chance of errors during software development

10/48

Formal Methods
[e] le]e}

What are “Formal Methods”?

Purpose of Formal Methods

@ Traditionally for formally verifying the correctness of
software

11/48

Formal Methods
[e] le]e}

What are “Formal Methods”?

Purpose of Formal Methods

@ Traditionally for formally verifying the correctness of
software

@ (Provably correct) Step-wise refinement from spec to code

11/48

Formal Methods
[e] le]e}

What are “Formal Methods”?

Purpose of Formal Methods

@ Traditionally for formally verifying the correctness of
software

@ (Provably correct) Step-wise refinement from spec to code
@ Code generation

11/48

Formal Methods
[e] le]e}

What are “Formal Methods”?

Purpose of Formal Methods

@ Traditionally for formally verifying the correctness of
software

@ (Provably correct) Step-wise refinement from spec to code
@ Code generation
@ Model-checking

11/48

Formal Methods
[e]e] e}

Benefits from Formal Methods

The process of creating a precise specification »

@ Allows articulation of a proper understanding of the system

v

12/48

Formal Methods
[e]e] e}

Benefits from Formal Methods

The process of creating a precise specification »

@ Allows articulation of a proper understanding of the system

@ Reveals errors or aspects of incompleteness)

12/48

Formal Methods
[e]e] e}

Benefits from Formal Methods

The process of creating a precise specification

@ Allows articulation of a proper understanding of the system

@ Reveals errors or aspects of incompleteness

Specification

@ Can be analysed

12/48

Formal Methods
[e]e] e}

Benefits from Formal Methods

The process of creating a precise specification

@ Allows articulation of a proper understanding of the system

@ Reveals errors or aspects of incompleteness

Specification

@ Can be analysed

@ Can be verified correct against properties of interest
(model-checking)

12/48

Formal Methods
[e]e] e}

Benefits from Formal Methods

The process of creating a precise specification

@ Allows articulation of a proper understanding of the system

@ Reveals errors or aspects of incompleteness

Specification

@ Can be analysed

@ Can be verified correct against properties of interest
(model-checking)

@ ... “Potentially automatic analysis of the relationship
between the specification and the source code.”

12/48

Formal Methods
[e]ele]]

Using Formal Methods

@ Means and algorithms to reason about specification

@ Tools-support required
@ Whatever you do, it must be computable. ..

13/48

Formal Methods
[e]ele]]

Using Formal Methods

@ Means and algorithms to reason about specification

@ Tools-support required
@ Whatever you do, it must be computable. ..
o ... efficiently

13/48

@ Testing

14/48

Testing
©0000000 DD

What is testing?

Software testing is mostly about empirically checking
correctness, by experimenting with the system-under-test.

15/48

Testing
©0000000 DD

What is testing?

Software testing is mostly about empirically checking
correctness, by experimenting with the system-under-test. ’

Performing experiments on software systems in order to
increase software quality

15/48

Testing
00000000 0W!

Goal of Testing?

Many attempts to answer this question:

© ...to show that the software is bug free
@ ...to show that the software does what it is supposed to do

© ...to establish confidence that the system does as
intended

© ...tofind errors

16/48

Testing
00000000 0W!

Goal of Testing?

Many attempts to answer this question:

© ...to show that the software is bug free
@ ...to show that the software does what it is supposed to do

© ...to establish confidence that the system does as
intended

© ...tofind errors

No. Testing is inherently incomplete.

16/48

Testing
00000000 DD

Goal of Testing?

Many attempts to answer this question:

© ...to show that the software is bug free
@ ...to show that the software does what it is supposed to do

© ...to establish confidence that the system does as
intended

© ...tofind errors

Testing can show the presence of bugs, but not their absence
[Dijkstra]

16/48

Testing
00000000 DD

Goal of Testing?

Many attempts to answer this question:

© ...to show that the software is bug free
@ ...to show that the software does what it is supposed to do

© ...to establish confidence that the system does as
intended

© ...tofind errors

It can do this sometimes, but that is not enough.

16/48

Testing
00000000 DD

Goal of Testing?

Many attempts to answer this question:

© ...to show that the software is bug free
@ ...to show that the software does what it is supposed to do

© ...to establish confidence that the system does as
intended

© ...tofind errors

It can never establish confidence, only increase

16/48

Testing
00000000 0W!

Goal of Testing?

Many attempts to answer this question:

© ...to show that the software is bug free
@ ...to show that the software does what it is supposed to do

© ...to establish confidence that the system does as
intended

© ...tofind errors

Testing is the process of executing a program with the
intent of finding errors.

[Meyers 1979]

16/48

Testing

00000000 CODOOD

So what is Testing?

Tretmans: Testing is

a technical process

performed by experimenting with or executing the software
in a controlled environment

°
°

@ following a specified procedure

@ with the intent to measure the quality of the software
°

demonstrating deviation of intended behaviour

17/48

Testing
[e]e]e] Jelelelelei0I01010]

Test Objects

Procedures, functions, classes

@ terminating
@ monolithic

@ deterministic
@ simple input/output behaviour
@ simple interfaces

18/48

Testing
[e]e]e] Jelelelelei0I01010]

Test Objects

Procedures, functions, classes

@ terminating
monolithic

deterministic
simple input/output behaviour
simple interfaces

complication: side-effects

18/48

Testing
[e]e]e] Jelelelelei0I01010]

Test Objects

Procedures, functions, classes

terminating

monolithic

deterministic

simple input/output behaviour
simple interfaces
complication: side-effects

Java methods
Java classes

Haskell program

18/48

Testing
[e]e]ele] Teleleleiolai0ln1a]

Test Objects

Processes, Reactive Systems

non-terminating

composed of interacting components
non-deterministic
complex input/output behaviour

different interfaces

19/48

Testing
00000800 0Ww

Reactive Systems

o

Browser:

@ Inputs: mouse-clicks
@ Outputs: change of appearance, displayed information

But also:
@ Outputs: HTTP-PDUs to web-servers or proxies
@ Inputs: HTTP-PDUs from web-servers or proxies

20/48

Testing
[e]e]elee]e] loleiol

Reactive Systems

HTTP
Server

S

forwarded

request

click request L HTTP
1 \Web & HTTP Server
Browser Proxy S

- reply -

HTTP

Server
o

21/48

Testing
000000 @0 DD

Reactive Systems

Vending Machine

@ |nputs: Button presses, money

@ Outputs: Coffee, Tea, Coke, Beer,
Snacks

21/48

Testing
0000000 e DTN

Testing, as traditionally done

The (much simplified) V-Model

Requirements Acceptance Test

Specification System Test

Integration Test

Unit Test

Requirements: obtained by analysing the needs of the user of
the system to be developed

22/48

Testing
0000000 e DTN

Testing, as traditionally done

The (much simplified) V-Model

Requirements Acceptance Test

Specification System Test

Integration Test

Unit Test

Specification: the functional and non-functional (performance,
timing, etc.) properties the system must have in order to fulfill
the requirements

22/48

Testing
0000000 e DTN

Testing, as traditionally done

The (much simplified) V-Model

Requirements Acceptance Test

Specification System Test

Integration Test

Unit Test

Design: description on how to structure the system, how com-
ponents should interact via what interfaces etc.

22/48

Testing
0000000 e DTN

Testing, as traditionally done

The (much simplified) V-Model

Requirements Acceptance Test

Specification System Test

Integration Test

Unit Test

Code: the actual implementation of the system components

22/48

Testing
0000000 e DTN

Testing, as traditionally done

The (much simplified) V-Model

Requirements Acceptance Test

Specification System Test

Integration Test

Unit Test

Unit Test: testing of individual components (methods, classes,
functions, procedures,...)

22/48

Testing
0000000 e DTN

Testing, as traditionally done

The (much simplified) V-Model

Requirements Acceptance Test

Specification System Test

Integration Test

Unit Test

Integration Test: testing of larger aggregations of several inter-
acting components

22/48

Testing

00000008 DD

Testing, as traditionally done

The (much simplified) V-Model

Requirements Acceptance Test

Specification System Test

Integration Test

Unit Test

System Test: testing of completely integrated system

22/48

Testing
0000000 e DTN

Testing, as traditionally done

The (much simplified) V-Model

Requirements Acceptance Test

Specification System Test

Integration Test

Unit Test

Acceptance Test: testing whether system fulfills end-users re-
quirements

22/48

Testing
000000006V

Testing framework

Test harness

Inputs
__— Implementation under test (IUT)

Outputs

23/48

Testing
00000000 &

Testing framework

Test
Executor

Outputs

23/48

Testing
00000000

Testing framework

describes what inputs to apply
__— describes expected outputs
defines criteria for test failure

Test
Executor

Outputs

23/48

Testing framework

Testing
00000000

collection of test cases

Test suite

Test
Executor

Outputs

23/48

Testing
00000000 0mW

Test cases

Acceptance Test o test_cases W“tten manua”y

System Test

Requirements.

Specification

@ writing test-cases
time-consuming —
expensive

24/48

Testing
00000000 DD

Test cases

Acceptance Test o test_cases W“tten manua”y

System Test

@ writing test-cases
time-consuming —
expensive

Requirements.

Specification

@ “one test-case per
requirement” —- not
complete

@ changes in requirements

require changes in test-suites
— continuous effort

very expensive and time
consuming

24/48

Testing
00000000 BTN

Economics of Testing

Testing takes 30% up to 50% of total development cost

Traditional Timeline

Development activities test

time

Shipment
date

25/48

Testing
00000000 RO

Economics of testing

Practical experience

@ tendency: testing delayed to the integration phase
@ test failures in the complete system not easy to diagnose

@ complete testing of the complete system much more time
demanding

@ testing continues on-site after delivery
@ this costs money

26/48

Testing
00000000 RO

Economics of testing

Practical experience

@ tendency: testing delayed to the integration phase
@ test failures in the complete system not easy to diagnose

@ complete testing of the complete system much more time
demanding

@ testing continues on-site after delivery
@ this costs money

-

Parallel development and testing

@ component-testing : saving time by parallelisation
@ tight loop between tester and developer
@ quick test-case generation

\

26/48

Testing
00000000 RO

Economics of testing

Practical experience

@ tendency: testing delayed to the integration phase
@ test failures in the complete system not easy to diagnose

@ complete testing of the complete system much more time
demanding

@ testing continues on-site after delivery
@ this costs money

Parallel development and testing

@ component-testing : saving time by parallelisation
@ tight loop between tester and developer
@ quick test-case generation

~ @ Automation seems to be a reasonable idea

26/48

Testing
00000000 DD

Economics of Testing

Testing takes 30% up to 50% of total development cost

Time: How it should be done

Development activities

test

time >

Shipment
date

27148

Testing
00000000 DD

Conclusions

@ Test automation very desirable

28/48

Testing
00000000 DD

Conclusions

@ Test automation very desirable
@ Test case generation is the bottleneck

28/48

Testing
00000000 DD

Conclusions

@ Test automation very desirable
@ Test case generation is the bottleneck

Can Formal Methods help? J

28/48

Formal Methods and Testing

e Formal Methods and Testing

29/48

Formal Methods and Testing
e0OOE000000

Formal Methods and Testing

Formal methods and software testing have been traditionally
seen as rivals. J

30/48

Formal Methods and Testing
e0OOE000000

Formal Methods and Testing

Formal methods and software testing have been traditionally
seen as rivals. J

Dijkstra: Program testing can be used
to show the presence of bugs, but
never to show their absence!

30/48

Formal Methods and Testing
e0OOE000000

Formal Methods and Testing

Formal methods and software testing have been traditionally
seen as rivals. J

to show the presence of bugs, but

Dijkstra: Program testing can be used
never to show their absence! J

R0
bl

%% Why Formal methods for testing?

30/48

Formal Methods and Testing
0eOQE000000

Formal Methods and Testing

“Formal Methods” means: the specification is formal!

31/48

Formal Methods and Testing
0eOQE000000

Formal Methods and Testing

“Formal Methods” means: the specification is formal!

Potential Benefits of using formal methods and testing together |
Reducing the cost of development by

@ Applying testing techniques much earlier in the lifecycle
— defects are relatively inexpensive to correct

31/48

Formal Methods and Testing
0eOQE000000

Formal Methods and Testing

“Formal Methods” means: the specification is formal!

Potential Benefits of using formal methods and testing together |
Reducing the cost of development by

@ Applying testing techniques much earlier in the lifecycle
— defects are relatively inexpensive to correct

@ Automation of test process

31/48

Formal Methods and Testing

0e00O000000

Formal Methods and Testing

“Formal Methods” means: the specification is formal!

Potential Benefits of using formal methods and testing together |
Reducing the cost of development by

@ Applying testing techniques much earlier in the lifecycle
— defects are relatively inexpensive to correct

@ Automation of test process
@ Generating test cases from the specification

31/48

Formal Methods and Testing

0e00O000000

Formal Methods and Testing

“Formal Methods” means: the specification is formal!

Potential Benefits of using formal methods and testing together |
Reducing the cost of development by

@ Applying testing techniques much earlier in the lifecycle
— defects are relatively inexpensive to correct

@ Automation of test process
@ Generating test cases from the specification
@ Generating correct test-executors

31/48

Formal Methods and Testing

0e00O000000

Formal Methods and Testing

“Formal Methods” means: the specification is formal!

Potential Benefits of using formal methods and testing together

Reducing the cost of development by

@ Applying testing techniques much earlier in the lifecycle
— defects are relatively inexpensive to correct

@ Automation of test process
@ Generating test cases from the specification
@ Generating correct test-executors

@ Formally describing the test-case-generation algorithm and
proving its correctness

-

31/48

Formal Methods and Testing

0Oe0O000000

Formal Methods and Testing

Hierons et al. (2009)

It may transpire that its support for test automation is one of the
most significant benefits of formal model building.

32/48

Formal Methods and Testing
0oOeI000000

Formal methods in the design of software systems

@ formal model of the system to be created (specification)
e.g. process algebra, Petri nets, timed automata . . .

33/48

Formal Methods and Testing
0oOeI000000

Formal methods in the design of software systems

@ formal model of the system to be created (specification)
e.g. process algebra, Petri nets, timed automata . . .

@ verify/model check model for design flaws
using Spin, UPPAAL, MRMC, PRISM, ...

33/48

Formal Methods and Testing
0oOeI000000

Formal methods in the design of software systems

@ formal model of the system to be created (specification)
e.g. process algebra, Petri nets, timed automata . . .

@ verify/model check model for design flaws
using Spin, UPPAAL, MRMC, PRISM, ...

@ implement system

using your wits.

33/48

Formal Methods and Testing
0oOeI000000

Formal methods in the design of software systems

@ formal model of the system to be created (specification)
e.g. process algebra, Petri nets, timed automata . . .

@ verify/model check model for design flaws
using Spin, UPPAAL, MRMC, PRISM, ...

@ implement system

using your wits.

The process of implementing software introduces errors

33/48

Formal Methods and Testing

0OO0e®000000

Specification-based testing

Use the specification to do conformance testing

34/48

Formal Methods and Testing

0OO0e®000000

Specification-based testing

Use the specification to do conformance testing

Conformance testing

Use testing to answer:

Is the implementation correct with respect to the specification?

34/48

Formal Methods and Testing
0oOoe000000

Specification-based testing

Use the specification to do conformance testing

Conformance testing
Use testing to answer:

Is the implementation correct with respect to the specification?

A good reason

if we have a specification anyway, we can well continue using it
for testing purposes

\

34/48

Formal Methods and Testing

0oOooe00000
In summary
A new picture
. [system _| Formal ‘ Test-Case
' | specification 7@\ ! *| Generator
\J
Test-Suite
Test-
Executor
pass/fail

35/48

Formal Methods and Testing

0oOooe00000
In summary
A new picture
. [system _| Formal ‘ Test-Case)
' |specification | model ! tor I mplementation
| 0 T— .
! 1 according to
: : M odel

\J

Test-Suite

Test-
Executor

pass/fail

35/48

Formal Methods and Testing

[ololoiviole] Jelelele)

A Formal Approach to Testing

The Ingredients

@ a formal behavioral specification — the intended
behaviour

36/48

Formal Methods and Testing

[ololoiviole] Jelelele)

A Formal Approach to Testing

The Ingredients

@ a formal behavioral specification — the intended
behaviour

@ the test-case generator

36/48

Formal Methods and Testing

[ololoiviole] Jelelele)

A Formal Approach to Testing

The Ingredients

@ a formal behavioral specification — the intended
behaviour

@ the test-case generator
— a provably correct test-case-gen algorithm

@ the automatically generated test-cases
@ the test executor

36/48

Formal Methods and Testing

[ololoiviole] Jelelele)

A Formal Approach to Testing

The Ingredients

@ a formal behavioral specification — the intended
behaviour

@ the test-case generator
— a provably correct test-case-gen algorithm

@ the automatically generated test-cases

@ the test executor
— adapting the abstract test-cases to the IUT

36/48

Formal Methods and Testing
lo1vlviviviele] Jelele)

A Formal Approach to Testing

How can a test-case generation algorithm be proven correct? J

37/48

Formal Methods and Testing
lo1vlviviviele] Jelele)

A Formal Approach to Testing

How can a test-case generation algorithm be proven correct? J

“Formal model” means: we are working with mathematical
objects

What we can do

@ we can go the whole way: we formalise everything

37/48

Formal Methods and Testing
lo1vlviviviele] Jelele)

A Formal Approach to Testing

How can a test-case generation algorithm be proven correct? J

“Formal model” means: we are working with mathematical
objects

What we can do

@ we can go the whole way: we formalise everything
specification, implementation, test-case, test-execution

37/48

Formal Methods and Testing
lo1vlviviviele] Jelele)

A Formal Approach to Testing

How can a test-case generation algorithm be proven correct? J

“Formal model” means: we are working with mathematical
objects

What we can do

@ we can go the whole way: we formalise everything
specification, implementation, test-case, test-execution

@ Then we can reason about the testing approach
@ explore its properties

@ show correctness of, e.g. the test-case generation
algorithm

37/48

Formal Methods and Testing
lolvlvivivielele] lele)

Pros/Cons of this approach

+ changes in system design = change in behavioural
model

+ recreation of test-cases on button press
+ less error-prone

- formal model needed (needs improvement of Software
Engineering methods)

- guestionable approach for existing systems

38/48

Formal Methods and Testing
lo1vlvivivie]elele] o)

A Formal Approach to Testing

Central Notion: Implementation Relation

@ implementation, specification:
@ expressed as Labelled Transition Systems (LTS)

@ notions of correctness: implementation relations

39/48

Formal Methods and Testing
lo1vlvivivie]elele] o)

A Formal Approach to Testing

Central Notion: Implementation Relation

@ implementation, specification:
@ expressed as Labelled Transition Systems (LTS)

@ notions of correctness: implementation relationsi,s € LTS
i<s <— i is an implementation of s
<C LTS x LTSis an implementation relation

39/48

Formal Methods and Testing
0oOoE00000e

Testing Hypothesis

Testing Theory

Theory developed solely
inside mathematical
framework

40/48

Formal Methods and Testing
0oOoE00000e

Testing Hypothesis

Testing Theory Practical Testing
Theory developed solely concerned with real-life
inside mathematical processes, program

framework systems, ...

40/48

Formal Methods and Testing
0oOoE00000e

Testing Hypothesis

Testing Theory Practical Testing
Theory developed solely concerned with real-life
inside mathematical processes, program
framework systems, ...

far from mathematical

40/48

Formal Methods and Testing
0oOoE00000e

Testing Hypothesis

Testing Theory Practical Testing
Theory developed solely concerned with real-life
inside mathematical processes, program
framework systems, ...

far from mathematical

Testing hypotheses

If we can assume, that our implementation can be modelled as
an LTS

40/48

Formal Methods and Testing
0oOoE00000e

Testing Hypothesis

Testing Theory Practical Testing
Theory developed solely concerned with real-life
inside mathematical processes, program
framework systems, ...

far from mathematical

Testing hypotheses

If we can assume, that our implementation can be modelled as
an LTS

Then the theorems and properties of our testing theory hold

40/48

Formal Methods and Testing
0oOoE00000e

Testing Hypothesis

Testing Theory Practical Testing
Theory developed solely concerned with real-life
inside mathematical processes, program
framework systems, ...

far from mathematical

Testing hypotheses

If we can assume, that our implementation can be modelled as
an LTS

Then the theorems and properties of our testing theory hold
and the test-cases report no false failures

40/48

e Contents of this Lecture

41/48

Contents
[Jelelele)

This lecture

Part 1: How to specify reactive systems
@ Labelled Transition Systems
@ A very simple calculus to specify processes

42148

Contents
[o] le]ele)

This lecture

Part 2: Distinguishing processes by observation
@ Implementation relations, Preorders
@ The linear time/branching time spectrum
@ Non-determinism

@ Observers

43/48

Contents
[e]e] lele)

This lecture

Part 3: A complete test theory
@ Labelled transition systems with inputs/outputs (IOTS)
@ Implementation relations for IOTS: ioco
@ Test-case generation
@ Correctness proofs

44148

Contents
[e]e]e] le)

This lecture

Part 4: Timed testing
@ Timed labelled transition systems (TLTS)
@ Implementation relations for TLTS
@ Test-cases
@ Timed testing using Timed Automata

45/48

Contents
[e]e]e]e])

This lecture

46/48

Conclusion

0 Conclusion

47/48

Conclusion
[]

Contact

My Coordinates

Henrik Bohnenkamp

El, Room 4210

Tel 0241 80-21203

e-mail henrik@cs.rwth-aachen.de

In case of questions
@ Pop in when you like
@ Write an e-mail

Up-to-date information
http://www-i2.informatik.rwth-aachen.de/i2/testing09/

48/48

	Technical Information
	

	Motivation
	

	Formal Methods
	

	Testing
	

	Formal Methods and Testing
	

	Contents of this Lecture
	

	Conclusion
	

