
Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing of Reactive Systems
Lecture 1: Introduction

Henrik Bohnenkamp

Lehrstuhl Informatik 2 (MOVES)
RWTH Aachen

Summer Semester 2009

1 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

1 Technical Information

2 Motivation

3 Formal Methods

4 Testing

5 Formal Methods and Testing

6 Contents of this Lecture

7 Conclusion

2 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing of Reactive Systems

Overview

Course in Theoretical Computer Science

Prerequisites: Automata Theory (ATFS, FSAP)

Language: English

Complementary to Model-Checking (overlap in basics)

Presentation

Some slides but very much on blackboard

Concise script on the web page (.pdf)

Plus accompanying slides and handouts

3 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing of Reactive Systems

Overview

Course in Theoretical Computer Science

Prerequisites: Automata Theory (ATFS, FSAP)

Language: English

Complementary to Model-Checking (overlap in basics)

Presentation

Some slides but very much on blackboard

Concise script on the web page (.pdf)

Plus accompanying slides and handouts

3 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Organisation

Lecture:
Mondays, 12:30 – 14:00, AH 3
Tuesdays, 11:45 – 13:15, AH 3
≈ 18 sessions

Exercise class:
Bi-weekly
Usually on Mondays instead of the lecture
Exception: first exercise Tuesday, 28. April
Sheets on the web page, one week in advance

Theory course in “Hauptstudium Informatik Diplom”,
“Master Informatik”, “Master Software Systems
Engineering”
Homework in Groups of at most 3 (for those who want to
take the exam mandatory!)
Written exam at end of semester (or oral exam, depending
on demand)

4 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Contact

My Coordinates

Henrik Bohnenkamp
E1, Room 4210
Tel 0241 80-21203
e-mail henrik@cs.rwth-aachen.de

In case of questions

Pop in when you like

Write an e-mail

Up-to-date information

http://www-i2.informatik.rwth-aachen.de/i2/testing09/

5 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

1 Technical Information

2 Motivation

3 Formal Methods

4 Testing

5 Formal Methods and Testing

6 Contents of this Lecture

7 Conclusion

6 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Correctness of Software Systems

Infamous Examples

Ariane 5 disaster, 1996

June 4, 1996

in essence: An integer
overflow

7 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Correctness of Software Systems

Infamous Examples

Therac 25 accidents

medical device for radiation
treatment of cancer patients,
11 installed mid 1980’s

radiation overdose

six patients injured or killed

in essence: a race condition
overlooked

7 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Correctness of Software Systems

Heathrow Terminal 5: random quotes from the web

400,000 hours of software engineering
went into the baggage handling system

8 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Correctness of Software Systems

Heathrow Terminal 5: random quotes from the web

“180 IT suppliers and run 163 IT systems,
546 interfaces, more than 9,000 con-
nected devices, 2,100 PCs and ’enough
cable to lay to Istanbul and back’ ”.

8 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Correctness of Software Systems

Heathrow Terminal 5: random quotes from the web

“Apparently the computer software told
the baggage people that the flight had
taken off. So everyone in the plane just
watched as all their suitcases were taken
back into the terminal instead of being
loaded on.”

8 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Correctness of Software Systems

Heathrow Terminal 5: random quotes from the web

“They have been doing tests on the belt
system for the last few weeks and knew
it wasn’t going right. The computer can-
not cope with the number of bags going
through.”

8 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Correctness of Software Systems

Heathrow Terminal 5: random quotes from the web

The system was tested for one year!

8 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

1 Technical Information

2 Motivation

3 Formal Methods

4 Testing

5 Formal Methods and Testing

6 Contents of this Lecture

7 Conclusion

9 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

What are “Formal Methods”?

It is all about software and systems development

Primary Idea

Writing a precise specification of a system

Using a formal or mathematical syntax to do so

Textual or graphical

Semantics, i.e., a precise meaning of the language

Formal specification eliminates ambiguity

Reduces chance of errors during software development

10 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

What are “Formal Methods”?

It is all about software and systems development

Primary Idea

Writing a precise specification of a system

Using a formal or mathematical syntax to do so

Textual or graphical

Semantics, i.e., a precise meaning of the language

Formal specification eliminates ambiguity

Reduces chance of errors during software development

10 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

What are “Formal Methods”?

It is all about software and systems development

Primary Idea

Writing a precise specification of a system

Using a formal or mathematical syntax to do so

Textual or graphical

Semantics, i.e., a precise meaning of the language

Formal specification eliminates ambiguity

Reduces chance of errors during software development

10 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

What are “Formal Methods”?

It is all about software and systems development

Primary Idea

Writing a precise specification of a system

Using a formal or mathematical syntax to do so

Textual or graphical

Semantics, i.e., a precise meaning of the language

Formal specification eliminates ambiguity

Reduces chance of errors during software development

10 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

What are “Formal Methods”?

It is all about software and systems development

Primary Idea

Writing a precise specification of a system

Using a formal or mathematical syntax to do so

Textual or graphical

Semantics, i.e., a precise meaning of the language

Formal specification eliminates ambiguity

Reduces chance of errors during software development

10 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

What are “Formal Methods”?

It is all about software and systems development

Primary Idea

Writing a precise specification of a system

Using a formal or mathematical syntax to do so

Textual or graphical

Semantics, i.e., a precise meaning of the language

Formal specification eliminates ambiguity

Reduces chance of errors during software development

10 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

What are “Formal Methods”?

Purpose of Formal Methods

Traditionally for formally verifying the correctness of
software

(Provably correct) Step-wise refinement from spec to code

Code generation

Model-checking

11 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

What are “Formal Methods”?

Purpose of Formal Methods

Traditionally for formally verifying the correctness of
software

(Provably correct) Step-wise refinement from spec to code

Code generation

Model-checking

11 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

What are “Formal Methods”?

Purpose of Formal Methods

Traditionally for formally verifying the correctness of
software

(Provably correct) Step-wise refinement from spec to code

Code generation

Model-checking

11 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

What are “Formal Methods”?

Purpose of Formal Methods

Traditionally for formally verifying the correctness of
software

(Provably correct) Step-wise refinement from spec to code

Code generation

Model-checking

11 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Benefits from Formal Methods

The process of creating a precise specification

Allows articulation of a proper understanding of the system

Reveals errors or aspects of incompleteness

Specification

Can be analysed

Can be verified correct against properties of interest
(model-checking)

. . . “Potentially automatic analysis of the relationship
between the specification and the source code.”

12 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Benefits from Formal Methods

The process of creating a precise specification

Allows articulation of a proper understanding of the system

Reveals errors or aspects of incompleteness

Specification

Can be analysed

Can be verified correct against properties of interest
(model-checking)

. . . “Potentially automatic analysis of the relationship
between the specification and the source code.”

12 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Benefits from Formal Methods

The process of creating a precise specification

Allows articulation of a proper understanding of the system

Reveals errors or aspects of incompleteness

Specification

Can be analysed

Can be verified correct against properties of interest
(model-checking)

. . . “Potentially automatic analysis of the relationship
between the specification and the source code.”

12 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Benefits from Formal Methods

The process of creating a precise specification

Allows articulation of a proper understanding of the system

Reveals errors or aspects of incompleteness

Specification

Can be analysed

Can be verified correct against properties of interest
(model-checking)

. . . “Potentially automatic analysis of the relationship
between the specification and the source code.”

12 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Benefits from Formal Methods

The process of creating a precise specification

Allows articulation of a proper understanding of the system

Reveals errors or aspects of incompleteness

Specification

Can be analysed

Can be verified correct against properties of interest
(model-checking)

. . . “Potentially automatic analysis of the relationship
between the specification and the source code.”

12 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Using Formal Methods

Essential

Means and algorithms to reason about specification

Tools-support required

Whatever you do, it must be computable. . .

. . . efficiently

13 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Using Formal Methods

Essential

Means and algorithms to reason about specification

Tools-support required

Whatever you do, it must be computable. . .

. . . efficiently

13 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

1 Technical Information

2 Motivation

3 Formal Methods

4 Testing

5 Formal Methods and Testing

6 Contents of this Lecture

7 Conclusion

14 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

What is testing?

Software testing is mostly about empirically checking
correctness, by experimenting with the system-under-test.

Performing experiments on software systems in order to
increase software quality

15 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

What is testing?

Software testing is mostly about empirically checking
correctness, by experimenting with the system-under-test.

Performing experiments on software systems in order to
increase software quality

15 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Goal of Testing?

Many attempts to answer this question:

1 . . . to show that the software is bug free
2 . . . to show that the software does what it is supposed to do
3 . . . to establish confidence that the system does as

intended
4 . . . to find errors

16 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Goal of Testing?

Many attempts to answer this question:

1 . . . to show that the software is bug free
2 . . . to show that the software does what it is supposed to do
3 . . . to establish confidence that the system does as

intended
4 . . . to find errors

1
No. Testing is inherently incomplete.

16 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Goal of Testing?

Many attempts to answer this question:

1 . . . to show that the software is bug free
2 . . . to show that the software does what it is supposed to do
3 . . . to establish confidence that the system does as

intended
4 . . . to find errors

1

Testing can show the presence of bugs, but not their absence
[Dijkstra]

16 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Goal of Testing?

Many attempts to answer this question:

1 . . . to show that the software is bug free
2 . . . to show that the software does what it is supposed to do
3 . . . to establish confidence that the system does as

intended
4 . . . to find errors

2
It can do this sometimes, but that is not enough.

16 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Goal of Testing?

Many attempts to answer this question:

1 . . . to show that the software is bug free
2 . . . to show that the software does what it is supposed to do
3 . . . to establish confidence that the system does as

intended
4 . . . to find errors

3

It can never establish confidence, only increase

16 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Goal of Testing?

Many attempts to answer this question:

1 . . . to show that the software is bug free
2 . . . to show that the software does what it is supposed to do
3 . . . to establish confidence that the system does as

intended
4 . . . to find errors

4

Testing is the process of executing a program with the
intent of finding errors.

[Meyers 1979]
16 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

So what is Testing?

Tretmans: Testing is

a technical process

performed by experimenting with or executing the software

in a controlled environment

following a specified procedure

with the intent to measure the quality of the software

demonstrating deviation of intended behaviour

17 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Test Objects

Procedures, functions, classes

terminating

monolithic

deterministic

simple input/output behaviour

simple interfaces

complication: side-effects

Example

Java methods

Java classes

Haskell program

. . .
18 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Test Objects

Procedures, functions, classes

terminating

monolithic

deterministic

simple input/output behaviour

simple interfaces

complication: side-effects

Example

Java methods

Java classes

Haskell program

. . .
18 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Test Objects

Procedures, functions, classes

terminating

monolithic

deterministic

simple input/output behaviour

simple interfaces

complication: side-effects

Example

Java methods

Java classes

Haskell program

. . .
18 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Test Objects

Processes, Reactive Systems

non-terminating

composed of interacting components

non-deterministic

complex input/output behaviour

different interfaces

19 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Reactive Systems

GUIs, web browsers, . . .

Browser:
Inputs: mouse-clicks

Outputs: change of appearance, displayed information

But also:

Outputs: HTTP-PDUs to web-servers or proxies

Inputs: HTTP-PDUs from web-servers or proxies
20 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Reactive Systems

web server

Server
HTTP

Server
HTTP

Server
HTTP

Web
Browser

click request
HTTP
Proxy

forwarded
request

reply

reply

21 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Reactive Systems

Vending Machine

Inputs: Button presses, money

Outputs: Coffee, Tea, Coke, Beer,
Snacks

21 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing, as traditionally done

The (much simplified) V-Model

Code

Design

Specification

Requirements

Unit Test

Integration Test

System Test

Acceptance Test

Requirements: obtained by analysing the needs of the user of
the system to be developed

22 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing, as traditionally done

The (much simplified) V-Model

Code

Design

Specification

Requirements

Unit Test

Integration Test

System Test

Acceptance Test

Specification: the functional and non-functional (performance,
timing, etc.) properties the system must have in order to fulfill
the requirements

22 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing, as traditionally done

The (much simplified) V-Model

Code

Design

Specification

Requirements

Unit Test

Integration Test

System Test

Acceptance Test

Design: description on how to structure the system, how com-
ponents should interact via what interfaces etc.

22 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing, as traditionally done

The (much simplified) V-Model

Code

Design

Specification

Requirements

Unit Test

Integration Test

System Test

Acceptance Test

Code: the actual implementation of the system components

22 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing, as traditionally done

The (much simplified) V-Model

Code

Design

Specification

Requirements

Unit Test

Integration Test

System Test

Acceptance Test

Unit Test: testing of individual components (methods, classes,
functions, procedures,. . . )

22 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing, as traditionally done

The (much simplified) V-Model

Code

Design

Specification

Requirements

Unit Test

Integration Test

System Test

Acceptance Test

Integration Test: testing of larger aggregations of several inter-
acting components

22 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing, as traditionally done

The (much simplified) V-Model

Code

Design

Specification

Requirements

Unit Test

Integration Test

System Test

Acceptance Test

System Test: testing of completely integrated system

22 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing, as traditionally done

The (much simplified) V-Model

Code

Design

Specification

Requirements

Unit Test

Integration Test

System Test

Acceptance Test

Acceptance Test: testing whether system fulfills end-users re-
quirements

22 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing framework

Inputs

Outputs

Test harness

Implementation under test (IUT)

23 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing framework

Inputs

Outputs

Test
Executor

23 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing framework

Inputs

Outputs

Test
Executor

defines criteria for test failure

describes what inputs to apply
describes expected outputs

Test case

23 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing framework

Inputs

Outputs

Test
Executor

collection of test cases
Test suite

23 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Test cases

V-Model

Code

Design

Specification

Requirements

Unit Test

Integration Test

System Test

Acceptance Test

Problems

test-cases written manually

writing test-cases
time-consuming =⇒

expensive

“one test-case per
requirement” =⇒ not
complete

changes in requirements
require changes in test-suites
=⇒ continuous effort

24 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Test cases

V-Model

Code

Design

Specification

Requirements

Unit Test

Integration Test

System Test

Acceptance Test

Problems

test-cases written manually

writing test-cases
time-consuming =⇒

expensive

“one test-case per
requirement” =⇒ not
complete

changes in requirements
require changes in test-suites
=⇒ continuous effort

very expensive and time
consuming

24 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Economics of Testing

Costs

Testing takes 30% up to 50% of total development cost

Traditional Timeline

Development activities

time

test

Shipment
date

Development activities

time

test

Shipment
date

Development activities

timetime

test

Shipment
date

25 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Economics of testing

Practical experience

tendency: testing delayed to the integration phase

test failures in the complete system not easy to diagnose

complete testing of the complete system much more time
demanding

testing continues on-site after delivery

this costs money

Parallel development and testing

component-testing : saving time by parallelisation

tight loop between tester and developer

quick test-case generation

Automation seems to be a reasonable idea
26 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Economics of testing

Practical experience

tendency: testing delayed to the integration phase

test failures in the complete system not easy to diagnose

complete testing of the complete system much more time
demanding

testing continues on-site after delivery

this costs money

Parallel development and testing

component-testing : saving time by parallelisation

tight loop between tester and developer

quick test-case generation

Automation seems to be a reasonable idea
26 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Economics of testing

Practical experience

tendency: testing delayed to the integration phase

test failures in the complete system not easy to diagnose

complete testing of the complete system much more time
demanding

testing continues on-site after delivery

this costs money

Parallel development and testing

component-testing : saving time by parallelisation

tight loop between tester and developer

quick test-case generation

Automation seems to be a reasonable idea
26 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Economics of Testing

Costs

Testing takes 30% up to 50% of total development cost

Time: How it should be done

Development activities

time

Shipment
date

test

Development activities

timetime

Shipment
date

test

27 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Conclusions

Test automation very desirable

Test case generation is the bottleneck

Can Formal Methods help?

28 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Conclusions

Test automation very desirable

Test case generation is the bottleneck

Can Formal Methods help?

28 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Conclusions

Test automation very desirable

Test case generation is the bottleneck

Can Formal Methods help?

28 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

1 Technical Information

2 Motivation

3 Formal Methods

4 Testing

5 Formal Methods and Testing

6 Contents of this Lecture

7 Conclusion

29 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Formal Methods and Testing

Formal methods and software testing have been traditionally
seen as rivals.

Dijkstra: Program testing can be used
to show the presence of bugs, but
never to show their absence!

Why Formal methods for testing?

30 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Formal Methods and Testing

Formal methods and software testing have been traditionally
seen as rivals.

Dijkstra: Program testing can be used
to show the presence of bugs, but
never to show their absence!

Why Formal methods for testing?

30 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Formal Methods and Testing

Formal methods and software testing have been traditionally
seen as rivals.

Dijkstra: Program testing can be used
to show the presence of bugs, but
never to show their absence!

Why Formal methods for testing?

30 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Formal Methods and Testing

“Formal Methods” means: the specification is formal!

Potential Benefits of using formal methods and testing together

Reducing the cost of development by

Applying testing techniques much earlier in the lifecycle
=⇒ defects are relatively inexpensive to correct

Automation of test process

Generating test cases from the specification

Generating correct test-executors

Formally describing the test-case-generation algorithm and
proving its correctness

31 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Formal Methods and Testing

“Formal Methods” means: the specification is formal!

Potential Benefits of using formal methods and testing together

Reducing the cost of development by

Applying testing techniques much earlier in the lifecycle
=⇒ defects are relatively inexpensive to correct

Automation of test process

Generating test cases from the specification

Generating correct test-executors

Formally describing the test-case-generation algorithm and
proving its correctness

31 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Formal Methods and Testing

“Formal Methods” means: the specification is formal!

Potential Benefits of using formal methods and testing together

Reducing the cost of development by

Applying testing techniques much earlier in the lifecycle
=⇒ defects are relatively inexpensive to correct

Automation of test process

Generating test cases from the specification

Generating correct test-executors

Formally describing the test-case-generation algorithm and
proving its correctness

31 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Formal Methods and Testing

“Formal Methods” means: the specification is formal!

Potential Benefits of using formal methods and testing together

Reducing the cost of development by

Applying testing techniques much earlier in the lifecycle
=⇒ defects are relatively inexpensive to correct

Automation of test process

Generating test cases from the specification

Generating correct test-executors

Formally describing the test-case-generation algorithm and
proving its correctness

31 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Formal Methods and Testing

“Formal Methods” means: the specification is formal!

Potential Benefits of using formal methods and testing together

Reducing the cost of development by

Applying testing techniques much earlier in the lifecycle
=⇒ defects are relatively inexpensive to correct

Automation of test process

Generating test cases from the specification

Generating correct test-executors

Formally describing the test-case-generation algorithm and
proving its correctness

31 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Formal Methods and Testing

“Formal Methods” means: the specification is formal!

Potential Benefits of using formal methods and testing together

Reducing the cost of development by

Applying testing techniques much earlier in the lifecycle
=⇒ defects are relatively inexpensive to correct

Automation of test process

Generating test cases from the specification

Generating correct test-executors

Formally describing the test-case-generation algorithm and
proving its correctness

31 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Formal Methods and Testing

Hierons et al. (2009)

It may transpire that its support for test automation is one of the
most significant benefits of formal model building.

32 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Formal methods in the design of software systems

Approach

formal model of the system to be created (specification)
e.g. process algebra, Petri nets, timed automata . . .

verify/model check model for design flaws
using Spin, UPPAAL, MRMC, PRISM, . . .

implement system
using your wits.

The process of implementing software introduces errors

33 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Formal methods in the design of software systems

Approach

formal model of the system to be created (specification)
e.g. process algebra, Petri nets, timed automata . . .

verify/model check model for design flaws
using Spin, UPPAAL, MRMC, PRISM, . . .

implement system
using your wits.

The process of implementing software introduces errors

33 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Formal methods in the design of software systems

Approach

formal model of the system to be created (specification)
e.g. process algebra, Petri nets, timed automata . . .

verify/model check model for design flaws
using Spin, UPPAAL, MRMC, PRISM, . . .

implement system
using your wits.

The process of implementing software introduces errors

33 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Formal methods in the design of software systems

Approach

formal model of the system to be created (specification)
e.g. process algebra, Petri nets, timed automata . . .

verify/model check model for design flaws
using Spin, UPPAAL, MRMC, PRISM, . . .

implement system
using your wits.

The process of implementing software introduces errors

33 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Specification-based testing

Idea

Use the specification to do conformance testing

Conformance testing

Use testing to answer:

Is the implementation correct with respect to the specification?

A good reason

if we have a specification anyway, we can well continue using it
for testing purposes

34 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Specification-based testing

Idea

Use the specification to do conformance testing

Conformance testing

Use testing to answer:

Is the implementation correct with respect to the specification?

A good reason

if we have a specification anyway, we can well continue using it
for testing purposes

34 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Specification-based testing

Idea

Use the specification to do conformance testing

Conformance testing

Use testing to answer:

Is the implementation correct with respect to the specification?

A good reason

if we have a specification anyway, we can well continue using it
for testing purposes

34 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

In summary

A new picture

pass/fail

Executor
Test-

Generator
Test-Case

model
Formal

specification
System

Test-Suite

35 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

In summary

A new picture

pass/fail

Executor
Test-

Generator
Test-Case

model
Formal

specification
System

Test-Suite

Model
according to
Implementation

35 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

A Formal Approach to Testing

The Ingredients

a formal behavioral specification =⇒ the intended
behaviour

the test-case generator
=⇒ a provably correct test-case-gen algorithm

the automatically generated test-cases

the test executor
=⇒ adapting the abstract test-cases to the IUT

36 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

A Formal Approach to Testing

The Ingredients

a formal behavioral specification =⇒ the intended
behaviour

the test-case generator
=⇒ a provably correct test-case-gen algorithm

the automatically generated test-cases

the test executor
=⇒ adapting the abstract test-cases to the IUT

36 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

A Formal Approach to Testing

The Ingredients

a formal behavioral specification =⇒ the intended
behaviour

the test-case generator
=⇒ a provably correct test-case-gen algorithm

the automatically generated test-cases

the test executor
=⇒ adapting the abstract test-cases to the IUT

36 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

A Formal Approach to Testing

The Ingredients

a formal behavioral specification =⇒ the intended
behaviour

the test-case generator
=⇒ a provably correct test-case-gen algorithm

the automatically generated test-cases

the test executor
=⇒ adapting the abstract test-cases to the IUT

36 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

A Formal Approach to Testing

How can a test-case generation algorithm be proven correct?

“Formal model” means: we are working with mathematical
objects

What we can do

we can go the whole way: we formalise everything
specification, implementation, test-case, test-execution

Then we can reason about the testing approach

explore its properties

show correctness of, e.g. the test-case generation
algorithm

37 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

A Formal Approach to Testing

How can a test-case generation algorithm be proven correct?

“Formal model” means: we are working with mathematical
objects

What we can do

we can go the whole way: we formalise everything
specification, implementation, test-case, test-execution

Then we can reason about the testing approach

explore its properties

show correctness of, e.g. the test-case generation
algorithm

37 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

A Formal Approach to Testing

How can a test-case generation algorithm be proven correct?

“Formal model” means: we are working with mathematical
objects

What we can do

we can go the whole way: we formalise everything
specification, implementation, test-case, test-execution

Then we can reason about the testing approach

explore its properties

show correctness of, e.g. the test-case generation
algorithm

37 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

A Formal Approach to Testing

How can a test-case generation algorithm be proven correct?

“Formal model” means: we are working with mathematical
objects

What we can do

we can go the whole way: we formalise everything
specification, implementation, test-case, test-execution

Then we can reason about the testing approach

explore its properties

show correctness of, e.g. the test-case generation
algorithm

37 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Pros/Cons of this approach

+ changes in system design =⇒ change in behavioural
model

+ recreation of test-cases on button press

+ less error-prone

- formal model needed (needs improvement of Software
Engineering methods)

- questionable approach for existing systems

38 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

A Formal Approach to Testing

Central Notion: Implementation Relation

implementation, specification:
expressed as Labelled Transition Systems (LTS)

notions of correctness: implementation relationsi , s ∈ LTS

i ≤ s ⇐⇒ i is an implementation of s

≤⊆ LTS × LTS is an implementation relation

39 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

A Formal Approach to Testing

Central Notion: Implementation Relation

implementation, specification:
expressed as Labelled Transition Systems (LTS)

notions of correctness: implementation relationsi , s ∈ LTS

i ≤ s ⇐⇒ i is an implementation of s

≤⊆ LTS × LTS is an implementation relation

39 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing Hypothesis

Testing Theory

Theory developed solely
inside mathematical
framework

Practical Testing

concerned with real-life
processes, program
systems, . . .

far from mathematical

Testing hypotheses

If we can assume, that our implementation can be modelled as
an LTS

Then the theorems and properties of our testing theory hold
and the test-cases report no false failures

40 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing Hypothesis

Testing Theory

Theory developed solely
inside mathematical
framework

Practical Testing

concerned with real-life
processes, program
systems, . . .

far from mathematical

Testing hypotheses

If we can assume, that our implementation can be modelled as
an LTS

Then the theorems and properties of our testing theory hold
and the test-cases report no false failures

40 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing Hypothesis

Testing Theory

Theory developed solely
inside mathematical
framework

Practical Testing

concerned with real-life
processes, program
systems, . . .

far from mathematical

Testing hypotheses

If we can assume, that our implementation can be modelled as
an LTS

Then the theorems and properties of our testing theory hold
and the test-cases report no false failures

40 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing Hypothesis

Testing Theory

Theory developed solely
inside mathematical
framework

Practical Testing

concerned with real-life
processes, program
systems, . . .

far from mathematical

Testing hypotheses

If we can assume, that our implementation can be modelled as
an LTS

Then the theorems and properties of our testing theory hold
and the test-cases report no false failures

40 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing Hypothesis

Testing Theory

Theory developed solely
inside mathematical
framework

Practical Testing

concerned with real-life
processes, program
systems, . . .

far from mathematical

Testing hypotheses

If we can assume, that our implementation can be modelled as
an LTS

Then the theorems and properties of our testing theory hold
and the test-cases report no false failures

40 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Testing Hypothesis

Testing Theory

Theory developed solely
inside mathematical
framework

Practical Testing

concerned with real-life
processes, program
systems, . . .

far from mathematical

Testing hypotheses

If we can assume, that our implementation can be modelled as
an LTS

Then the theorems and properties of our testing theory hold
and the test-cases report no false failures

40 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

1 Technical Information

2 Motivation

3 Formal Methods

4 Testing

5 Formal Methods and Testing

6 Contents of this Lecture

7 Conclusion

41 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

This lecture

Part 1: How to specify reactive systems

Labelled Transition Systems

A very simple calculus to specify processes

42 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

This lecture

Part 2: Distinguishing processes by observation

Implementation relations, Preorders

The linear time/branching time spectrum

Non-determinism

Observers

43 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

This lecture

Part 3: A complete test theory

Labelled transition systems with inputs/outputs (IOTS)

Implementation relations for IOTS: ioco

Test-case generation

Correctness proofs

44 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

This lecture

Part 4: Timed testing

Timed labelled transition systems (TLTS)

Implementation relations for TLTS

Test-cases

Timed testing using Timed Automata

45 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

This lecture

Part 5: ??

46 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

1 Technical Information

2 Motivation

3 Formal Methods

4 Testing

5 Formal Methods and Testing

6 Contents of this Lecture

7 Conclusion

47 / 48



Technical Info Motivation Formal Methods Testing Formal Methods and Testing Contents Conclusion

Contact

My Coordinates

Henrik Bohnenkamp
E1, Room 4210
Tel 0241 80-21203
e-mail henrik@cs.rwth-aachen.de

In case of questions

Pop in when you like

Write an e-mail

Up-to-date information

http://www-i2.informatik.rwth-aachen.de/i2/testing09/

48 / 48


	Technical Information
	

	Motivation
	

	Formal Methods
	

	Testing
	

	Formal Methods and Testing
	

	Contents of this Lecture
	

	Conclusion
	


