
Actions LTS Language

Testing of Reactive Systems

Lecture 2: Modelling Reactive Systems

Henrik Bohnenkamp

Lehrstuhl Informatik 2 (MOVES)
RWTH Aachen

Summer Semester 2009

1 / 29

Actions LTS Language

1 Actions

2 Labelled Transition Systems

3 A language to describe LTS

2 / 29

Actions LTS Language

Actions

Actions are

express activity of the modelled system

are executed

are atomic (execution is indivisible)

Actions are used to observe or to influence a system.
Actions might be

triggered

or inhibited

3 / 29

Actions LTS Language

Actions

Actions are

express activity of the modelled system

are executed

are atomic (execution is indivisible)

Actions are used to observe or to influence a system.
Actions might be

triggered

or inhibited

3 / 29

Actions LTS Language

Actions

Actions are

express activity of the modelled system

are executed

are atomic (execution is indivisible)

Actions are used to observe or to influence a system.
Actions might be

triggered

or inhibited

3 / 29

Actions LTS Language

Example

Triggered or Inhibited

Consider action a=̂ “Receiving a message over some channel”

Triggered: a triggered, if somebody actually sends a message
over the channel

Inhibited: a inhibited, if there is no message

4 / 29

Actions LTS Language

Actions

Definition

Let Act be the set of actions.

Note

Actions similar to symbols in an Alphabet (cf. Automata Theory).

Act ∗: the set of finite words over Act

ε: the empty word

Act+ = Act∗ \ ε

v · w : concatenation of words v ,w ∈ Act∗

5 / 29

Actions LTS Language

Actions

Definition

Let Act be the set of actions.

Note

Actions similar to symbols in an Alphabet (cf. Automata Theory).

Act ∗: the set of finite words over Act

ε: the empty word

Act+ = Act∗ \ ε

v · w : concatenation of words v ,w ∈ Act∗

5 / 29

Actions LTS Language

Observability

Actions a ∈ Act are considered observable

Let τ 6∈ Act : τ is the

silent or
unobservable

action.

Why only one unobservable action?

Definition

Act τ = Act ∪ {τ}.

6 / 29

Actions LTS Language

Observability

Actions a ∈ Act are considered observable

Let τ 6∈ Act : τ is the

silent or
unobservable

action.

Why only one unobservable action?

Definition

Act τ = Act ∪ {τ}.

6 / 29

Actions LTS Language

Observability

Actions a ∈ Act are considered observable

Let τ 6∈ Act : τ is the

silent or
unobservable

action.

Why only one unobservable action?

Definition

Act τ = Act ∪ {τ}.

6 / 29

Actions LTS Language

1 Actions

2 Labelled Transition Systems

3 A language to describe LTS

7 / 29

Actions LTS Language

Labelled Transition Systems

Labelled Transition System

One of the most fundamental models in theoretical computer
science

Ingredients: States, Transitions, Actions

Definition

A Labelled Transition System L is a tuple L = (S ,Act ,→), with:

S is a set of states

Act is a set of actions

→⊆ S × (Act ∪ {τ}) × S is the transition relation

8 / 29

Actions LTS Language

Labelled Transition Systems

Labelled Transition System

One of the most fundamental models in theoretical computer
science

Ingredients: States, Transitions, Actions

Definition

A Labelled Transition System L is a tuple L = (S ,Act ,→), with:

S is a set of states

Act is a set of actions

→⊆ S × (Act ∪ {τ}) × S is the transition relation

8 / 29

Actions LTS Language

Example

Coffee 1

Let L = (S ,Act ,→)
S = {s1, s2, s3, s4}
Act = {coffee,tea,button}.

(s, a, s ′) ∈→: s source state,
s ′ target state

We write s a→ s ′ if
(s, a, s ′) ∈→.

s3 s4

s2

s1

button

coffee

tea

τ
τ

9 / 29

Actions LTS Language

Example

Coffee 1

Let L = (S ,Act ,→)
S = {s1, s2, s3, s4}
Act = {coffee,tea,button}.

(s, a, s ′) ∈→: s source state,
s ′ target state

We write s a→ s ′ if
(s, a, s ′) ∈→.

s3 s4

s2

s1

button

coffee

tea

τ
τ

9 / 29

Actions LTS Language

Example

Coffee 1

Let L = (S ,Act ,→)
S = {s1, s2, s3, s4}
Act = {coffee,tea,button}.

(s, a, s ′) ∈→: s source state,
s ′ target state

We write s a→ s ′ if
(s, a, s ′) ∈→.

s3 s4

s2

s1

button

coffee

tea

τ
τ

9 / 29

Actions LTS Language

Deadlock

Deadlock

s ∈ S absorbing: s 6 a→ ∀a ∈ Act τ

Alternatively: s is deadlocked

Abbreviation: s 6→ iff s is deadlocked.

10 / 29

Actions LTS Language

Derived Transition Relations

Definition: Generalising →

For σ = a1 · a2 · · · · · an ∈ Act+
τ
:

p σ→ p′
iff ∃p0, . . . , pn ∈ S :

p0
a1→ p1, p1

a2→ p2, · · · , pn−1
an→ pn

where p = p0 and p′ = pn.

Note that τ is allowed in σ.

Abbreviations

p σ→ iff ∃p′ ∈ S : p σ→ p′
,

p
σ

−−→6 iff ¬∃p′ ∈ S : p σ→ p′
,

11 / 29

Actions LTS Language

Derived Transition Relations

Definition: Generalising →

For σ = a1 · a2 · · · · · an ∈ Act+
τ
:

p σ→ p′
iff ∃p0, . . . , pn ∈ S :

p0
a1→ p1, p1

a2→ p2, · · · , pn−1
an→ pn

where p = p0 and p′ = pn.

Note that τ is allowed in σ.

Abbreviations

p σ→ iff ∃p′ ∈ S : p σ→ p′
,

p
σ

−−→6 iff ¬∃p′ ∈ S : p σ→ p′
,

11 / 29

Actions LTS Language

Derived Transition Relations

Definition: Generalising →

For σ = a1 · a2 · · · · · an ∈ Act+
τ
:

p σ→ p′
iff ∃p0, . . . , pn ∈ S :

p0
a1→ p1, p1

a2→ p2, · · · , pn−1
an→ pn

where p = p0 and p′ = pn.

Note that τ is allowed in σ.

Abbreviations

p σ→ iff ∃p′ ∈ S : p σ→ p′
,

p
σ

−−→6 iff ¬∃p′ ∈ S : p σ→ p′
,

11 / 29

Actions LTS Language

Derived Transition Relations

Definition: Abstracting from τ

p
ε

=⇒ p′ iff p = p′or p τ
n

→ p′ for some n

p
a

=⇒ p′ iff ∃p1, p2 ∈ S : p
ε

=⇒ p1
a→ p2

ε

=⇒ p′

p
σ·a

==⇒ p′ iff ∃p′′ ∈ S : p
σ

=⇒ p′′ a
=⇒ p′

With the =⇒ relation we abstract from τ transitions.

p
σ

=⇒ and p 6
σ

=⇒ are defined analogous to “→” before.

12 / 29

Actions LTS Language

Derived Transition Relations

Definition: Abstracting from τ

p
ε

=⇒ p′ iff p = p′or p τ
n

→ p′ for some n

p
a

=⇒ p′ iff ∃p1, p2 ∈ S : p
ε

=⇒ p1
a→ p2

ε

=⇒ p′

p
σ·a

==⇒ p′ iff ∃p′′ ∈ S : p
σ

=⇒ p′′ a
=⇒ p′

With the =⇒ relation we abstract from τ transitions.

p
σ

=⇒ and p 6
σ

=⇒ are defined analogous to “→” before.

12 / 29

Actions LTS Language

Derived Transition Relations

Definition: Abstracting from τ

p
ε

=⇒ p′ iff p = p′or p τ
n

→ p′ for some n

p
a

=⇒ p′ iff ∃p1, p2 ∈ S : p
ε

=⇒ p1
a→ p2

ε

=⇒ p′

p
σ·a

==⇒ p′ iff ∃p′′ ∈ S : p
σ

=⇒ p′′ a
=⇒ p′

With the =⇒ relation we abstract from τ transitions.

p
σ

=⇒ and p 6
σ

=⇒ are defined analogous to “→” before.

12 / 29

Actions LTS Language

Example

Some derived transitions

s3 s4

s2

s1

button

coffee

tea

τ
τ

1 s1
button·coffee−−−−−−−−−−−−−→ s3

2 s1
button·coffee·τ−−−−−−−−−−−−−−−−→ s1

3 s1
button·tea

========⇒ s4, but also

4 s1
button·tea

========⇒ s1

13 / 29

Actions LTS Language

Traces

Describing Dynamic Behaviour of LTS

∃ many different approaches to describe behaviour of LTS

most basic: traces

Definition: Traces

Let s ∈ S . The set of traces of s, denoted traces(s), is defined as

traces(s) = {σ ∈ Act ∗ | s
σ

=⇒}.

14 / 29

Actions LTS Language

Traces

Describing Dynamic Behaviour of LTS

∃ many different approaches to describe behaviour of LTS

most basic: traces

Definition: Traces

Let s ∈ S . The set of traces of s, denoted traces(s), is defined as

traces(s) = {σ ∈ Act ∗ | s
σ

=⇒}.

14 / 29

Actions LTS Language

Traces

Note

traces traces(s) are actually a language

if we see LTS L as an NFA with

start state s

all states s ′ ∈ S accepting

then traces(s) is the language accepted by this automaton.

One more note

We will refer to all words σ ∈ Act∗ as traces

i.e., we will use word and trace synonymously.

15 / 29

Actions LTS Language

Traces

Note

traces traces(s) are actually a language

if we see LTS L as an NFA with

start state s

all states s ′ ∈ S accepting

then traces(s) is the language accepted by this automaton.

One more note

We will refer to all words σ ∈ Act∗ as traces

i.e., we will use word and trace synonymously.

15 / 29

Actions LTS Language

Traces

Note

traces traces(s) are actually a language

if we see LTS L as an NFA with

start state s

all states s ′ ∈ S accepting

then traces(s) is the language accepted by this automaton.

One more note

We will refer to all words σ ∈ Act∗ as traces

i.e., we will use word and trace synonymously.

15 / 29

Actions LTS Language

Traces

Note

traces traces(s) are actually a language

if we see LTS L as an NFA with

start state s

all states s ′ ∈ S accepting

then traces(s) is the language accepted by this automaton.

One more note

We will refer to all words σ ∈ Act∗ as traces

i.e., we will use word and trace synonymously.

15 / 29

Actions LTS Language

Example

s3 s4

s2

s1

button

coffee

tea

τ
τ

traces(s3) = {ε,

button,button · tea,

button · tea · button,

. . .} = traces(s1) = traces(s4)

traces(s2) = {ε,

tea,coffee,

tea · button

tea · button · tea

. . .}

= coffee · traces(s1)

∪tea · traces(s1)

∪{ε} 16 / 29

Actions LTS Language

Reachable states

What states can be reached from state s with trace σ?

Definition: after

For s ∈ S , σ ∈ Act ∗:

s after σ := {s ′ | s
σ

=⇒ s ′}

For S ′ ⊆ S : S after σ :=
⋃

s∈S ′ s after σ

For A ⊆ Act ∗: s after A :=
⋃

σ∈A
s after σ

Note

s after Act ∗ are called the derivatives of s, or reachable states
from s.

17 / 29

Actions LTS Language

Reachable states

What states can be reached from state s with trace σ?

Definition: after

For s ∈ S , σ ∈ Act ∗:

s after σ := {s ′ | s
σ

=⇒ s ′}

For S ′ ⊆ S : S after σ :=
⋃

s∈S ′ s after σ

For A ⊆ Act ∗: s after A :=
⋃

σ∈A
s after σ

Note

s after Act ∗ are called the derivatives of s, or reachable states
from s.

17 / 29

Actions LTS Language

Reachable states

What states can be reached from state s with trace σ?

Definition: after

For s ∈ S , σ ∈ Act ∗:

s after σ := {s ′ | s
σ

=⇒ s ′}

For S ′ ⊆ S : S after σ :=
⋃

s∈S ′ s after σ

For A ⊆ Act ∗: s after A :=
⋃

σ∈A
s after σ

Note

s after Act ∗ are called the derivatives of s, or reachable states
from s.

17 / 29

Actions LTS Language

Reachable states

What states can be reached from state s with trace σ?

Definition: after

For s ∈ S , σ ∈ Act ∗:

s after σ := {s ′ | s
σ

=⇒ s ′}

For S ′ ⊆ S : S after σ :=
⋃

s∈S ′ s after σ

For A ⊆ Act ∗: s after A :=
⋃

σ∈A
s after σ

Note

s after Act ∗ are called the derivatives of s, or reachable states
from s.

17 / 29

Actions LTS Language

Nondeterminism

Definition: Deterministic LTS

A state s ∈ S is called deterministic iff

∀σ ∈ traces(s) : |s after σ| = 1

An LTS is called determinstic, if all its states are deterministic

An LTS that is not deterministic is non-deterministic

Note:

Equivalent is: ∀σ ∈ Act ∗ : |s after σ| ≤ 1 (Why?).

18 / 29

Actions LTS Language

Nondeterminism

Definition: Deterministic LTS

A state s ∈ S is called deterministic iff

∀σ ∈ traces(s) : |s after σ| = 1

An LTS is called determinstic, if all its states are deterministic

An LTS that is not deterministic is non-deterministic

Note:

Equivalent is: ∀σ ∈ Act ∗ : |s after σ| ≤ 1 (Why?).

18 / 29

Actions LTS Language

Nondeterminism

Definition: Deterministic LTS

A state s ∈ S is called deterministic iff

∀σ ∈ traces(s) : |s after σ| = 1

An LTS is called determinstic, if all its states are deterministic

An LTS that is not deterministic is non-deterministic

Note:

Equivalent is: ∀σ ∈ Act ∗ : |s after σ| ≤ 1 (Why?).

18 / 29

Actions LTS Language

Nondeterminism

Sources of nondeterminism

1 nondeterministic branching: two outgoing transitions with
same action

2 τ -transitions

19 / 29

Actions LTS Language

Example

s3 s4

s2

s1

button

coffee

tea

τ
τ

1 s1 after button · coffee =

2 s2 after tea =

3 s3 after ε =

4 s4 after button · tea =

Nondeterminism is here solely caused by the τ -transitions.

20 / 29

Actions LTS Language

Example

s3 s4

s2

s1

button

coffee

tea

τ
τ

1 s1 after button · coffee = {s3, s1}

2 s2 after tea =

3 s3 after ε =

4 s4 after button · tea =

Nondeterminism is here solely caused by the τ -transitions.

20 / 29

Actions LTS Language

Example

s3 s4

s2

s1

button

coffee

tea

τ
τ

1 s1 after button · coffee = {s3, s1}

2 s2 after tea = {s4, s1}

3 s3 after ε =

4 s4 after button · tea =

Nondeterminism is here solely caused by the τ -transitions.

20 / 29

Actions LTS Language

Example

s3 s4

s2

s1

button

coffee

tea

τ
τ

1 s1 after button · coffee = {s3, s1}

2 s2 after tea = {s4, s1}

3 s3 after ε = {s3, s1}

4 s4 after button · tea =

Nondeterminism is here solely caused by the τ -transitions.

20 / 29

Actions LTS Language

Example

s3 s4

s2

s1

button

coffee

tea

τ
τ

1 s1 after button · coffee = {s3, s1}

2 s2 after tea = {s4, s1}

3 s3 after ε = {s3, s1}

4 s4 after button · tea = {s4, s1}

Nondeterminism is here solely caused by the τ -transitions.

20 / 29

Actions LTS Language

Example

s3 s4

s2

s1

button

coffee

tea

τ
τ

1 s1 after button · coffee = {s3, s1}

2 s2 after tea = {s4, s1}

3 s3 after ε = {s3, s1}

4 s4 after button · tea = {s4, s1}

Nondeterminism is here solely caused by the τ -transitions.

20 / 29

Actions LTS Language

Example

s2 s3

s1

button button

coffee tea

1 s1 after button =

2 s1 after button · tea =

3 s2 after coffee · button =

21 / 29

Actions LTS Language

Example

s2 s3

s1

button button

coffee tea

1 s1 after button = {s2, s3}

2 s1 after button · tea =

3 s2 after coffee · button =

21 / 29

Actions LTS Language

Example

s2 s3

s1

button button

coffee tea

1 s1 after button = {s2, s3}

2 s1 after button · tea = {s1}

3 s2 after coffee · button =

21 / 29

Actions LTS Language

Example

s2 s3

s1

button button

coffee tea

1 s1 after button = {s2, s3}

2 s1 after button · tea = {s1}

3 s2 after coffee · button = {s2, s3}

21 / 29

Actions LTS Language

1 Actions

2 Labelled Transition Systems

3 A language to describe LTS

22 / 29

Actions LTS Language

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

0 is a regular expression.

1 is a regular expression.

for a ∈ Act : a is a regular expression.

for e, e′ regular expressions:

e · e ′ is a regular expression.
e|e ′ is a regular expression.
e∗ is a regular expression.

Regular expressions can be turned into finite automata

We shall now define expressions that describe LTS. We will call
these expressions processes.

23 / 29

Actions LTS Language

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

0 is a regular expression.

1 is a regular expression.

for a ∈ Act : a is a regular expression.

for e, e′ regular expressions:

e · e ′ is a regular expression.
e|e ′ is a regular expression.
e∗ is a regular expression.

Regular expressions can be turned into finite automata

We shall now define expressions that describe LTS. We will call
these expressions processes.

23 / 29

Actions LTS Language

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

0 is a regular expression.

1 is a regular expression.

for a ∈ Act : a is a regular expression.

for e, e′ regular expressions:

e · e ′ is a regular expression.
e|e ′ is a regular expression.
e∗ is a regular expression.

Regular expressions can be turned into finite automata

We shall now define expressions that describe LTS. We will call
these expressions processes.

23 / 29

Actions LTS Language

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

0 is a regular expression.

1 is a regular expression.

for a ∈ Act : a is a regular expression.

for e, e′ regular expressions:

e · e ′ is a regular expression.
e|e ′ is a regular expression.
e∗ is a regular expression.

Regular expressions can be turned into finite automata

We shall now define expressions that describe LTS. We will call
these expressions processes.

23 / 29

Actions LTS Language

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

0 is a regular expression.

1 is a regular expression.

for a ∈ Act : a is a regular expression.

for e, e′ regular expressions:

e · e ′ is a regular expression.
e|e ′ is a regular expression.
e∗ is a regular expression.

Regular expressions can be turned into finite automata

We shall now define expressions that describe LTS. We will call
these expressions processes.

23 / 29

Actions LTS Language

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

0 is a regular expression.

1 is a regular expression.

for a ∈ Act : a is a regular expression.

for e, e′ regular expressions:

e · e ′ is a regular expression.
e|e ′ is a regular expression.
e∗ is a regular expression.

Regular expressions can be turned into finite automata

We shall now define expressions that describe LTS. We will call
these expressions processes.

23 / 29

Actions LTS Language

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

0 is a regular expression.

1 is a regular expression.

for a ∈ Act : a is a regular expression.

for e, e′ regular expressions:

e · e ′ is a regular expression.
e|e ′ is a regular expression.
e∗ is a regular expression.

Regular expressions can be turned into finite automata

We shall now define expressions that describe LTS. We will call
these expressions processes.

23 / 29

Actions LTS Language

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

0 is a regular expression.

1 is a regular expression.

for a ∈ Act : a is a regular expression.

for e, e′ regular expressions:

e · e ′ is a regular expression.
e|e ′ is a regular expression.
e∗ is a regular expression.

Regular expressions can be turned into finite automata

We shall now define expressions that describe LTS. We will call
these expressions processes.

23 / 29

Actions LTS Language

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

0 is a regular expression.

1 is a regular expression.

for a ∈ Act : a is a regular expression.

for e, e′ regular expressions:

e · e ′ is a regular expression.
e|e ′ is a regular expression.
e∗ is a regular expression.

Regular expressions can be turned into finite automata

We shall now define expressions that describe LTS. We will call
these expressions processes.

23 / 29

Actions LTS Language

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

0 is a regular expression.

1 is a regular expression.

for a ∈ Act : a is a regular expression.

for e, e′ regular expressions:

e · e ′ is a regular expression.
e|e ′ is a regular expression.
e∗ is a regular expression.

Regular expressions can be turned into finite automata

We shall now define expressions that describe LTS. We will call
these expressions processes.

23 / 29

Actions LTS Language

A language to describe LTS

Definition: Processes IP

Let P be the set of process variables.

Let Act be a set of actions.

The set IP of processes is the language defined by the
following grammar:

p → STOP a.p p+p p‖Ap P

where a ∈ Act τ , A ⊆ Act , and P ∈ P.

Process definitions are of the form

P =̂ p

with p ∈ IP and P ∈ P.

24 / 29

Actions LTS Language

A language to describe LTS

Definition: Processes IP

Let P be the set of process variables.

Let Act be a set of actions.

The set IP of processes is the language defined by the
following grammar:

p → STOP a.p p+p p‖Ap P

where a ∈ Act τ , A ⊆ Act , and P ∈ P.

Process definitions are of the form

P =̂ p

with p ∈ IP and P ∈ P.

24 / 29

Actions LTS Language

A language to describe LTS

Definition: Processes IP

Let P be the set of process variables.

Let Act be a set of actions.

The set IP of processes is the language defined by the
following grammar:

p → STOP a.p p+p p‖Ap P

where a ∈ Act τ , A ⊆ Act , and P ∈ P.

Process definitions are of the form

P =̂ p

with p ∈ IP and P ∈ P.

24 / 29

Actions LTS Language

A language to describe LTS

Definition: Processes IP

Let P be the set of process variables.

Let Act be a set of actions.

The set IP of processes is the language defined by the
following grammar:

p → STOP a.p p+p p‖Ap P

where a ∈ Act τ , A ⊆ Act , and P ∈ P.

Process definitions are of the form

P =̂ p

with p ∈ IP and P ∈ P.

24 / 29

Actions LTS Language

A language to describe LTS

p → STOP a.p p+p p‖Ap P

Informal Meaning

Let p, q ∈ IP.

STOP: is the process that does nothing, is deadlocked.

a.p: executes action a ∈ Act τ and behaves like process p.
the prefix operator

p + q: behaves either like process p or q.
the choice operator

p‖Aq: behaves like p and q running in parallel,
synchronising over synchronisation set A

the parallel operator

P : if P =̂ p, then P behaves exactly like p
25 / 29

Actions LTS Language

A language to describe LTS

p → STOP a.p p+p p‖Ap P

Informal Meaning

Let p, q ∈ IP.

STOP: is the process that does nothing, is deadlocked.

a.p: executes action a ∈ Act τ and behaves like process p.
the prefix operator

p + q: behaves either like process p or q.
the choice operator

p‖Aq: behaves like p and q running in parallel,
synchronising over synchronisation set A

the parallel operator

P : if P =̂ p, then P behaves exactly like p
25 / 29

Actions LTS Language

A language to describe LTS

p → STOP a.p p+p p‖Ap P

Informal Meaning

Let p, q ∈ IP.

STOP: is the process that does nothing, is deadlocked.

a.p: executes action a ∈ Act τ and behaves like process p.
the prefix operator

p + q: behaves either like process p or q.
the choice operator

p‖Aq: behaves like p and q running in parallel,
synchronising over synchronisation set A

the parallel operator

P : if P =̂ p, then P behaves exactly like p
25 / 29

Actions LTS Language

A language to describe LTS

p → STOP a.p p+p p‖Ap P

Informal Meaning

Let p, q ∈ IP.

STOP: is the process that does nothing, is deadlocked.

a.p: executes action a ∈ Act τ and behaves like process p.
the prefix operator

p + q: behaves either like process p or q.
the choice operator

p‖Aq: behaves like p and q running in parallel,
synchronising over synchronisation set A

the parallel operator

P : if P =̂ p, then P behaves exactly like p
25 / 29

Actions LTS Language

A language to describe LTS

p → STOP a.p p+p p‖Ap P

Informal Meaning

Let p, q ∈ IP.

STOP: is the process that does nothing, is deadlocked.

a.p: executes action a ∈ Act τ and behaves like process p.
the prefix operator

p + q: behaves either like process p or q.
the choice operator

p‖Aq: behaves like p and q running in parallel,
synchronising over synchronisation set A

the parallel operator

P : if P =̂ p, then P behaves exactly like p
25 / 29

Actions LTS Language

A language to describe LTS

p → STOP a.p p+p p‖Ap P

Informal Meaning

Let p, q ∈ IP.

STOP: is the process that does nothing, is deadlocked.

a.p: executes action a ∈ Act τ and behaves like process p.
the prefix operator

p + q: behaves either like process p or q.
the choice operator

p‖Aq: behaves like p and q running in parallel,
synchronising over synchronisation set A

the parallel operator

P : if P =̂ p, then P behaves exactly like p
25 / 29

Actions LTS Language

A language to describe LTS

p → STOP a.p p+p p‖Ap P

Informal Meaning

Let p, q ∈ IP.

STOP: is the process that does nothing, is deadlocked.

a.p: executes action a ∈ Act τ and behaves like process p.
the prefix operator

p + q: behaves either like process p or q.
the choice operator

p‖Aq: behaves like p and q running in parallel,
synchronising over synchronisation set A

the parallel operator

P : if P =̂ p, then P behaves exactly like p
25 / 29

Actions LTS Language

A language to describe LTS

p → STOP a.p p+p p‖Ap P

Informal Meaning

Let p, q ∈ IP.

STOP: is the process that does nothing, is deadlocked.

a.p: executes action a ∈ Act τ and behaves like process p.
the prefix operator

p + q: behaves either like process p or q.
the choice operator

p‖Aq: behaves like p and q running in parallel,
synchronising over synchronisation set A

the parallel operator

P : if P =̂ p, then P behaves exactly like p
25 / 29

Actions LTS Language

A language to describe LTS

Note

The parallel operator makes this language very powerful:

componentwise independent specification possible

combination by parallel composition

Note 2

Behaviour of a process can be described by LTS.

processes are also states, i.e., IP is the set of states of the LTS
that we will consider.

26 / 29

Actions LTS Language

A language to describe LTS

Note

The parallel operator makes this language very powerful:

componentwise independent specification possible

combination by parallel composition

Note 2

Behaviour of a process can be described by LTS.

processes are also states, i.e., IP is the set of states of the LTS
that we will consider.

26 / 29

Actions LTS Language

A language to describe LTS

Note

The parallel operator makes this language very powerful:

componentwise independent specification possible

combination by parallel composition

Note 2

Behaviour of a process can be described by LTS.

processes are also states, i.e., IP is the set of states of the LTS
that we will consider.

26 / 29

Actions LTS Language

Example 1.3.2: Some simple processes

27 / 29

Actions LTS Language

A language to describe LTS

Recursion

Up til now only terminating (= deadlocking) processes

Use process definitions for non-terminating behaviour

. . . recursive process definitions

28 / 29

Actions LTS Language

A language to describe LTS

Recursion

Up til now only terminating (= deadlocking) processes

Use process definitions for non-terminating behaviour

. . . recursive process definitions

28 / 29

Actions LTS Language

A language to describe LTS

Recursion

Up til now only terminating (= deadlocking) processes

Use process definitions for non-terminating behaviour

. . . recursive process definitions

28 / 29

Actions LTS Language

Example 1.3.3

Coffee 1

s3 s4

s2

s1

button

coffee

tea

τ
τ

29 / 29

Actions LTS Language

Example 1.3.3

Coffee 2

s2 s3

s1

button button

coffee tea

29 / 29

	Actions
	

	Labelled Transition Systems
	

	A language to describe LTS
	

