Testing of Reactive Systems

Lecture 2:

Henrik Bohnenkamp

Lehrstuhl Informatik 2 (MOVES)
RWTH Aachen

Summer Semester 2009

© Actions

2/29

Actions
[leJe]e]

Actions

Actions are

@ express activity of the modelled system

@ are executed

@ are atomic (execution is indivisible)

Actions
[leJe]e]

Actions

Actions are

@ express activity of the modelled system

@ are executed

@ are atomic (execution is indivisible)

Actions are used to observe or to influence a system.

Actions
[leJe]e]

Actions

Actions are

@ express activity of the modelled system

@ are executed

@ are atomic (execution is indivisible)
Actions are used to observe or to influence a system.
Actions might be

@ triggered

@ or inhibited)

Actions
[e] Je]e]

Example

Triggered or Inhibited
Consider action a= “Receiving a message over some channel’

Triggered: a triggered, if somebody actually sends a message
over the channel

Inhibited: a inhibited, if there is no message

Actions
[e]e] o]

Actions

Definition
Let Act be the set of actions.

Actions
[e]e] o]

Actions

Definition
Let Act be the set of actions.

Actions similar to symbols in an Alphabet (cf. Automata Theory).

@ Act*: the set of finite words over Act
@ &: the empty word
o Actt = Act*\ e

@ v - w: concatenation of words v, w € Act*

\

Actions
[e]e]e])

Observability

@ Actions a € Act are considered observable
o Let 7 ¢ Act: T is the

@ silent or
@ unobservable

action.

Actions
[e]e]e])

Observability

@ Actions a € Act are considered observable
o Let 7 ¢ Act: T is the

@ silent or
@ unobservable

action.

Why only one unobservable action?

Actions
[e]e]e])

Observability

@ Actions a € Act are considered observable
o Let 7 ¢ Act: T is the

@ silent or
@ unobservable

action.

Why only one unobservable action?

Definition
Act; = Act U {r}.

LTS

© Labelled Transition Systems

7/29

LTS
©0000000000000

Labelled Transition Systems

Labelled Transition System

@ One of the most fundamental models in theoretical computer
science

@ Ingredients: States, Transitions, Actions

LTS
©0000000000000

Labelled Transition Systems

Labelled Transition System

@ One of the most fundamental models in theoretical computer
science

@ Ingredients: States, Transitions, Actions

A Labelled Transition System L is a tuple L = (S, Act,—), with:

@ S is a set of states

@ Act is a set of actions
@ —C S x (Act U{7}) x S is the transition relation

N

LTS
0®000000000000

Example

Coffee 1
Let L = (S, Act,—)

S={s1,%,53,5}
Act = {COFFEE, TEA, BUTTON}.

BUTTON

COFFEE

LTS
0®000000000000

Example

Coffee 1
Let L = (S,Act’—>)

S={s1,%,53,5}
Act = {COFFEE, TEA, BUTTON}.

o (s,a,s’) €—: s source state, BUTTON

s’ target state

COFFEE

LTS
0®000000000000

Example

Coffee 1
Let L = (S,Act’—>)

S={s1,%,53,5}
Act = {COFFEE, TEA, BUTTON}.

o (s,a,s’) €—: s source state, BUTTON

s’ target state
o We write s -2 ¢ if
(s,a,s") e—.

COFFEE

LTS
00®00000000000

Deadlock

Deadlock
@ s € S absorbing: s % Va € Act,

@ Alternatively: s is deadlocked
@ Abbreviation: s 4 iff s is deadlocked.

10/29

LTS
000®0000000000

Derived Transition Relations

Definition: Generalising —

Forc=aj-ap-----ap € Act;:

pZp iff 3Ipy,...,pn€S:
po 2% p1,p122 P2, Pa1 23 Pn

where p = pg and p’ = p,.

LTS
000®0000000000

Derived Transition Relations

Definition: Generalising —

Forc=aj-ap-----ap € Act;:

pZp iff 3Ipy,...,pn€S:
po 2% p1,p122 P2, Pa1 23 Pn

where p = pg and p’ = p,.

Note that 7 is allowed in o.

LTS
000®0000000000

Derived Transition Relations

Definition: Generalising —

Foroc=aj-ax-----a, € Act:

pZp iff 3Ipy,...,pn€S:
po 2% p1,p122 P2, Pa1 23 Pn

where p = pg and p’ = p,.

Note that 7 is allowed in o.

-

p% iff 3pPeS:pTp,
p—7— iff =3p'eS:pSp,

A\

LTS

0O000@000000000

Derived Transition Relations

Definition: Abstracting from 7

p==p iff p=plor p p for some n
p==p iff Ip,pp€S:ip=p1>p=p
p==p iff " eS:p=p'=p

LTS

0O000@000000000

Derived Transition Relations

Definition: Abstracting from 7

p==p iff p=plor p p for some n
p==p iff Ip,pp€S:ip=p1>p=p
p==p iff " eS:p=p'=p

@ With the = relation we abstract from 7 transitions.

LTS

0O000@000000000

Derived Transition Relations

Definition: Abstracting from 7

p==p iff p=plor p p for some n
p==p iff Ip,pp€S:ip=p1>p=p
p==p iff " eS:p=p'=p

@ With the = relation we abstract from 7 transitions.

@ p == and p #= are defined analogous to “—" before.

Example

LTS

0O0000@00000000

Some derived t itions

COFFEE

00060

S1
S1
S1

S1

BUTTON:COFFEE

53
BUTTON-COFFEE-T

S1
BUTTON-TEA
sa, but also
BUTTON-TEA

S1

LTS
00000080000000

Traces

Describing Dynamic Behaviour of LTS

@ 1 many different approaches to describe behaviour of LTS

@ most basic: traces

LTS

000000 e0000000

Traces

Describing Dynamic Behaviour of LTS

@ 1 many different approaches to describe behaviour of LTS

@ most basic: traces

4

Definition: Traces

Let s € S. The set of traces of s, denoted traces(s), is defined as

traces(s) = {0 € Act* | s ==}.

\

14 /29

LTS
00000008000000

Traces

@ traces traces(s) are actually a language

LTS
00000008000000

Traces

@ traces traces(s) are actually a language
@ if we see LTS L as an NFA with

@ start state s
o all states s’ € S accepting

LTS
00000008000000

Traces

@ traces traces(s) are actually a language
@ if we see LTS L as an NFA with

@ start state s
o all states s’ € S accepting

then traces(s) is the language accepted by this automaton.

LTS
00000008000000

Traces

@ traces traces(s) are actually a language
@ if we see LTS L as an NFA with

@ start state s
o all states s’ € S accepting

then traces(s) is the language accepted by this automaton.

One more note

o We will refer to all words o € Act™ as traces

@ i.e., we will use word and trace synonymously.

\

LTS

0000000000000

Example

traces(s3) =

traces(sp)

BUTTON

COFFEE

{e,
BUTTON, BUTTON - TEA,

BUTTON - TEA - BUTTON,

...} = traces(s1) = traces(ss)

= {s
TEA, COFFEE,
TEA - BUTTON
TEA - BUTTON - TEA
.}

= COFFEE - traces(s)
UTEA - traces(si)
U{e} 16

LTS
000000000e0000

Reachable states

What states can be reached from state s with trace o7

Definition: _after

For s € S,0 € Act™:

o safter g :={s' | s =% s}

LTS
000000000e0000

Reachable states

What states can be reached from state s with trace o7

Definition: _after

For s € S,0 € Act™:
o safter g :={s' | s =% s}
@ For §' C S: S after 0 :=|J, ¢ s after o

LTS
000000000e0000

Reachable states

What states can be reached from state s with trace o7

Definition: _after

For s € S,0 € Act™:
o safter g :={s' | s =% s}

@ For §' C S: S after 0 :=|J, ¢ s after o
@ For AC Act™: s after A := (], 45 after o

LTS
000000000e0000

Reachable states

What states can be reached from state s with trace o7

Definition: _after

For s € S,0 € Act™:
o safter g :={s' | s =% s}

@ For §' C S: S after 0 :=|J, ¢ s after o
@ For AC Act™: s after A := (], 45 after o

s after Act™ are called the derivatives of s, or reachable states
from s.

LTS
0000000000000

Nondeterminism

Definition: Deterministic LTS

A state s € S is called deterministic iff

Vo € traces(s) : |s after o] =1

LTS
0000000000000

Nondeterminism

Definition: Deterministic LTS

A state s € S is called deterministic iff

Vo € traces(s) : |s after o] =1

@ An LTS is called determinstic, if all its states are deterministic

@ An LTS that is not deterministic is non-deterministic

LTS
0000000000000

Nondeterminism

Definition: Deterministic LTS

A state s € S is called deterministic iff

Vo € traces(s) : |s after o] =1

@ An LTS is called determinstic, if all its states are deterministic

@ An LTS that is not deterministic is non-deterministic

Equivalent is: Yo € Act™ : |s after g| <1 (Why?).

LTS
0000000000000

Nondeterminism

Sources of nondeterminism

© nondeterministic branching: two outgoing transitions with
same action

@ 7-transitions

LTS

0000000000000

Example

© s; after BUTTON - COFFEE =

O s after TEA =

O s; after c =

BUTTON © s, after BUTTON - TEA =

COFFEE

20/29

LTS
0000000000000

Example

© s; after BUTTON - COFFEE = {s3, 5}

Q s, after TEA =

O s; after ¢ =

BUTTON 0 54 after BUTTON : TEA =

COFFEE

20/29

LTS
0000000000000

Example

© s; after BUTTON - COFFEE = {s3, 5}

Q s, after TEA = {s4,51}

@ s3 after ¢ =

BUTTON 0 54 after BUTTON : TEA =

COFFEE

20

LTS
0000000000000

Example

© s; after BUTTON - COFFEE = {s3, 5}

Q s, after TEA = {s4,51}
O s3 after e = {s3,5}
Q s, after BUTTON - TEA =

BUTTON

COFFEE

20

LTS
0000000000000

Example

© s; after BUTTON - COFFEE = {s3,51 }
Q s, after TEA = {s4,51}

O s3 after e = {s3,5}

© s, after BUTTON - TEA = {s4, 51}

BUTTON

COFFEE

20

LTS
0000000000000

Example

© s; after BUTTON - COFFEE = {s3,51 }
Q s, after TEA = {s4,51}

O s3 after e = {s3,5}

© s, after BUTTON - TEA = {s4, 51}

BUTTON

COFFEE

Nondeterminism is here solely caused by the 7-transitions.

20

LTS
0000000000000e

Example

COFFEE TEA

BUTTON BUTTON

@ s after BUTTON =

Q s after BUTTON - TEA =

@ s after COFFEE - BUTTON =

21/29

LTS
0000000000000e

Example

COFFEE TEA

BUTTON BUTTON

O s after BUTTON = {sp, s3}

Q s after BUTTON - TEA =

@ s after COFFEE - BUTTON =

21/29

LTS
0000000000000e

Example

COFFEE TEA

BUTTON BUTTON

O s after BUTTON = {sp, s3}

@ s; after BUTTON - TEA = {s1}

@ s after COFFEE - BUTTON =

21/29

LTS
0000000000000e

Example

COFFEE TEA

BUTTON BUTTON

O s after BUTTON = {sp, s3}

@ s; after BUTTON - TEA = {s1}

© s, after COFFEE - BUTTON = {s;, 53}

21/29

© A language to describe LTS

N
N
N
©

Language
000000

A language to describe LTS

Known from automata theory: regular expressions.

@ 0 is a regular expression.

23 /29

Language
000000

A language to describe LTS

Known from automata theory: regular expressions.

@ 0 is a regular expression.

@ 1 is a regular expression.

23 /29

Language
000000

A language to describe LTS

Known from automata theory: regular expressions.

@ 0 is a regular expression.
@ 1 is a regular expression.

@ for a € Act: ais a regular expression.

23 /29

Language
000000

A language to describe LTS

Reminder]

Known from automata theory: regular expressions.

@ 0 is a regular expression.
@ 1 is a regular expression.

@ for a € Act: ais a regular expression.
o for e, € regular expressions:

23 /29

Language
000000

A language to describe LTS

Reminder]

Known from automata theory: regular expressions.

@ 0 is a regular expression.
@ 1 is a regular expression.

@ for a € Act: ais a regular expression.
o for e, € regular expressions:
o e- e’ is a regular expression.

23 /29

Language
000000

A language to describe LTS

Reminder]

Known from automata theory: regular expressions.

@ 0 is a regular expression.
@ 1 is a regular expression.
@ for a € Act: ais a regular expression.

o for e, € regular expressions:

o e- e’ is a regular expression.
s e|e’ is a regular expression.

23 /29

Language
000000

A language to describe LTS

(Reminder |

Known from automata theory: regular expressions.

@ 0 is a regular expression.
@ 1 is a regular expression.
@ for a € Act: ais a regular expression.

o for e, € regular expressions:

o e- e’ is a regular expression.
s e|e’ is a regular expression.
o e* is a regular expression.

23 /29

Language
000000

A language to describe LTS

(Reminder |

Known from automata theory: regular expressions.

@ 0 is a regular expression.
@ 1 is a regular expression.
@ for a € Act: ais a regular expression.

o for e, € regular expressions:

o e- e’ is a regular expression.
s e|e’ is a regular expression.
o e* is a regular expression.

23 /29

Language
000000

A language to describe LTS

Known from automata theory: regular expressions.
@ 0 is a regular expression.
@ 1 is a regular expression.
@ for a € Act: ais a regular expression.

o for e, € regular expressions:

o e- e’ is a regular expression.
s e|e’ is a regular expression.
o e* is a regular expression.

Regular expressions can be turned into finite automata

23 /29

Language
000000

A language to describe LTS

Known from automata theory: regular expressions.
@ 0 is a regular expression.
@ 1 is a regular expression.
@ for a € Act: ais a regular expression.

o for e, € regular expressions:

o e- e’ is a regular expression.
s e|e’ is a regular expression.
o e* is a regular expression.

Regular expressions can be turned into finite automata

We shall now define expressions that describe LTS. We will call
these expressions processes.

23 /29

Language
Oe00000

A language to describe LTS

Definition: Processes IP

@ Let P be the set of process variables.

24 /29

Language
Oe00000

A language to describe LTS

Definition: Processes IP

@ Let P be the set of process variables.

@ Let Act be a set of actions.

24 /29

Language
Oe00000

A language to describe LTS

Definition: Processes IP

@ Let P be the set of process variables.

@ Let Act be a set of actions.

@ The set IP of processes is the language defined by the
following grammar:

p — STOP | a.p ‘ p+p | pllap | P

where a € Act,, A C Act, and P € P.

24 /29

Language
Oe00000

A language to describe LTS

Definition: Processes IP

@ Let P be the set of process variables.

@ Let Act be a set of actions.

@ The set IP of processes is the language defined by the
following grammar:

p — STOP | a.p ‘ p+p | pllap | P

where a € Act,, A C Act, and P € P.

@ Process definitions are of the form

with p € IP and P € P.

24 /29

Language
[e]e] lele]e]e}

A language to describe LTS

p — STOP ‘ a.p | p+p ‘ pllap ‘ P

Informal Meaning »

Let p,q € IP.
STOP: is the process that does nothing, is deadlocked.

25 /29

Language
[e]e] lele]e]e}

A language to describe LTS

p — STOP ‘ a.p | p+p ‘ pllap ‘ P

Informal Meaning »

Let p,q € IP.
STOP: is the process that does nothing, is deadlocked.

a.p: executes action a € Act, and behaves like process p.

25 /29

Language
[e]e] lele]e]e}

A language to describe LTS

p — STOP ‘ a.p | p+p ‘ pllap ‘ P

Informal Meaning »

Let p,q € IP.
STOP: is the process that does nothing, is deadlocked.

a.p: executes action a € Act, and behaves like process p.
the prefix operator

25 /29

Language
[e]e] lele]e]e}

A language to describe LTS

p — STOP ‘ a.p | p+p ‘ pllap ‘ P

Informal Meaning »

Let p,q € IP.
STOP: is the process that does nothing, is deadlocked.

a.p: executes action a € Act, and behaves like process p.
the prefix operator

p + q: behaves either like process p or g.

25 /29

Language
[e]e] lele]e]e}

A language to describe LTS

p — STOP ‘ a.p | p+p ‘ pllap ‘ P

Informal Meaning »

Let p,q € IP.
STOP: is the process that does nothing, is deadlocked.

a.p: executes action a € Act, and behaves like process p.
the prefix operator

p + q: behaves either like process p or g.
the choice operator

25 /29

Language
[e]e] lele]e]e}

A language to describe LTS

p — STOP ‘ a.p | p+p ‘ pllap ‘ P

Informal Meaning »

Let p,q € IP.
STOP: is the process that does nothing, is deadlocked.

a.p: executes action a € Act, and behaves like process p.
the prefix operator

p + q: behaves either like process p or g.
the choice operator

pllag: behaves like p and g running in parallel,
synchronising over synchronisation set A

25 /29

Language
[e]e] lele]e]e}

A language to describe LTS

p — STOP ‘ a.p | p+p ‘ pllap ‘ P

Informal Meaning »

Let p,q € IP.
STOP: is the process that does nothing, is deadlocked.

a.p: executes action a € Act, and behaves like process p.
the prefix operator

p + q: behaves either like process p or g.
the choice operator

pllag: behaves like p and g running in parallel,
synchronising over synchronisation set A
the parallel operator

25 /29

Language
[e]e] lele]e]e}

A language to describe LTS

p — STOP ‘ a.p | p+p ‘ pllap ‘ P

Informal Meaning

Let p,q € IP.
STOP: is the process that does nothing, is deadlocked.

a.p: executes action a € Act, and behaves like process p.
the prefix operator

p + q: behaves either like process p or g.
the choice operator

pllag: behaves like p and g running in parallel,
synchronising over synchronisation set A
the parallel operator

P: if P=p, then P behaves exactly like p

25 /29

Language
[ee]e] le]e]e}

A language to describe LTS

The parallel operator makes this language very powerful:
@ componentwise independent specification possible

@ combination by parallel composition

26 /29

Language
[ee]e] le]e]e}

A language to describe LTS

The parallel operator makes this language very powerful:
@ componentwise independent specification possible

@ combination by parallel composition

@ Behaviour of a process can be described by LTS.

26 /29

Language
[ee]e] le]e]e}

A language to describe LTS

The parallel operator makes this language very powerful:
@ componentwise independent specification possible

@ combination by parallel composition

@ Behaviour of a process can be described by LTS.

@ processes are also states, i.e., IP is the set of states of the LTS
that we will consider.

26 /29

Language
[ee]ele] lele}

Example 1.3.2: Some simple processes

27 /29

Language
[ee]ele]e] o}

A language to describe LTS

Recursion

@ Up til now only terminating (= deadlocking) processes

28 /29

Language
[ee]ele]e] o}

A language to describe LTS

Recursion

@ Up til now only terminating (= deadlocking) processes

@ Use process definitions for non-terminating behaviour

28 /29

Language
[ee]ele]e] o}

A language to describe LTS

@ Up til now only terminating (= deadlocking) processes

@ Use process definitions for non-terminating behaviour

@ ...recursive process definitions

28 /29

Language
O00000e

Example 1.3.3

Coffee 1

BUTTON

COFFEE

29 /29

Language
O00000e

Example 1.3.3

Coffee 2

COFFEE TEA

BUTTON BUTTON

29 /29

	Actions
	

	Labelled Transition Systems
	

	A language to describe LTS
	

