

Testing of Reactive Systems

Lecture 2: *Modelling Reactive Systems*

Henrik Bohnenkamp

Lehrstuhl Informatik 2 (MOVES)
RWTH Aachen

Summer Semester 2009

1 Actions

2 Labelled Transition Systems

3 A language to describe LTS

Actions

Actions are

- express activity of the modelled system
- are **executed**
- are **atomic** (execution is indivisible)

Actions are used to observe or to influence a system.

Actions might be

- triggered
- or inhibited

Actions

Actions are

- express activity of the modelled system
- are **executed**
- are **atomic** (execution is indivisible)

Actions are used to observe or to influence a system.

Actions might be

- triggered
- or inhibited

Actions

Actions are

- express activity of the modelled system
- are **executed**
- are **atomic** (execution is indivisible)

Actions are used to observe or to influence a system.

Actions might be

- **triggered**
- or **inhibited**

Example

Triggered or Inhibited

Consider action $a \hat{=} \text{"Receiving a message over some channel"}$

Triggered: a triggered, if somebody actually sends a message over the channel

Inhibited: a inhibited, if there is no message

Actions

Definition

Let Act be the set of actions.

Note

Actions similar to *symbols in an Alphabet* (cf. Automata Theory).

- Act^* : the set of finite words over Act
- ε : the empty word
- $Act^+ = Act^* \setminus \varepsilon$
- $v \cdot w$: concatenation of words $v, w \in Act^*$

Actions

Definition

Let Act be the set of actions.

Note

Actions similar to [symbols in an Alphabet](#) (cf. Automata Theory).

- Act^* : the set of finite words over Act
- ε : the empty word
- $Act^+ = Act^* \setminus \varepsilon$
- $v \cdot w$: concatenation of words $v, w \in Act^*$

Observability

- Actions $a \in Act$ are considered **observable**
- Let $\tau \notin Act$: τ is the
 - silent or
 - unobservableaction.

Why only one unobservable action?

Definition

$$Act_\tau = Act \cup \{\tau\}.$$

Observability

- Actions $a \in Act$ are considered **observable**
- Let $\tau \notin Act$: τ is the
 - silent or
 - unobservableaction.

Why only one unobservable action?

Definition

$$Act_\tau = Act \cup \{\tau\}.$$

Observability

- Actions $a \in Act$ are considered **observable**
- Let $\tau \notin Act$: τ is the
 - silent or
 - unobservableaction.

Why only one unobservable action?

Definition

$$Act_\tau = Act \cup \{\tau\}.$$

1 Actions

2 Labelled Transition Systems

3 A language to describe LTS

Labelled Transition Systems

Labelled Transition System

- One of the most fundamental models in theoretical computer science
- Ingredients: **States, Transitions, Actions**

Definition

A **Labelled Transition System** L is a tuple $L = (S, Act, \rightarrow)$, with:

- S is a set of states
- Act is a set of actions
- $\rightarrow \subseteq S \times (Act \cup \{\tau\}) \times S$ is the **transition relation**

Labelled Transition Systems

Labelled Transition System

- One of the most fundamental models in theoretical computer science
- Ingredients: States, Transitions, Actions

Definition

A **Labelled Transition System** L is a tuple $L = (S, Act, \rightarrow)$, with:

- S is a set of states
- Act is a set of actions
- $\rightarrow \subseteq S \times (Act \cup \{\tau\}) \times S$ is the transition relation

Example

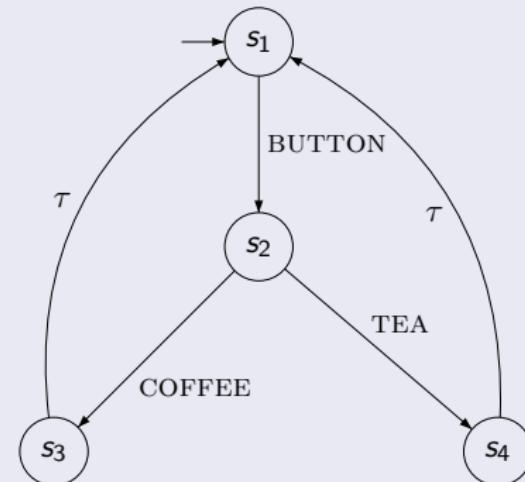
Coffee 1

Let $L = (S, Act, \rightarrow)$

$S = \{s_1, s_2, s_3, s_4\}$

$Act = \{\text{COFFEE}, \text{TEA}, \text{BUTTON}\}$.

- $(s, a, s') \in \rightarrow$: s source state, s' target state
- We write $s \xrightarrow{a} s'$ if $(s, a, s') \in \rightarrow$.



Example

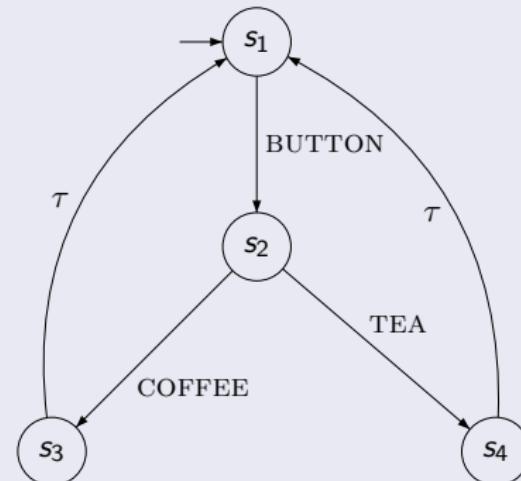
Coffee 1

Let $L = (S, Act, \rightarrow)$

$S = \{s_1, s_2, s_3, s_4\}$

$Act = \{\text{COFFEE}, \text{TEA}, \text{BUTTON}\}$.

- $(s, a, s') \in \rightarrow$: s source state, s' target state
- We write $s \xrightarrow{a} s'$ if $(s, a, s') \in \rightarrow$.



Example

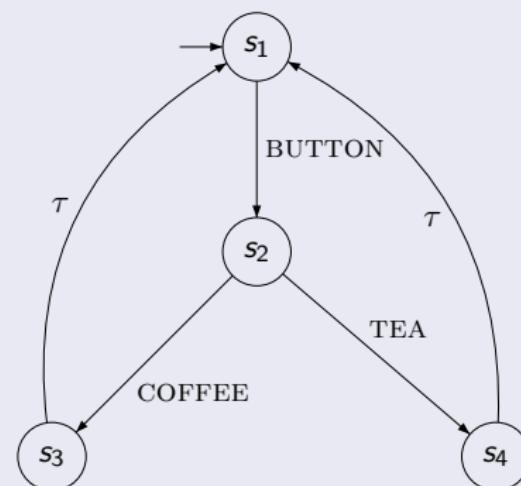
Coffee 1

Let $L = (S, Act, \rightarrow)$

$S = \{s_1, s_2, s_3, s_4\}$

$Act = \{\text{COFFEE}, \text{TEA}, \text{BUTTON}\}$.

- $(s, a, s') \in \rightarrow$: s source state, s' target state
- We write $s \xrightarrow{a} s'$ if $(s, a, s') \in \rightarrow$.



Deadlock

Deadlock

- $s \in S$ absorbing: $s \xrightarrow{a} \forall a \in Act_\tau$
- Alternatively: s is deadlocked
- Abbreviation: $s \not\xrightarrow{\cdot}$ iff s is deadlocked.

Derived Transition Relations

Definition: Generalising \rightarrow

For $\sigma = a_1 \cdot a_2 \cdot \dots \cdot a_n \in Act_{\tau}^+$:

$p \xrightarrow{\sigma} p'$ iff $\exists p_0, \dots, p_n \in S :$

$p_0 \xrightarrow{a_1} p_1, p_1 \xrightarrow{a_2} p_2, \dots, p_{n-1} \xrightarrow{a_n} p_n$

where $p = p_0$ and $p' = p_n$.

Note that τ is allowed in σ .

Abbreviations

$p \xrightarrow{\sigma}$ iff $\exists p' \in S : p \xrightarrow{\sigma} p'$,

$p \xrightarrow{\nexists \sigma}$ iff $\neg \exists p' \in S : p \xrightarrow{\sigma} p'$,

Derived Transition Relations

Definition: Generalising \rightarrow

For $\sigma = a_1 \cdot a_2 \cdot \dots \cdot a_n \in Act_{\tau}^+$:

$p \xrightarrow{\sigma} p'$ iff $\exists p_0, \dots, p_n \in S :$

$p_0 \xrightarrow{a_1} p_1, p_1 \xrightarrow{a_2} p_2, \dots, p_{n-1} \xrightarrow{a_n} p_n$

where $p = p_0$ and $p' = p_n$.

Note that τ is allowed in σ .

Abbreviations

$p \xrightarrow{\sigma}$ iff $\exists p' \in S : p \xrightarrow{\sigma} p'$,

$p \xrightarrow{\nexists \sigma}$ iff $\neg \exists p' \in S : p \xrightarrow{\sigma} p'$,

Derived Transition Relations

Definition: Generalising \rightarrow

For $\sigma = a_1 \cdot a_2 \cdot \dots \cdot a_n \in Act_{\tau}^+$:

$p \xrightarrow{\sigma} p'$ iff $\exists p_0, \dots, p_n \in S :$

$p_0 \xrightarrow{a_1} p_1, p_1 \xrightarrow{a_2} p_2, \dots, p_{n-1} \xrightarrow{a_n} p_n$

where $p = p_0$ and $p' = p_n$.

Note that τ is allowed in σ .

Abbreviations

$p \xrightarrow{\sigma}$ iff $\exists p' \in S : p \xrightarrow{\sigma} p'$,

$p \xrightarrow{\nexists}$ iff $\neg \exists p' \in S : p \xrightarrow{\sigma} p'$,

Derived Transition Relations

Definition: Abstracting from τ

$$p \xrightarrow{\varepsilon} p' \quad \text{iff} \quad p = p' \text{ or } p \xrightarrow{\tau^n} p' \text{ for some } n$$
$$p \xrightarrow{a} p' \quad \text{iff} \quad \exists p_1, p_2 \in S : p \xrightarrow{\varepsilon} p_1 \xrightarrow{a} p_2 \xrightarrow{\varepsilon} p'$$
$$p \xrightarrow{\sigma \cdot a} p' \quad \text{iff} \quad \exists p'' \in S : p \xrightarrow{\sigma} p'' \xrightarrow{a} p'$$

- With the \Rightarrow relation we abstract from τ transitions.
- $p \xrightarrow{\sigma}$ and $p \not\xrightarrow{\sigma}$ are defined analogous to " \rightarrow " before.

Derived Transition Relations

Definition: Abstracting from τ

$$p \xrightarrow{\varepsilon} p' \quad \text{iff} \quad p = p' \text{ or } p \xrightarrow{\tau^n} p' \text{ for some } n$$
$$p \xrightarrow{a} p' \quad \text{iff} \quad \exists p_1, p_2 \in S : p \xrightarrow{\varepsilon} p_1 \xrightarrow{a} p_2 \xrightarrow{\varepsilon} p'$$
$$p \xrightarrow{\sigma \cdot a} p' \quad \text{iff} \quad \exists p'' \in S : p \xrightarrow{\sigma} p'' \xrightarrow{a} p'$$

- With the \Rightarrow relation we **abstract from τ transitions**.
- $p \xrightarrow{\sigma}$ and $p \not\xrightarrow{\sigma}$ are defined analogous to " \rightarrow " before.

Derived Transition Relations

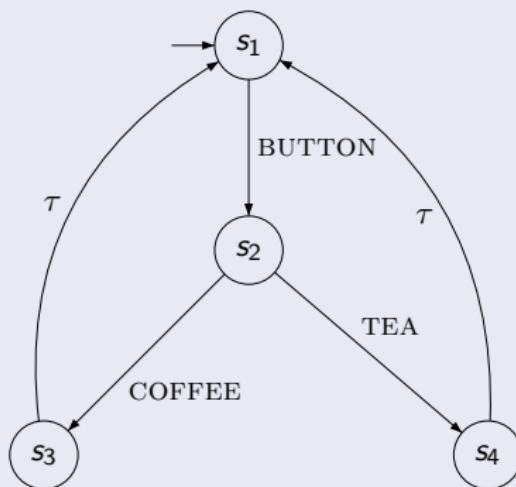
Definition: Abstracting from τ

$$p \xrightarrow{\varepsilon} p' \quad \text{iff} \quad p = p' \text{ or } p \xrightarrow{\tau^n} p' \text{ for some } n$$
$$p \xrightarrow{a} p' \quad \text{iff} \quad \exists p_1, p_2 \in S : p \xrightarrow{\varepsilon} p_1 \xrightarrow{a} p_2 \xrightarrow{\varepsilon} p'$$
$$p \xrightarrow{\sigma \cdot a} p' \quad \text{iff} \quad \exists p'' \in S : p \xrightarrow{\sigma} p'' \xrightarrow{a} p'$$

- With the \Rightarrow relation we **abstract from τ transitions**.
- $p \xrightarrow{\sigma}$ and $p \not\xrightarrow{\sigma}$ are defined analogous to " \rightarrow " before.

Example

Some derived transitions



- ➊ $s_1 \xrightarrow{\text{BUTTON} \cdot \text{COFFEE}} s_3$
- ➋ $s_1 \xrightarrow{\text{BUTTON} \cdot \text{COFFEE} \cdot \tau} s_1$
- ➌ $s_1 \xrightarrow{\text{BUTTON} \cdot \text{TEA}} s_4$, but also
- ➍ $s_1 \xrightarrow{\text{BUTTON} \cdot \text{TEA}} s_1$

Traces

Describing Dynamic Behaviour of LTS

- \exists many different approaches to describe behaviour of LTS
- most basic: **traces**

Definition: Traces

Let $s \in S$. The **set of traces** of s , denoted $\text{traces}(s)$, is defined as

$$\text{traces}(s) = \{\sigma \in \text{Act}^* \mid s \xrightarrow{\sigma} \}.$$

Traces

Describing Dynamic Behaviour of LTS

- \exists many different approaches to describe behaviour of LTS
- most basic: **traces**

Definition: Traces

Let $s \in S$. The **set of traces** of s , denoted $\text{traces}(s)$, is defined as

$$\text{traces}(s) = \{\sigma \in \text{Act}^* \mid s \xrightarrow{\sigma} \}.$$

Traces

Note

- traces $traces(s)$ are actually a language
- if we see LTS L as an NFA with
 - start state s
 - all states $s' \in S$ acceptingthen $traces(s)$ is the language accepted by this automaton.

One more note

- We will refer to all words $\sigma \in Act^*$ as traces
- i.e., we will use word and trace synonymously.

Traces

Note

- traces $traces(s)$ are actually a language
- if we see LTS L as an NFA with
 - start state s
 - all states $s' \in S$ accepting

then $traces(s)$ is the language accepted by this automaton.

One more note

- We will refer to all words $\sigma \in Act^*$ as traces
- i.e., we will use word and trace synonymously.

Traces

Note

- traces $\text{traces}(s)$ are actually a language
- if we see LTS L as an NFA with
 - start state s
 - all states $s' \in S$ accepting

then $\text{traces}(s)$ is the language accepted by this automaton.

One more note

- We will refer to all words $\sigma \in \text{Act}^*$ as traces
- i.e., we will use word and trace synonymously.

Traces

Note

- traces $\text{traces}(s)$ are actually a language
- if we see LTS L as an NFA with
 - start state s
 - all states $s' \in S$ accepting

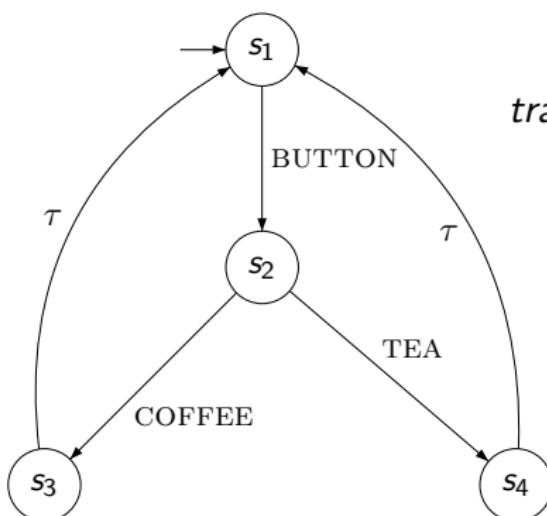
then $\text{traces}(s)$ is the language accepted by this automaton.

One more note

- We will refer to all words $\sigma \in \text{Act}^*$ as traces
- i.e., we will use word and trace synonymously.

Example

$$\begin{aligned}traces(s_3) &= \{\varepsilon, \\ &\text{BUTTON, } \text{BUTTON} \cdot \text{TEA,} \\ &\text{BUTTON} \cdot \text{TEA} \cdot \text{BUTTON,} \\ &\dots\} = traces(s_1) = traces(s_4)\end{aligned}$$



$$\begin{aligned}traces(s_2) &= \{\varepsilon, \\ &\text{TEA, } \text{COFFEE,} \\ &\text{TEA} \cdot \text{BUTTON} \\ &\text{TEA} \cdot \text{BUTTON} \cdot \text{TEA} \\ &\dots\} \\ &= \text{COFFEE} \cdot traces(s_1) \\ &\cup \text{TEA} \cdot traces(s_1) \\ &\cup \{\varepsilon\}\end{aligned}$$

Reachable states

What states can be reached from state s with trace σ ?

Definition: after

For $s \in S, \sigma \in Act^*$:

- s after σ := $\{s' \mid s \xrightarrow{\sigma} s'\}$
- For $S' \subseteq S$: S after σ := $\bigcup_{s \in S'} s$ after σ
- For $A \subseteq Act^*$: s after A := $\bigcup_{\sigma \in A} s$ after σ

Note

s after Act^* are called the derivatives of s , or reachable states from s .

Reachable states

What states can be reached from state s with trace σ ?

Definition: after

For $s \in S, \sigma \in Act^*$:

- s after σ := $\{s' \mid s \xrightarrow{\sigma} s'\}$
- For $S' \subseteq S$: S after σ := $\bigcup_{s \in S'} s$ after σ
- For $A \subseteq Act^*$: s after A := $\bigcup_{\sigma \in A} s$ after σ

Note

s after Act^* are called the derivatives of s , or reachable states from s .

Reachable states

What states can be reached from state s with trace σ ?

Definition: after

For $s \in S, \sigma \in Act^*$:

- s after σ := $\{s' \mid s \xrightarrow{\sigma} s'\}$
- For $S' \subseteq S$: S after σ := $\bigcup_{s \in S'} s$ after σ
- For $A \subseteq Act^*$: s after A := $\bigcup_{\sigma \in A} s$ after σ

Note

s after Act^* are called the derivatives of s , or reachable states from s .

Reachable states

What states can be reached from state s with trace σ ?

Definition: after

For $s \in S, \sigma \in Act^*$:

- s after σ := $\{s' \mid s \xrightarrow{\sigma} s'\}$
- For $S' \subseteq S$: S after σ := $\bigcup_{s \in S'} s$ after σ
- For $A \subseteq Act^*$: s after A := $\bigcup_{\sigma \in A} s$ after σ

Note

s after Act^* are called the **derivatives** of s , or **reachable states** from s .

Nondeterminism

Definition: Deterministic LTS

A state $s \in S$ is called **deterministic** iff

$$\forall \sigma \in \text{traces}(s) : |\underline{s \text{ after } \sigma}| = 1$$

- An LTS is called deterministic, if all its states are deterministic
- An LTS that is not deterministic is **non-deterministic**

Note:

Equivalent is: $\forall \sigma \in \text{Act}^* : |\underline{s \text{ after } \sigma}| \leq 1$ (Why?).

Nondeterminism

Definition: Deterministic LTS

A state $s \in S$ is called **deterministic** iff

$$\forall \sigma \in \text{traces}(s) : |s \text{ after } \sigma| = 1$$

- An LTS is called deterministic, if all its states are deterministic
- An LTS that is not deterministic is **non-deterministic**

Note:

Equivalent is: $\forall \sigma \in \text{Act}^* : |s \text{ after } \sigma| \leq 1$ (Why?).

Nondeterminism

Definition: Deterministic LTS

A state $s \in S$ is called **deterministic** iff

$$\forall \sigma \in \text{traces}(s) : |s \text{ after } \sigma| = 1$$

- An LTS is called deterministic, if all its states are deterministic
- An LTS that is not deterministic is **non-deterministic**

Note:

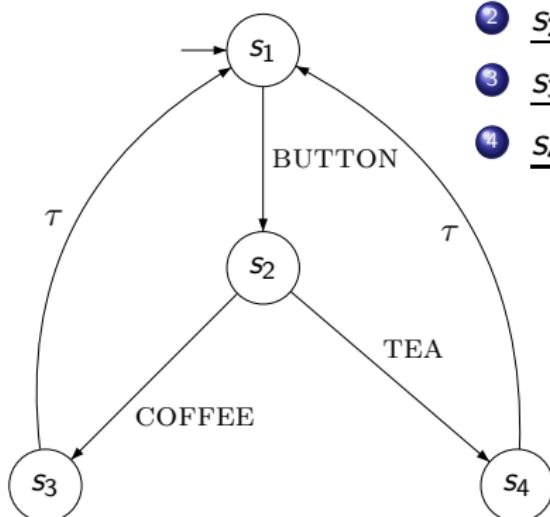
Equivalent is: $\forall \sigma \in \text{Act}^* : |s \text{ after } \sigma| \leq 1$ (Why?).

Nondeterminism

Sources of nondeterminism

- ❶ nondeterministic branching: two outgoing transitions with same action
- ❷ τ -transitions

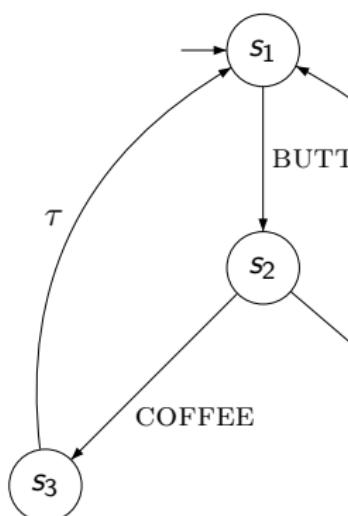
Example



- ➊ $s_1 \text{ after } \text{BUTTON} \cdot \text{COFFEE} =$
- ➋ $s_2 \text{ after } \text{TEA} =$
- ➌ $s_3 \text{ after } \varepsilon =$
- ➍ $s_4 \text{ after } \text{BUTTON} \cdot \text{TEA} =$

Nondeterminism is here solely caused by the τ -transitions.

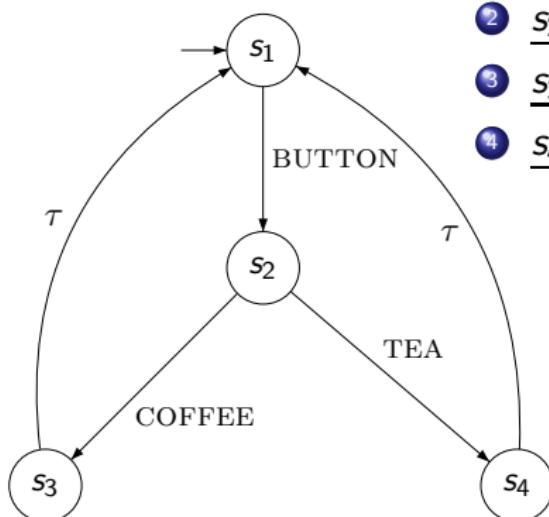
Example



- ➊ s_1 after $\text{BUTTON} \cdot \text{COFFEE} = \{s_3, s_1\}$
- ➋ s_2 after $\text{TEA} =$
- ➌ s_3 after $\varepsilon =$
- ➍ s_4 after $\text{BUTTON} \cdot \text{TEA} =$

Nondeterminism is here solely caused by the τ -transitions.

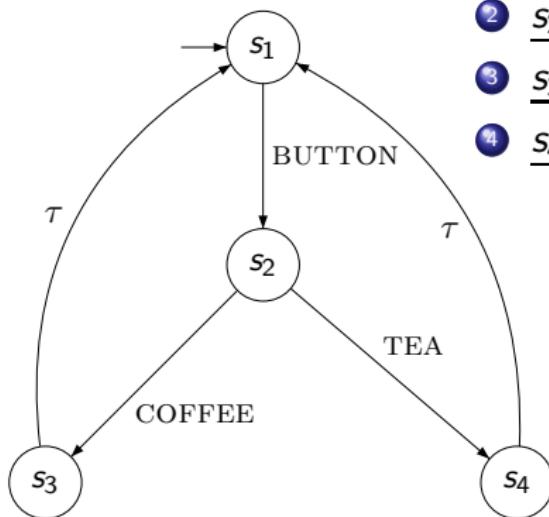
Example



- ➊ $s_1 \text{ after } \text{BUTTON} \cdot \text{COFFEE} = \{s_3, s_1\}$
- ➋ $s_2 \text{ after } \text{TEA} = \{s_4, s_1\}$
- ➌ $s_3 \text{ after } \varepsilon =$
- ➍ $s_4 \text{ after } \text{BUTTON} \cdot \text{TEA} =$

Nondeterminism is here solely caused by the τ -transitions.

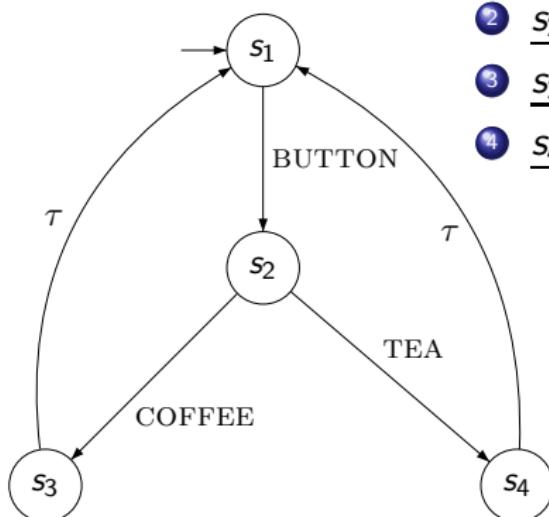
Example



- ➊ $s_1 \text{ after } \text{BUTTON} \cdot \text{COFFEE} = \{s_3, s_1\}$
- ➋ $s_2 \text{ after } \text{TEA} = \{s_4, s_1\}$
- ➌ $s_3 \text{ after } \varepsilon = \{s_3, s_1\}$
- ➍ $s_4 \text{ after } \text{BUTTON} \cdot \text{TEA} =$

Nondeterminism is here solely caused by the τ -transitions.

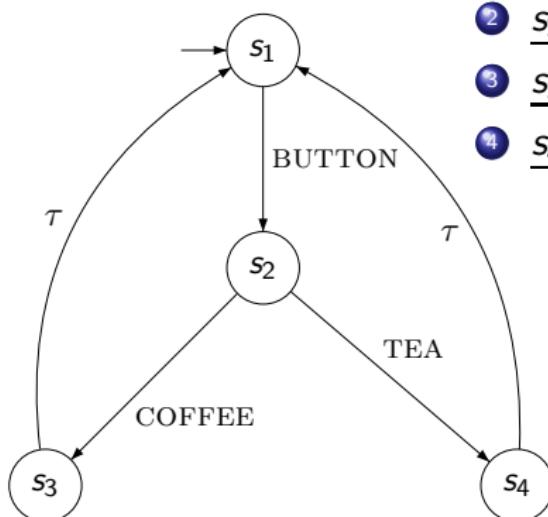
Example



- ➊ $s_1 \text{ after } \text{BUTTON} \cdot \text{COFFEE} = \{s_3, s_1\}$
- ➋ $s_2 \text{ after } \text{TEA} = \{s_4, s_1\}$
- ➌ $s_3 \text{ after } \varepsilon = \{s_3, s_1\}$
- ➍ $s_4 \text{ after } \text{BUTTON} \cdot \text{TEA} = \{s_4, s_1\}$

Nondeterminism is here solely caused by the τ -transitions.

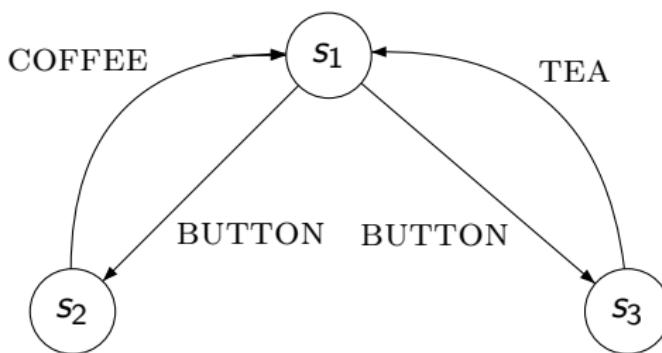
Example



- ① $s_1 \text{ after } \text{BUTTON} \cdot \text{COFFEE} = \{s_3, s_1\}$
- ② $s_2 \text{ after } \text{TEA} = \{s_4, s_1\}$
- ③ $s_3 \text{ after } \varepsilon = \{s_3, s_1\}$
- ④ $s_4 \text{ after } \text{BUTTON} \cdot \text{TEA} = \{s_4, s_1\}$

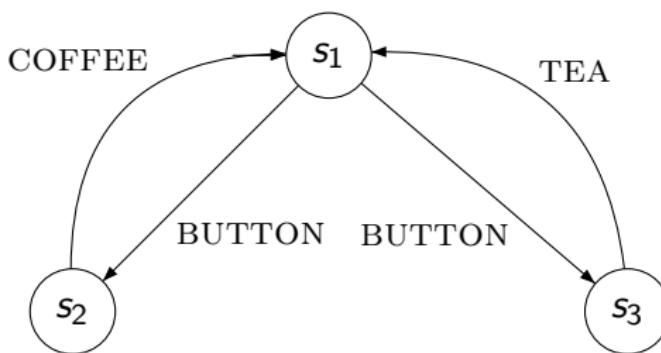
Nondeterminism is here solely caused by the τ -transitions.

Example



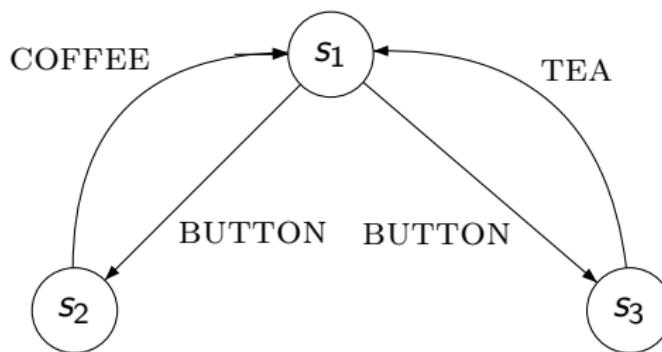
- 1 s_1 after BUTTON =
- 2 s_1 after BUTTON · TEA =
- 3 s_2 after COFFEE · BUTTON =

Example



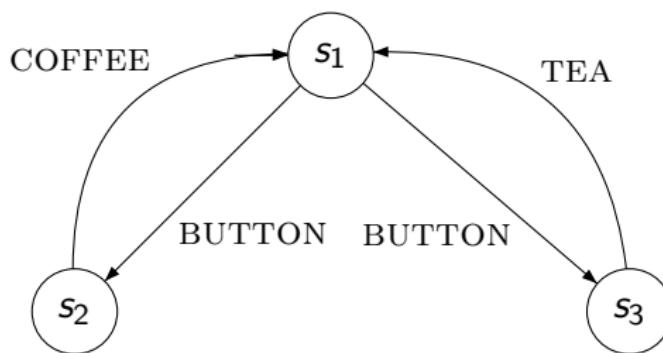
- 1 $s_1 \text{ after } \text{BUTTON} = \{s_2, s_3\}$
- 2 $s_1 \text{ after } \text{BUTTON} \cdot \text{TEA} =$
- 3 $s_2 \text{ after } \text{COFFEE} \cdot \text{BUTTON} =$

Example



- 1 s_1 after BUTTON = $\{s_2, s_3\}$
- 2 s_1 after BUTTON · TEA = $\{s_1\}$
- 3 s_2 after COFFEE · BUTTON =

Example



- 1 s_1 after **BUTTON** = { s_2, s_3 }
- 2 s_1 after **BUTTON · TEA** = { s_1 }
- 3 s_2 after **COFFEE · BUTTON** = { s_2, s_3 }

1 Actions

2 Labelled Transition Systems

3 A language to describe LTS

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

- 0 is a regular expression.
- 1 is a regular expression.
- for $a \in Act$: a is a regular expression.
- for e, e' regular expressions:
 - $e \cdot e'$ is a regular expression.
 - $e | e'$ is a regular expression.
 - e^* is a regular expression.

Regular expressions can be turned into finite automata

We shall now define **expressions** that describe **LTS**. We will call these expressions **processes**.

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

- 0 is a regular expression.
- 1 is a regular expression.
- for $a \in Act$: a is a regular expression.
- for e, e' regular expressions:
 - $e \cdot e'$ is a regular expression.
 - $e|e'$ is a regular expression.
 - e^* is a regular expression.

Regular expressions can be turned into finite automata

We shall now define **expressions** that describe **LTS**. We will call these expressions **processes**.

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

- 0 is a regular expression.
- 1 is a regular expression.
- for $a \in Act$: a is a regular expression.
- for e, e' regular expressions:
 - $e \cdot e'$ is a regular expression.
 - $e | e'$ is a regular expression.
 - e^* is a regular expression.

Regular expressions can be turned into finite automata

We shall now define **expressions** that describe **LTS**. We will call these expressions **processes**.

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

- 0 is a regular expression.
- 1 is a regular expression.
- for $a \in Act$: a is a regular expression.
- for e, e' regular expressions:
 - $e \cdot e'$ is a regular expression.
 - $e|e'$ is a regular expression.
 - e^* is a regular expression.

Regular expressions can be turned into finite automata

We shall now define **expressions** that describe **LTS**. We will call these expressions **processes**.

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

- 0 is a regular expression.
- 1 is a regular expression.
- for $a \in Act$: a is a regular expression.
- for e, e' regular expressions:
 - $e \cdot e'$ is a regular expression.
 - $e|e'$ is a regular expression.
 - e^* is a regular expression.

Regular expressions can be turned into finite automata

We shall now define **expressions** that describe **LTS**. We will call these expressions **processes**.

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

- 0 is a regular expression.
- 1 is a regular expression.
- for $a \in Act$: a is a regular expression.
- for e, e' regular expressions:
 - $e \cdot e'$ is a regular expression.
 - $e|e'$ is a regular expression.
 - e^* is a regular expression.

Regular expressions can be turned into finite automata

We shall now define **expressions** that describe **LTS**. We will call these expressions **processes**.

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

- 0 is a regular expression.
- 1 is a regular expression.
- for $a \in Act$: a is a regular expression.
- for e, e' regular expressions:
 - $e \cdot e'$ is a regular expression.
 - $e|e'$ is a regular expression.
 - e^* is a regular expression.

Regular expressions can be turned into finite automata

We shall now define **expressions** that describe **LTS**. We will call these expressions **processes**.

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

- 0 is a regular expression.
- 1 is a regular expression.
- for $a \in Act$: a is a regular expression.
- for e, e' regular expressions:
 - $e \cdot e'$ is a regular expression.
 - $e|e'$ is a regular expression.
 - e^* is a regular expression.

Regular expressions can be turned into finite automata

We shall now define **expressions** that describe **LTS**. We will call these expressions **processes**.

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

- 0 is a regular expression.
- 1 is a regular expression.
- for $a \in Act$: a is a regular expression.
- for e, e' regular expressions:
 - $e \cdot e'$ is a regular expression.
 - $e|e'$ is a regular expression.
 - e^* is a regular expression.

Regular expressions can be turned into finite automata

We shall now define **expressions** that describe **LTS**. We will call these expressions **processes**.

A language to describe LTS

Reminder

Known from automata theory: regular expressions.

- 0 is a regular expression.
- 1 is a regular expression.
- for $a \in Act$: a is a regular expression.
- for e, e' regular expressions:
 - $e \cdot e'$ is a regular expression.
 - $e|e'$ is a regular expression.
 - e^* is a regular expression.

Regular expressions can be turned into finite automata

We shall now define **expressions** that describe **LTS**. We will call these expressions **processes**.

A language to describe LTS

Definition: Processes \mathbb{P}

- Let \mathcal{P} be the set of **process variables**.
- Let Act be a set of actions.
- The set \mathbb{P} of processes is the language defined by the following grammar:

$$p \rightarrow \text{STOP} \mid a.p \mid p+p \mid p \parallel AP \mid P$$

where $a \in Act_\tau$, $A \subseteq Act$, and $P \in \mathcal{P}$.

- Process definitions are of the form

$$P \triangleq p$$

with $p \in \mathbb{P}$ and $P \in \mathcal{P}$.

A language to describe LTS

Definition: Processes \mathbb{P}

- Let \mathcal{P} be the set of **process variables**.
- Let Act be a set of actions.
- The set \mathbb{P} of processes is the language defined by the following grammar:

$$p \rightarrow \text{STOP} \mid a.p \mid p+p \mid p \parallel AP \mid P$$

where $a \in Act_\tau$, $A \subseteq Act$, and $P \in \mathcal{P}$.

- Process definitions are of the form

$$P \triangleq p$$

with $p \in \mathbb{P}$ and $P \in \mathcal{P}$.

A language to describe LTS

Definition: Processes \mathbb{P}

- Let \mathcal{P} be the set of **process variables**.
- Let Act be a set of actions.
- The set **\mathbb{P} of processes** is the language defined by the following grammar:

$$p \rightarrow \text{STOP} \mid a.p \mid p+p \mid p||_A p \mid P$$

where $a \in Act_\tau$, $A \subseteq Act$, and $P \in \mathcal{P}$.

- Process definitions are of the form

$$P \triangleq p$$

with $p \in \mathbb{P}$ and $P \in \mathcal{P}$.

A language to describe LTS

Definition: Processes \mathbb{P}

- Let \mathcal{P} be the set of **process variables**.
- Let Act be a set of actions.
- The set **\mathbb{P} of processes** is the language defined by the following grammar:

$$p \rightarrow \text{STOP} \mid a.p \mid p+p \mid p||_A p \mid P$$

where $a \in Act_\tau$, $A \subseteq Act$, and $P \in \mathcal{P}$.

- Process definitions** are of the form

$$P \triangleq p$$

with $p \in \mathbb{P}$ and $P \in \mathcal{P}$.

A language to describe LTS

$$p \rightarrow \text{STOP} \mid a.p \mid p+p \mid p \parallel_A p \mid P$$

Informal Meaning

Let $p, q \in \mathbb{P}$.

STOP: is the process that does nothing, is deadlocked.

$a.p$: executes action $a \in \text{Act}_\tau$ and behaves like process p .
the prefix operator

$p + q$: behaves either like process p or q .

the choice operator

$p \parallel_A q$: behaves like p and q running in parallel,
synchronising over synchronisation set A

the parallel operator

P : if $P \hat{=} p$, then P behaves exactly like p

A language to describe LTS

$$p \rightarrow \text{STOP} \mid a.p \mid p+p \mid p \parallel_A p \mid P$$

Informal Meaning

Let $p, q \in \mathbb{P}$.

STOP: is the process that does nothing, is deadlocked.

$a.p:$ executes action $a \in \text{Act}_\tau$ and behaves like process p .
the prefix operator

$p + q:$ behaves either like process p or q .

the choice operator

$p \parallel_A q:$ behaves like p and q running in parallel,
synchronising over synchronisation set A

the parallel operator

P : if $P \hat{=} p$, then P behaves exactly like p

A language to describe LTS

$$p \rightarrow \text{STOP} \mid a.p \mid p+p \mid p \parallel_A p \mid P$$

Informal Meaning

Let $p, q \in \mathbb{P}$.

STOP: is the process that does nothing, is deadlocked.

$a.p:$ executes action $a \in \text{Act}_\tau$ and behaves like process p .
the prefix operator

$p + q:$ behaves either like process p or q .

the choice operator

$p \parallel_A q:$ behaves like p and q running in parallel,
synchronising over synchronisation set A

the parallel operator

P : if $P \hat{=} p$, then P behaves exactly like p

A language to describe LTS

$$p \rightarrow \text{STOP} \mid a.p \mid p+p \mid p \parallel_A p \mid P$$

Informal Meaning

Let $p, q \in \mathbb{P}$.

STOP: is the process that does nothing, is deadlocked.

$a.p:$ executes action $a \in \text{Act}_\tau$ and behaves like process p .
the prefix operator

$p + q:$ behaves either like process p or q .

the choice operator

$p \parallel_A q:$ behaves like p and q running in parallel,
synchronising over synchronisation set A

the parallel operator

P : if $P \hat{=} p$, then P behaves exactly like p

A language to describe LTS

$$p \rightarrow \text{STOP} \mid a.p \mid p+p \mid p \parallel_A p \mid P$$

Informal Meaning

Let $p, q \in \mathbb{P}$.

STOP: is the process that does nothing, is deadlocked.

$a.p:$ executes action $a \in \text{Act}_\tau$ and behaves like process p .
the prefix operator

$p + q:$ behaves either like process p or q .

the choice operator

$p \parallel_A q:$ behaves like p and q running in parallel,
synchronising over synchronisation set A

the parallel operator

P : if $P \hat{=} p$, then P behaves exactly like p

A language to describe LTS

$$p \rightarrow \text{STOP} \mid a.p \mid p+p \mid p \parallel_A p \mid P$$

Informal Meaning

Let $p, q \in \mathbb{P}$.

STOP: is the process that does nothing, is deadlocked.

$a.p:$ executes action $a \in \text{Act}_\tau$ and behaves like process p .
the prefix operator

$p + q:$ behaves either like process p or q .

the choice operator

$p \parallel_A q:$ behaves like p and q running in parallel,
synchronising over **synchronisation set A**

the parallel operator

P : if $P \hat{=} p$, then P behaves exactly like p

A language to describe LTS

$$p \rightarrow \text{STOP} \mid a.p \mid p+p \mid p \parallel_A p \mid P$$

Informal Meaning

Let $p, q \in \mathbb{P}$.

STOP: is the process that does nothing, is deadlocked.

$a.p:$ executes action $a \in \text{Act}_\tau$ and behaves like process p .
the prefix operator

$p + q:$ behaves either like process p or q .

the choice operator

$p \parallel_A q:$ behaves like p and q running in parallel,
synchronising over **synchronisation set A**

the parallel operator

P : if $P \hat{=} p$, then P behaves exactly like p

A language to describe LTS

$$p \rightarrow \text{STOP} \mid a.p \mid p+p \mid p \parallel_A p \mid P$$

Informal Meaning

Let $p, q \in \mathbb{P}$.

STOP: is the process that does nothing, is deadlocked.

$a.p:$ executes action $a \in \text{Act}_\tau$ and behaves like process p .
the prefix operator

$p + q:$ behaves either like process p or q .

the choice operator

$p \parallel_A q:$ behaves like p and q running in parallel,
synchronising over **synchronisation set A**

the parallel operator

P : if $P \doteq p$, then P behaves exactly like p

A language to describe LTS

Note

The **parallel operator** makes this language **very powerful**:

- componentwise **independent specification** possible
- combination by **parallel composition**

Note 2

- Behaviour of a process can be described by LTS.
- processes are also states, *i.e.*, \mathbb{P} is the set of states of the LTS that we will consider.

A language to describe LTS

Note

The **parallel operator** makes this language **very powerful**:

- componentwise **independent specification** possible
- combination by **parallel composition**

Note 2

- Behaviour of a process can be described by LTS.
- **processes are also states**, i.e., \mathbb{P} is the set of states of the LTS that we will consider.

A language to describe LTS

Note

The **parallel operator** makes this language **very powerful**:

- componentwise **independent specification** possible
- combination by **parallel composition**

Note 2

- Behaviour of a process can be described by LTS.
- **processes are also states**, i.e., \mathbb{P} is the set of states of the LTS that we will consider.

Example 1.3.2: Some simple processes

A language to describe LTS

Recursion

- Up til now only terminating (=deadlocking) processes
- Use *process definitions* for non-terminating behaviour
- ... recursive *process definitions*

A language to describe LTS

Recursion

- Up til now only terminating (=deadlocking) processes
- Use **process definitions** for non-terminating behaviour
 - ... recursive process definitions

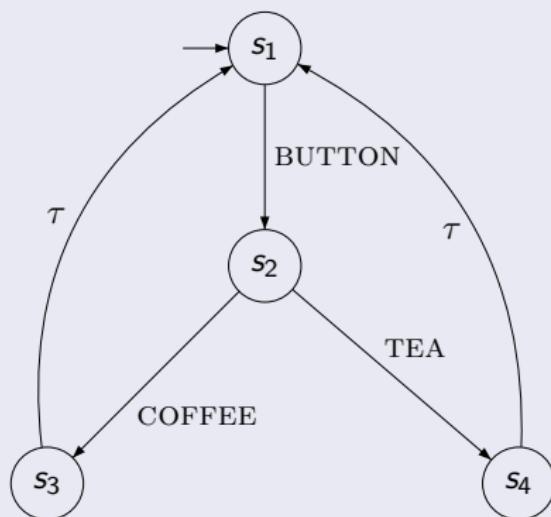
A language to describe LTS

Recursion

- Up til now only terminating (=deadlocking) processes
- Use **process definitions** for non-terminating behaviour
- ... recursive **process definitions**

Example 1.3.3

Coffee 1



Example 1.3.3

Coffee 2

