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Introduction to Measure Theory Basic Definitions

Measure Theory

Our Setting

Assume a set €, called
Subsets A of Q2 are called

Idea: Measure the {size | probability | volume | length} of events!

Let w € Q be the outcome of an experiment.
Then A is an event if w € A can be decided.
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Fields and o—fields

Definition (Field)
A class of subsets § of € is a field iff
O NecF.
O AcF = A€ 3.
®A,....A,eF = UL A€eF

where n € N
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Fields and o—fields

Definition (Field)
A class of subsets § of € is a field iff
O NecF.
O AcF = A€ 3.
®A,....A,eF = UL A€eF
where n € N
Definition (o—Field)

T is a o—field iff it is closed under countable union:

o8]
A Ag,--eF = | JAied

=1
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Fields and o—fields

Definition (Field)
A class of subsets § of € is a field iff
O NecF.
O AcF = A€ 3.
®A,....A,eF = UL A€eF
where n € N
Definition (o—Field)

T is a o—field iff it is closed under countable union:

o8]
A Ag,--eF = | JAied

=1

Let C < 2. ¢(C) denotes the containing C.
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Example: The Borel o—field

Define right—semiclosed intervals to be

e (a,b] where —o0 < a <b < +oo and
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Example: The Borel o—field

Define right—semiclosed intervals to be
e (a,b] where —o0 < a <b < +oo and

e (a,+00) where —o0 < a < +00.
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Introduction to Measure Theory Basic Definitions

Example: The Borel o—field

Define right—semiclosed intervals to be
e (a,b] where —o0 < a <b < +oo and
e (a,+00) where —o0 < a < +00.
Finite Disjoint Unions

Define the class of finite disjoint unions of right—-semiclosed intervals:

So(R):={Hwlaw---wl,|neN}.
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Example: The Borel o—field

Define right—semiclosed intervals to be
e (a,b] where —o0 < a <b < +oo and
e (a,+00) where —o0 < a < +00.
Finite Disjoint Unions

Define the class of finite disjoint unions of right—-semiclosed intervals:
So(R):={Hwlaw---wl,|neN}.

Verify the properties of a field:
® R = (—o0, +o) € Fo(R).
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Introduction to Measure Theory Basic Definitions

Example: The Borel o—field

Define right—semiclosed intervals to be
e (a,b] where —o0 < a <b < +oo and
e (a,+00) where —o0 < a < +00.
Finite Disjoint Unions

Define the class of finite disjoint unions of right—-semiclosed intervals:
So(R):={Hwlaw---wl,|neN}.
Verify the properties of a field:

® R = (—o0,+0) € Fo(R).
@Lw - wl,egdR) = ([1w- - wl,) €Fo(R).
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Example: The Borel o—field

Define to be
e (a,b] where —o0 < a <b < +oo and
e (a,+00) where —o0 < a < +00.

Finite Disjoint Unions
Define the class of of right—semiclosed intervals:

So(R):={Hwlaw---wl,|neN}.

Verify the properties of a field:
® R = (—,+o0) € Fo(R).
@Lw - wl,egdR) = ([1w- - wl,) €Fo(R).

©IfLw---wl,eFo(R)and Jy w---wJ, €Fo(R)
then (L1 w---wly)u(Jiw---wJy) € Fo(R).
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Example: The Borel o—field

Define right—semiclosed intervals to be
e (a,b] where —o0 < a <b < +oo and
e (a,+00) where —o0 < a < +00.

Finite Disjoint Unions
Define the class of finite disjoint unions of right—-semiclosed intervals:

So(R):={Hwlaw---wl,|neN}.

Verify the properties of a field:
® R = (—o0, +o) € Fo(R).

@Lw - wl,egdR) = ([1w- - wl,) €Fo(R).
©1F 1w wl,eFo(R) and Jy - & Jpego(R) IR
then (L1 w---wly)u(Jiw---wJy) € Fo(R).
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Example: The Borel o—field

Borel o—field

Let £ = {(a,b] | a,be R and a < b} and

let o(€) denote the smallest o—field containing £.
Then B(R) = o(&) is the Borel o—field.
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Example: The Borel o—field

Borel o—field

Let £ = {(a,b] | a,be R and a < b} and

let o(€) denote the containing £.
Then B(R) = o(&) is the

Example

B(R) has many generators:
e Fo(R), the set of finite disjoint unions of right—semiclosed intervals,
e &' ={[a,b] |a,be R and a < b},
o &"={(—w0,b] |be R}, ...
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Example: The Borel o—field

Borel o—field

Let £ = {(a,b] | a,be R and a < b} and

let o(€) denote the containing £.

Then B(R) = o(€) is the

Example

B(R) has many generators:
e Fo(R), the set of finite disjoint unions of right—semiclosed intervals,
e &' ={[a,b] |a,be R and a < b},
o &"={(—w0,b] |be R}, ...

Construct o—field by forming countable unions and complements
of intervals in all possible ways.
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Introduction to Measure Theory Measures

Measures

Intuition
Measure the “size” of sets in o—field §.
Notions of length, volume or probability.
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Introduction to Measure Theory Measures

Measures

Intuition
Measure the “size” of sets in o—field §.
Notions of length, volume or probability.

Definition (Measure)
Let § be a o—field over subsets of 2. A measure is a function
p:g — Rso where R := R U {—o0, +0}

which is countably additive:

o0 o0
M(U AZ-) = Z 1w(A;) for disjoint sets A; € §.
i=1 i=1
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Measures

Intuition
Measure the “size” of sets in o—field §.
Notions of length, volume or probability.

Definition (Measure)

Let § be a o—field over subsets of 2. A measure is a function
p:g — Rso where R := R U {—o0, +0}

which is countably additive:

M(U AZ-) = Z 1w(A;) for disjoint sets A; € §.

Remark: If 41(©2) =1, u is a probability measure.
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Example: A Measure on B(R)

The size of intervals
Given interval (a,b], a < b€ R. Define its “length” as follows:

/L((I,b] =b—a
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Introduction to Measure Theory Measures

Example: A Measure on B(R)

The size of intervals
Given interval (a,b], a < b€ R. Define its “length” as follows:

M(avb] =b—a

Sizes on the field Fo(RR)
On the set of of right—semiclosed intervals:

Let 1 w---w I, € Fo(R). Extend u to Fo(R) by defining

i w - wlp) = ZM(L’)
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Introduction to Measure Theory Measures

Example: A Measure on B(R)

The size of intervals
Given interval (a,b], a < b€ R. Define its “length” as follows:

M(avb] =b—a

Sizes on the field Fo(RR)

On the set of of right—semiclosed intervals:
Let 1 w---w I, € Fo(R). Extend u to Fo(R) by defining

pIyw-wly) = > p(l)
i=1
But: What about u(A) for AeB(R)?
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Introduction to Measure Theory Measures

Extension of Measures

Motivation

Define countably additive set function i on a field Fp.
Then extend it to the o—field by magic.
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Extension of Measures

Motivation
Define countably additive set function i on a field Fp.
Then extend it to the o—field by magic.

Theorem (Carathéodory Extension Theorem)

Let §o be a field over subsets of a set () and let . be a measure on Fy.
If i is o—finite, i.e.

[0 0]
Q= U A; where A; € o and u(A;) < oo,
i=1

then p has a unique extension to o(Jo).
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Extension of Measures

Motivation
Define countably additive set function i on a field Fp.
Then extend it to the o—field

Theorem (Carathéodory Extension Theorem)
Let §o be a field over subsets of a set () and let . be a measure on Fy.
If i is o—finite, i.e.
0
Q= U A; where A; € o and u(A;) < oo,
i=1
then p has a unique extension to o(Jo).

Avoid the o—field whenever possible!
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There's Still a Catch in it: Countable Additivity!

Example
Up to now, we defined the “length” 1 on subclasses of B(IR):
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There's Still a Catch in it: Countable Additivity!

Example
Up to now, we defined the “length” 1 on subclasses of B(IR):
® 1(a,b] = b— a for right—semiclosed intervals

O uhwlhw---wl,) = 2?21 p(I;) for finite disjoint unions
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There's Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” 1 on subclasses of B(IR):
® 1(a,b] = b— a for right—semiclosed intervals
O uhwlhw---wl,) = 2?21 p(I;) for finite disjoint unions
© But: For the extension from §y(R) to B(R) by Carathéodory:

where A1, A2, - € Fo(R), U7, Aj € Fo and the A; disjoint.
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There's Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” 1 on subclasses of B(IR):
® 1(a,b] = b— a for right—semiclosed intervals
O uhwlhw---wl,) = Z;”:l p(I;) for finite disjoint unions
© But: For the extension from §y(R) to B(R) by Carathéodory:

where A1, A2, - € Fo(R), U7, Aj € Fo and the A; disjoint.

Theorem

Let F : R — R be a distrib. function. Let p(a,b] := F(b) — F(a).

There is a unique extension of 11 to a Lebesgue—Stieltjes measure on R.
Countable additivity of  follows by defining F'(z) := x.
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Introduction to Measure Theory Lebesgue Integration

Lebesgue’s Intuition

Lebesgue about his integral
“One might say that Riemann’s approach is comparable to a messy merchant
who counts coins in the order they come to his hand whereas we act like a
prudent merchant who says:

® | have A1 coins a one crown, that is A7 - 1 crowns,

® A5 coins a two crowns, that is As - 2 crowns and

® A3 coins a five crowns, that is A3 -5 crowns.

Therefore | have Ay -1+ Az -2+ A3 -5 crowns.

Both approaches — no matter how rich the merchant might be — lead to the
same result since he only has to count a finite number of coins.
But for us who must add infinitly many indivisibles, the difference between

the approaches is essential.”

H.Lebesgue, 1926
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Introduction to Measure Theory Lebesgue Integration

Measurability

Definition (Measurability)

Let 21,25 be sets with associated o—fields §1 and §s.
h : Q1 — Q9 is measurable iff

hl(A) e F for each A € §»

Notation: A : (91,31) — (92,32).
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Measurability

Definition (Measurability)

Let 21,25 be sets with associated o—fields §1 and §s.
h : Q1 — Q9 is measurable iff

hl(A) e F for each A € §»

Notation: A : (91,31) — (Qg,gg).
Some remarks:
e his Borel measurable if h: (,F) — (R,B(R)).
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Introduction to Measure Theory Lebesgue Integration

Measurability

Definition (Measurability)

Let 21,25 be sets with associated o—fields §1 and §s.
h : Q1 — Q9 is measurable iff

hl(A) e F for each A € §»
Notation: A : (91,51) — (Qg,gg).
Some remarks:

e his Borel measurable if h: (,F) — (R,B(R)).

o In probability theory, h is called a random variable.
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Simple Functions

Definition (Simple Functions)
Let h: Q — R. his simple iff
@ h is measurable and

® takes on only finitely many values.
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Simple Functions

Definition (Simple Functions)
Let h: Q — R. his simple iff
@ h is measurable and

® takes on only finitely many values.

If his a function, it can be represented as
hw) = Y Ta, (@)
i=1

where A; € § are pairwisely disjoint.
1 ifwe Ai

I4. denotes the indicator function I, (w):= { o
g ¢ 0 otherwise
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Simple Functions

Definition (Simple Functions)
Let h: Q — R. his simple iff
@ h is measurable and

® takes on only finitely many values.

If his a function, it can be represented as
hw) = Y Ta, (@)
i=1

where A; € § are pairwisely disjoint.
1 ifwe Ai

I4. denotes the indicator function I, (w):= { o
g ¢ 0 otherwise

Choose A; as the preimage of x;!
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Lebesgue Integral

Definition (Lebesgue Integral for Simple Functions)
Let (€2, F, 1) be a measure space, h : Q — R simple:

n
h(w) := Z x; - 14, (W) where the A; are disjoint sets in §.
i=1
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Introduction to Measure Theory Lebesgue Integration

Lebesgue Integral

Definition (Lebesgue Integral for Functions)
Let (€2, F, 1) be a measure space, h : Q — R simple:

n

h(w) := Z x; - 14, (W) where the A; are disjoint sets in §.
i=1

The Lebesgue—integral of h is defined as

f hdp = @i p(A).
Q i=1

Multiply each x; with the measure of its preimage A;.
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Example: Lebesgue Integral

h(w)

x1
z2

x3

T4

p(Ay) =
—




Example: Lebesgue Integral

Q

So b dp = 21p(Ar) + zop(A2) + w30(As3)

Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 15 / 28



Example: Riemann (Darboux) Integral

€2

€3

X4
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Introduction to Measure Theory Lebesgue Integration

Lebesgue Integral on Nonnegative Functions

Definition
If h is nonnegative Borel measurable, then

fhdu::sup{f sd,u|3issimp|eand0<s<h}.
Q Q

Theorem

A nonnegative Borel measurable function h is the limit of an increasing
sequence of nonnegative simple functions h,,.
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Example: Lebesgue Integral
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Example: Lebesgue Integral
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Example: Lebesgue Integral

)
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Finite Product Spaces

Definition (Product Space)
Let (£2;,5;) be a measurable space, j =1,...,n. Then
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Finite Product Spaces

Definition (Product Space)

Let (£2;,5;) be a measurable space, j =1,...,n. Then
e =01 x---xQ
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Finite Product Spaces

Definition (Product Space)
Let (£2;,5;) be a measurable space, j =1,...,n. Then
e =0 x---xQ,

e A=A; x Ay x --- x A, is a measurable rectangle if A; € §;.
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Introduction to Measure Theory Measures on Product Spaces

Finite Product Spaces

Definition (Product Space)

Let (£2;,5;) be a measurable space, j =1,...,n. Then
e =01 x---xQ

e A=A; x Ay x --- x A, is a measurable rectangle if A; € §;.

e The set of measurable rectangles is denoted

T1 X §2 X -+ X Fn.
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Finite Product Spaces

Definition (Product Space)
Let (£2;,5;) be a measurable space, j =1,...,n. Then
e =01 x---xQ
e A=A x Ay x---x A, isa if A; e

The set of measurable rectangles is denoted

T1 X §2 X -+ X Fn.

e The § is the smallest o—field containing all
measurable rectangles:

§i=o(F1 xFox e x T
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Measures on Finite Product Spaces

To start with: Only products of two o—fields!

Preparation
Let (21,81, 11) be a measure space, p; o—finite on §7.
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Further let §o be a o—field over subsets of (5.
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Measures on Finite Product Spaces

To start with: Only products of two o—fields!

Preparation

Let (21,81, 11) be a measure space, p; o—finite on §7.
Further let §o be a o—field over subsets of (5.
Assume that we have a function

plwy, ) 1 F2 > R

which is
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plwi, ) F2 > R
which is

@ a measure on §a,
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Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

To start with: Only products of two o—fields!

Preparation

Let (21,81, 11) be a measure space, p; o—finite on §7.
Further let §o be a o—field over subsets of (5.
Assume that we have a function

plwi, ) F2 > R
which is

@ a measure on §a,

® Borel measurable in w; and
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Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

To start with: Only products of two o—fields!

Preparation

Let (21,81, 11) be a measure space, p; o—finite on §7.
Further let §o be a o—field over subsets of (5.
Assume that we have a function

p(wi,) : §2 = R
which is
@ a measure on §a,
® Borel measurable in w; and
® uniformly o—finite:
Qo =, By, where p(wi, By,) < ky, for all wy and fixed &, € R.
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Measures on Finite Product Spaces

Theorem (Product Measure Theorem)
Given (€21, 81, ), (2,82) and p(ws,-) as before.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

Theorem (Product Measure Theorem)

Given (21,81, 1), (Q2,82) and p(w1,-) as before.
There is a unique measure i, on § such that on §1 x Fa:

j(A x B) = L p(wr, B) jia(dun).
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Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

Theorem (Product Measure Theorem)

Given (21,81, 1), (Q2,82) and p(w1,-) as before.
There is a unique measure i, on § such that on §1 x Fa:

p(A % B) = [ pler. B ma(dn).
p is defined (now on the entire o—field) as follows:
w(F) ::j pw(wi, Fwi)) pa(dwy), for all '€ §
Q1

where F'(wy) := {wsa | (w1,w2) € F'}.
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Introduction to Measure Theory Measures on Product Spaces

Lebesgue Integrals on Finite Product Spaces

Theorem (Fubini's Theorem)
Let f:(Q,5) — (R,B(R)). If f is nonnegative, then
flwr,we) p(wr, dws)
Qo

exists and defines a Borel measurable function.
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Introduction to Measure Theory Measures on Product Spaces

Lebesgue Integrals on Finite Product Spaces

Theorem (Fubini's Theorem)
Let f:(Q,5) — (R,B(R)). If f is nonnegative, then
flwr,we) p(wr, dws)
Qo

exists and defines a Borel measurable function. Also

J fdp= J ( f(wi,w2) M(wladwz))m(dwl)-
Q Q1 “JQo
Justification of iterated integration!

Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs November 9th, 2006

24 / 28



Extension to Larger Product Spaces

Now, consider products of more than two o—fields!

Preparation
Let §; be a o—field of subsets of 2;, j =1,...,n.
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Introduction to Measure Theory Measures on Product Spaces

Extension to Larger Product Spaces

Now, consider products of more than two o—fields!

Preparation

Let §; be a o—field of subsets of 2;, j =1,...,n.
Let 1 be a o—finite measure on §
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Introduction to Measure Theory Measures on Product Spaces

Extension to Larger Product Spaces

Now, consider products of more than two o—fields!

Preparation

Let §; be a o—field of subsets of 2;, j =1,...,n.
Let ¢; be a o—finite measure on §; and
assume that (w1, ...,wj) we have a function

plwi,wa, ..., wj,+) g1 — R

which is
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Introduction to Measure Theory Measures on Product Spaces

Extension to Larger Product Spaces

Now, consider products of more than two o—fields!

Preparation

Let §; be a o—field of subsets of 2;, j =1,...,n.
Let ¢; be a o—finite measure on §; and
assume that (w1, ...,wj) we have a function
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which is

@ a measure on §;41 and
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Introduction to Measure Theory Measures on Product Spaces

Extension to Larger Product Spaces

Now, consider products of more than two o—fields!

Preparation

Let §; be a o—field of subsets of 2;, j =1,...,n.
Let ¢; be a o—finite measure on §; and
assume that (w1, ...,wj) we have a function

plwr,wa, .oy wj, o) 1§41 = R
which is
@ a measure on §;41 and

@® is measurable, i.e. for all fixed C' € §j41:

plwr, .o wi, C) 1 (2 x - x Qy,0(F1 x -+ x §j)) — (R, B(R))
© uniformly o—finite.
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Measures on Larger Product Spaces

Theorem (Product Measure Theorem)

There is a unique measure i, on § such that on §1 X -+ X Fp:

(AL % e x Ay) = L 111 (deon) L (wn, diss)

f /L(Wla"'awn—%dwn—l)f Wi, - - w1, dwy,).
Anfl A"
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Measures on Larger Product Spaces

Theorem (Product Measure Theorem)

There is a unique measure i on § such that on §1 x

- X 8n:
ply o Ag) = [ o) [ pen,doo)
Ay Ao
f u(wh---,wn_mdwn_l)f (Wi, .oy Wo1, dwy).
Anfl A"
Let f:(Q,3) > (R,B(R)). If f >0, then

L fdp= Ll p (dwn) J pwi, dws)

f flwt, .. oywn) wiy ..oy Wi—1, dwy,).
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let (£2;,5;) be a measurable space, j =1,2,....
Let Q = X;Ozl Q. If B" < Qq x -+ x Q,, define

B, :={we Q| (w,ws,...,w,) € B"}.
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Definition (Cylinder Set)

Let (£2;,5;) be a measurable space, j =1,2,....
Let Q = X;Ozl Q. If B" < Qq x -+ x Q,, define

B, :={we Q| (w,ws,...,w,) € B"}.

B, is called cylinder with base B™.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let (£2;,5;) be a measurable space, j =1,2,....
Let Q = X;Ozl Q. If B" < Qq x -+ x Q,, define

B, :={we Q| (w,ws,...,w,) € B"}.

B, is called cylinder with base B™.

e B, is measurable if B" € 0(§F1 x « -+ X §p)-
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let (£2;,5;) be a measurable space, j =1,2,....
Let Q = X;Ozl Q. If B" < Qq x -+ x Q,, define

B, :={we Q| (w,ws,...,w,) € B"}.

B, is called cylinder with base B™.
e B, is measurable if B" € 0(§F1 x « -+ X §p)-

e B, is arectangle if B" = A; x --- x A, and A; < Q;
B, is a measurable rectangle if A; € §;.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

lonescu—Tulcea Theorem

Let P, be a probability measure on § and for each (wi,...,wj), j €N,
assume a measurable probability measure P(wy,...,w;,-) on §jq1.

Let P, be defined on o(F1 x -+ x Fn):

P, (F) = Py (dwn) P(wl,dwz)-“f Ip(wi,...,wn) Pwi,...,wn—1,dwn).
N Qs Qn
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

lonescu—Tulcea Theorem

Let P, be a on §1 and (wi,...,wj), jeN,

assume a measurable probability measure P(wy,...,w;,-) on §jq1.

Let P, be defined on o(F1 x -+ x Fn):

P, (F) = Py (dwn) P(wl,dwg)-“f Ip(wi,...,wn) Pwi,...,wn—1,dwn).
[oN Qs Qn

There is a unique prob. measure PP on o (Xj-ozl &') such that for all n:

PlweQ| (wi,...,w,) € B"} = P,(B")
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

lonescu—Tulcea Theorem

Let P, be a on §1 and (wi,...,wj), jeN,

assume a measurable probability measure P(wy,...,w;,-) on §jq1.

Let P, be defined on o(F1 x -+ x Fn):

P, (F) = Py (dwn) P(wl,dwg)-“f Ip(wi,...,wn) Pwi,...,wn—1,dwn).
[oN Qs Qn

There is a unique prob. measure PP on o (Xj-ozl &') such that for all n:

PlweQ| (wi,...,w,) € B"} = P,(B")

The measure of a cylinder equals the measure of its finite base.
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