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Introduction to Measure Theory Basic Definitions

Measure Theory

Our Setting

Assume a set Ω, called sample space.

Subsets A of Ω are called events.

Idea: Measure the tsize | probability | volume | lengthu of events!

Intuition: Let ω P Ω be the outcome of an experiment.

Then A is an event if ω P A can be decided.
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Introduction to Measure Theory Basic Definitions

Fields and σ–fields

Definition (Field)

A class of subsets F of Ω is a field iff

1 Ω P F.

2 A P F ñ Ac P F.

3 A1, . . . , An P F ùñ �n
i=1 Ai P F

where n P N
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A class of subsets F of Ω is a field iff

1 Ω P F.

2 A P F ñ Ac P F.

3 A1, . . . , An P F ùñ �n
i=1 Ai P F

where n P N
Definition (σ–Field)

F is a σ–field iff it is closed under countable union:

A1, A2, � � � P F ñ 8¤
i=1

Ai P F
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Introduction to Measure Theory Basic Definitions

Fields and σ–fields

Definition (Field)

A class of subsets F of Ω is a field iff

1 Ω P F.

2 A P F ñ Ac P F.

3 A1, . . . , An P F ùñ �n
i=1 Ai P F

where n P N
Definition (σ–Field)

F is a σ–field iff it is closed under countable union:

A1, A2, � � � P F ñ 8¤
i=1

Ai P F

Let C � 2Ω. σpCq denotes the smallest σ–field containing C.
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Introduction to Measure Theory Basic Definitions

Example: The Borel σ–field

Define right–semiclosed intervals to be

• pa, bs where −8 ¤ a < b < +8 and
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Introduction to Measure Theory Basic Definitions

Example: The Borel σ–field

Define right–semiclosed intervals to be

• pa, bs where −8 ¤ a < b < +8 and

• pa,+8q where −8 ¤ a < +8.

Finite Disjoint Unions

Define the class of finite disjoint unions of right–semiclosed intervals:

F0pRq := tI1 Z I2 Z � � � Z In | n P Nu .
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Define right–semiclosed intervals to be

• pa, bs where −8 ¤ a < b < +8 and

• pa,+8q where −8 ¤ a < +8.

Finite Disjoint Unions

Define the class of finite disjoint unions of right–semiclosed intervals:

F0pRq := tI1 Z I2 Z � � � Z In | n P Nu .

Verify the properties of a field:

1 R = p−8,+8q P F0pRq.
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Define right–semiclosed intervals to be

• pa, bs where −8 ¤ a < b < +8 and

• pa,+8q where −8 ¤ a < +8.

Finite Disjoint Unions

Define the class of finite disjoint unions of right–semiclosed intervals:

F0pRq := tI1 Z I2 Z � � � Z In | n P Nu .

Verify the properties of a field:

1 R = p−8,+8q P F0pRq.
2 I1 Z � � � Z In P F0pRq ñ pI1 Z � � � Z Inqc P F0pRq.
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Example: The Borel σ–field

Define right–semiclosed intervals to be

• pa, bs where −8 ¤ a < b < +8 and

• pa,+8q where −8 ¤ a < +8.

Finite Disjoint Unions

Define the class of finite disjoint unions of right–semiclosed intervals:

F0pRq := tI1 Z I2 Z � � � Z In | n P Nu .

Verify the properties of a field:

1 R = p−8,+8q P F0pRq.
2 I1 Z � � � Z In P F0pRq ñ pI1 Z � � � Z Inqc P F0pRq.
3 If I1 Z � � � Z In P F0pRq and J1 Z � � � Z Jn P F0pRq

then pI1 Z � � � Z Inq Y pJ1 Z � � � Z Jnq P F0pRq.
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Introduction to Measure Theory Basic Definitions

Example: The Borel σ–field

Define right–semiclosed intervals to be

• pa, bs where −8 ¤ a < b < +8 and

• pa,+8q where −8 ¤ a < +8.

Finite Disjoint Unions

Define the class of finite disjoint unions of right–semiclosed intervals:

F0pRq := tI1 Z I2 Z � � � Z In | n P Nu .

Verify the properties of a field:

1 R = p−8,+8q P F0pRq.
2 I1 Z � � � Z In P F0pRq ñ pI1 Z � � � Z Inqc P F0pRq.
3 If I1 Z � � � Z In P F0pRq and J1 Z � � � Z Jn P F0pRq

then pI1 Z � � � Z Inq Y pJ1 Z � � � Z Jnq P F0pRq. F0pRq is a field.
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Introduction to Measure Theory Basic Definitions

Example: The Borel σ–field

Borel σ–field
Let E = tpa, bs | a, b P R and a < bu and

let σpEq denote the smallest σ–field containing E .

Then BpRq = σpEq is the Borel σ–field.
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Borel σ–field
Let E = tpa, bs | a, b P R and a < bu and

let σpEq denote the smallest σ–field containing E .

Then BpRq = σpEq is the Borel σ–field.

Example

BpRq has many generators:

• F0pRq, the set of finite disjoint unions of right–semiclosed intervals,

• E 1 = tra, bs | a, b P R and a < bu,
• E2 = tp−8, bs | b P Ru, . . .
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Example: The Borel σ–field

Borel σ–field
Let E = tpa, bs | a, b P R and a < bu and

let σpEq denote the smallest σ–field containing E .

Then BpRq = σpEq is the Borel σ–field.

Example

BpRq has many generators:

• F0pRq, the set of finite disjoint unions of right–semiclosed intervals,

• E 1 = tra, bs | a, b P R and a < bu,
• E2 = tp−8, bs | b P Ru, . . .

Intuition: Construct σ–field by forming countable unions and complements

of intervals in all possible ways.
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Introduction to Measure Theory Measures

Measures

Intuition
Measure the “size” of sets in σ–field F.

Notions of length, volume or probability.
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Introduction to Measure Theory Measures

Measures

Intuition
Measure the “size” of sets in σ–field F.

Notions of length, volume or probability.

Definition (Measure)

Let F be a σ–field over subsets of Ω. A measure is a function

µ : F Ñ R̄¥0 where R̄ := RY t−8,+8u
which is countably additive:

µ
� 8¤
i=1

Ai

�
=

8̧
i=1

µpAiq for disjoint sets Ai P F.

Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 6 / 28



Introduction to Measure Theory Measures

Measures

Intuition
Measure the “size” of sets in σ–field F.

Notions of length, volume or probability.

Definition (Measure)

Let F be a σ–field over subsets of Ω. A measure is a function

µ : F Ñ R̄¥0 where R̄ := RY t−8,+8u
which is countably additive:

µ
� 8¤
i=1

Ai

�
=

8̧
i=1

µpAiq for disjoint sets Ai P F.

Remark: If µpΩq = 1, µ is a probability measure.
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Introduction to Measure Theory Measures

Example: A Measure on BpRq
The size of intervals
Given interval pa, bs, a < b P R. Define its “length” as follows:

µpa, bs = b − a
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Introduction to Measure Theory Measures

Example: A Measure on BpRq
The size of intervals
Given interval pa, bs, a < b P R. Define its “length” as follows:

µpa, bs = b − a

Sizes on the field F0pRq
On the set of finite disjoint unions of right–semiclosed intervals:

Let I1 Z � � � Z In P F0pRq. Extend µ to F0pRq by defining

µpI1 Z � � � Z Inq =

ņ

i=1

µpIiq
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Introduction to Measure Theory Measures

Example: A Measure on BpRq
The size of intervals
Given interval pa, bs, a < b P R. Define its “length” as follows:

µpa, bs = b − a

Sizes on the field F0pRq
On the set of finite disjoint unions of right–semiclosed intervals:

Let I1 Z � � � Z In P F0pRq. Extend µ to F0pRq by defining

µpI1 Z � � � Z Inq =

ņ

i=1

µpIiq
But: What about µpAq for arbitrary A P BpRq?
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Introduction to Measure Theory Measures

Extension of Measures

Motivation
Define countably additive set function µ on a field F0.

Then extend it to the σ–field by magic.
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Introduction to Measure Theory Measures

Extension of Measures

Motivation
Define countably additive set function µ on a field F0.

Then extend it to the σ–field by magic.

Theorem (Carathéodory Extension Theorem)

Let F0 be a field over subsets of a set Ω and let µ be a measure on F0.
If µ is σ–finite, i.e.

Ω =

8¤
i=1

Ai where Ai P F0 and µpAiq < 8,

then µ has a unique extension to σpF0q.
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Introduction to Measure Theory Measures

Extension of Measures

Motivation
Define countably additive set function µ on a field F0.

Then extend it to the σ–field by magic.

Theorem (Carathéodory Extension Theorem)

Let F0 be a field over subsets of a set Ω and let µ be a measure on F0.
If µ is σ–finite, i.e.

Ω =

8¤
i=1

Ai where Ai P F0 and µpAiq < 8,

then µ has a unique extension to σpF0q.
In practice: Avoid the σ–field whenever possible!
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Introduction to Measure Theory Measures

There’s Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” µ on subclasses of BpRq:
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Up to now, we defined the “length” µ on subclasses of BpRq:
1 µpa, bs = b − a for right–semiclosed intervals

2 µpI1 Z I2 Z � � � Z Inq =
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j=1
µpIjq for finite disjoint unions
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Introduction to Measure Theory Measures

There’s Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” µ on subclasses of BpRq:
1 µpa, bs = b − a for right–semiclosed intervals

2 µpI1 Z I2 Z � � � Z Inq =
°n

j=1
µpIjq for finite disjoint unions

3 But: For the extension from F0pRq to BpRq by Carathéodory:

µp 8¤
j=1

Ajq =

8̧
j=1

µpAjq
where A1, A2, � � � P F0pRq, �8

j=1
Aj P F0 and the Aj disjoint.
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Introduction to Measure Theory Measures

There’s Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” µ on subclasses of BpRq:
1 µpa, bs = b − a for right–semiclosed intervals

2 µpI1 Z I2 Z � � � Z Inq =
°n

j=1
µpIjq for finite disjoint unions

3 But: For the extension from F0pRq to BpRq by Carathéodory:

µp 8¤
j=1

Ajq =

8̧
j=1

µpAjq
where A1, A2, � � � P F0pRq, �8

j=1
Aj P F0 and the Aj disjoint.

Theorem
Let F : RÑ R be a distrib. function. Let µpa, bs := F pbq− F paq.
There is a unique extension of µ to a Lebesgue–Stieltjes measure on R.

Thus: Countable additivity of µ follows by defining F pxq := x.
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Introduction to Measure Theory Lebesgue Integration

Lebesgue’s Intuition

Lebesgue about his integral
“One might say that Riemann’s approach is comparable to a messy merchant
who counts coins in the order they come to his hand whereas we act like a
prudent merchant who says:

• I have A1 coins à one crown, that is A1 � 1 crowns,

• A2 coins à two crowns, that is A2 � 2 crowns and

• A3 coins à five crowns, that is A3 � 5 crowns.

Therefore I have A1 � 1 + A2 � 2 + A3 � 5 crowns.

Both approaches – no matter how rich the merchant might be – lead to the
same result since he only has to count a finite number of coins.
But for us who must add infinitly many indivisibles, the difference between
the approaches is essential.”

H.Lebesgue, 1926
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Introduction to Measure Theory Lebesgue Integration

Measurability

Definition (Measurability)

Let Ω1,Ω2 be sets with associated σ–fields F1 and F2.

h : Ω1 Ñ Ω2 is measurable iff

h−1pAq P F1 for each A P F2

Notation: h : pΩ1,F1q Ñ pΩ2,F2q.
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Definition (Measurability)

Let Ω1,Ω2 be sets with associated σ–fields F1 and F2.

h : Ω1 Ñ Ω2 is measurable iff

h−1pAq P F1 for each A P F2

Notation: h : pΩ1,F1q Ñ pΩ2,F2q.
Some remarks:

• h is Borel measurable if h : pΩ,Fq Ñ pR̄,BpR̄qq.
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Introduction to Measure Theory Lebesgue Integration

Measurability

Definition (Measurability)

Let Ω1,Ω2 be sets with associated σ–fields F1 and F2.

h : Ω1 Ñ Ω2 is measurable iff

h−1pAq P F1 for each A P F2

Notation: h : pΩ1,F1q Ñ pΩ2,F2q.
Some remarks:

• h is Borel measurable if h : pΩ,Fq Ñ pR̄,BpR̄qq.
• In probability theory, h is called a random variable.
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Introduction to Measure Theory Lebesgue Integration

Simple Functions

Definition (Simple Functions)

Let h : Ω Ñ R̄. h is simple iff

1 h is measurable and

2 takes on only finitely many values.
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Introduction to Measure Theory Lebesgue Integration

Simple Functions

Definition (Simple Functions)

Let h : Ω Ñ R̄. h is simple iff

1 h is measurable and

2 takes on only finitely many values.

If h is a simple function, it can be represented as

hpωq :=

ņ

i=1

xi � IAi
pωq

where Ai P F are pairwisely disjoint.

IAi
denotes the indicator function IAi

pωq :=

#
1 if ω P Ai

0 otherwise
.

Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 12 / 28



Introduction to Measure Theory Lebesgue Integration

Simple Functions

Definition (Simple Functions)

Let h : Ω Ñ R̄. h is simple iff

1 h is measurable and

2 takes on only finitely many values.

If h is a simple function, it can be represented as

hpωq :=

ņ

i=1

xi � IAi
pωq

where Ai P F are pairwisely disjoint.

IAi
denotes the indicator function IAi

pωq :=

#
1 if ω P Ai

0 otherwise
.

Intuition: Choose Ai as the preimage of xi!
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Introduction to Measure Theory Lebesgue Integration

Lebesgue Integral

Definition (Lebesgue Integral for Simple Functions)

Let pΩ,F, µq be a measure space, h : Ω Ñ R̄ simple:

hpωq :=

ņ

i=1

xi � IAi
pωq where the Ai are disjoint sets in F.
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Introduction to Measure Theory Lebesgue Integration

Lebesgue Integral

Definition (Lebesgue Integral for Simple Functions)

Let pΩ,F, µq be a measure space, h : Ω Ñ R̄ simple:

hpωq :=

ņ

i=1

xi � IAi
pωq where the Ai are disjoint sets in F.

The Lebesgue–integral of h is defined as»
Ω

h dµ :=

ņ

i=1

xi � µpAiq.
Intuition: Multiply each xi with the measure of its preimage Ai.
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Introduction to Measure Theory Lebesgue Integration

Example: Lebesgue Integral

µpA3q = µpµpA1q = µp
µpA2q = µp
µpA4q = µp qqqq

x3

x2

x1

x4

hpωq
hpωq=x1 hpωq=x3 hpωq=x4

hpωq=x1hpωq=x3 =x2

Ω
hpωq
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Introduction to Measure Theory Lebesgue Integration

Example: Lebesgue Integral

x3

x2

x1

x4

hpωq
Ω³

Ω
h dµ = x1µpA1q + x2µpA2q + x3µpA3q
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Introduction to Measure Theory Lebesgue Integration

Example: Riemann (Darboux) Integral

x3

x2

x1

x4

hpωq
Ω

dx
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Introduction to Measure Theory Lebesgue Integration

Lebesgue Integral on Nonnegative Functions

Definition
If h is nonnegative Borel measurable, then»

Ω

h dµ := sup

"»
Ω

s dµ | s is simple and 0 ¤ s ¤ h

*
.

Theorem
A nonnegative Borel measurable function h is the limit of an increasing
sequence of nonnegative simple functions hn.
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Introduction to Measure Theory Lebesgue Integration

Example: Lebesgue Integral

hpωq
R
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Example: Lebesgue Integral
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Introduction to Measure Theory Measures on Product Spaces

Finite Product Spaces

Definition (Product Space)

Let pΩj,Fjq be a measurable space, j = 1, . . . , n. Then
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Finite Product Spaces

Definition (Product Space)

Let pΩj,Fjq be a measurable space, j = 1, . . . , n. Then

• Ω = Ω1 � � � � � Ωn

• A = A1 �A2 � � � � �An is a measurable rectangle if Aj P Fj.
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Introduction to Measure Theory Measures on Product Spaces

Finite Product Spaces

Definition (Product Space)

Let pΩj,Fjq be a measurable space, j = 1, . . . , n. Then

• Ω = Ω1 � � � � � Ωn

• A = A1 �A2 � � � � �An is a measurable rectangle if Aj P Fj.

• The set of measurable rectangles is denoted

F1 � F2 � � � � � Fn.
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Introduction to Measure Theory Measures on Product Spaces

Finite Product Spaces

Definition (Product Space)

Let pΩj,Fjq be a measurable space, j = 1, . . . , n. Then

• Ω = Ω1 � � � � � Ωn

• A = A1 �A2 � � � � �An is a measurable rectangle if Aj P Fj.

• The set of measurable rectangles is denoted

F1 � F2 � � � � � Fn.

• The product σ–field F is the smallest σ–field containing all

measurable rectangles:

F := σ
�
F1 � F2 � � � � � Fn
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Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

To start with: Only products of two σ–fields!

Preparation

Let pΩ1,F1, µ1q be a measure space, µ1 σ–finite on F1.
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Preparation

Let pΩ1,F1, µ1q be a measure space, µ1 σ–finite on F1.

Further let F2 be a σ–field over subsets of Ω2.

Assume that for each ω1 P Ω1 we have a function
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Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 22 / 28



Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

To start with: Only products of two σ–fields!

Preparation

Let pΩ1,F1, µ1q be a measure space, µ1 σ–finite on F1.

Further let F2 be a σ–field over subsets of Ω2.

Assume that for each ω1 P Ω1 we have a function

µpω1, �q : F2 Ñ R̄
which is

1 a measure on F2,
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Measures on Finite Product Spaces

To start with: Only products of two σ–fields!

Preparation

Let pΩ1,F1, µ1q be a measure space, µ1 σ–finite on F1.

Further let F2 be a σ–field over subsets of Ω2.

Assume that for each ω1 P Ω1 we have a function

µpω1, �q : F2 Ñ R̄
which is

1 a measure on F2,

2 Borel measurable in ω1 and
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Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

To start with: Only products of two σ–fields!

Preparation

Let pΩ1,F1, µ1q be a measure space, µ1 σ–finite on F1.

Further let F2 be a σ–field over subsets of Ω2.

Assume that for each ω1 P Ω1 we have a function

µpω1, �q : F2 Ñ R̄
which is

1 a measure on F2,

2 Borel measurable in ω1 and

3 uniformly σ–finite:

Ω2 =
�8

n=1
Bn where µpω1, Bnq ¤ kn for all ω1 and fixed kn P R.
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Measures on Finite Product Spaces

Theorem (Product Measure Theorem)

Given pΩ1,F1, µ1q, pΩ2,F2q and µpω1, �q as before.
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Measures on Finite Product Spaces

Theorem (Product Measure Theorem)

Given pΩ1,F1, µ1q, pΩ2,F2q and µpω1, �q as before.
There is a unique measure µ on F such that on F1 � F2:

µpA�Bq =

»
A

µpω1, Bq µ1pdω1q.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

Theorem (Product Measure Theorem)

Given pΩ1,F1, µ1q, pΩ2,F2q and µpω1, �q as before.
There is a unique measure µ on F such that on F1 � F2:

µpA�Bq =

»
A

µpω1, Bq µ1pdω1q.
µ is defined (now on the entire σ–field) as follows:

µpF q :=

»
Ω1

µpω1, F pω1qq µ1pdω1q, for all F P F

where F pω1q := tω2 | pω1, ω2q P F u.
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Introduction to Measure Theory Measures on Product Spaces

Lebesgue Integrals on Finite Product Spaces

Theorem (Fubini’s Theorem)

Let f : pΩ,Fq Ñ pR̄,BpR̄qq. If f is nonnegative, then»
Ω2

fpω1, ω2q µpω1, dω2q
exists and defines a Borel measurable function.
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Introduction to Measure Theory Measures on Product Spaces

Lebesgue Integrals on Finite Product Spaces

Theorem (Fubini’s Theorem)

Let f : pΩ,Fq Ñ pR̄,BpR̄qq. If f is nonnegative, then»
Ω2

fpω1, ω2q µpω1, dω2q
exists and defines a Borel measurable function. Also»

Ω

f dµ =

»
Ω1

�»
Ω2

fpω1, ω2q µpω1, dω2q	µ1pdω1q.
Justification of iterated integration!
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Introduction to Measure Theory Measures on Product Spaces

Extension to Larger Product Spaces

Now, consider products of more than two σ–fields!

Preparation

Let Fj be a σ–field of subsets of Ωj, j = 1, . . . , n.
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Now, consider products of more than two σ–fields!

Preparation

Let Fj be a σ–field of subsets of Ωj, j = 1, . . . , n.

Let µ1 be a σ–finite measure on F1 and

assume that for each pω1, . . . , ωjq we have a function

µpω1, ω2, . . . , ωj, �q : Fj+1 Ñ R̄
which is
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Introduction to Measure Theory Measures on Product Spaces

Extension to Larger Product Spaces

Now, consider products of more than two σ–fields!

Preparation

Let Fj be a σ–field of subsets of Ωj, j = 1, . . . , n.

Let µ1 be a σ–finite measure on F1 and

assume that for each pω1, . . . , ωjq we have a function

µpω1, ω2, . . . , ωj, �q : Fj+1 Ñ R̄
which is

1 a measure on Fj+1 and

2 is measurable, i.e. for all fixed C P Fj+1:

µpω1, . . . , ωj, Cq :
�
Ω1 � � � � � Ωj, σpF1 � � � � � Fjq�Ñ �R̄,BpR̄q�

3 uniformly σ–finite.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Larger Product Spaces

Theorem (Product Measure Theorem)

There is a unique measure µ on F such that on F1 � � � � � Fn:

µpA1 � � � � �Anq =

»
A1

µ1pdω1q »
A2

µpω1, dω2q� � � »
An−1

µpω1, . . . , ωn−2, dωn−1q »
An

µpω1, . . . , ωn−1, dωnq.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Larger Product Spaces

Theorem (Product Measure Theorem)

There is a unique measure µ on F such that on F1 � � � � � Fn:

µpA1 � � � � �Anq =

»
A1

µ1pdω1q »
A2

µpω1, dω2q� � � »
An−1

µpω1, . . . , ωn−2, dωn−1q »
An

µpω1, . . . , ωn−1, dωnq.
Let f : pΩ,Fq Ñ pR̄,BpR̄qq. If f ¥ 0, then»

Ω

f dµ =

»
Ω1

µ1pdω1q »
Ω2

µpω1, dω2q� � � »
Ωn

fpω1, . . . , ωnq µpω1, . . . , ωn−1, dωnq.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let pΩj,Fjq be a measurable space, j = 1, 2, . . . .

Let Ω =
�8

j=1
Ωj . If Bn � Ω1 � � � � � Ωn, define

Bn := tω P Ω | pω1, ω2, . . . , ωnq P Bnu .
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let pΩj,Fjq be a measurable space, j = 1, 2, . . . .

Let Ω =
�8

j=1
Ωj . If Bn � Ω1 � � � � � Ωn, define

Bn := tω P Ω | pω1, ω2, . . . , ωnq P Bnu .

Bn is called cylinder with base Bn.

• Bn is measurable if Bn P σpF1 � � � � � Fnq.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let pΩj,Fjq be a measurable space, j = 1, 2, . . . .

Let Ω =
�8

j=1
Ωj . If Bn � Ω1 � � � � � Ωn, define

Bn := tω P Ω | pω1, ω2, . . . , ωnq P Bnu .

Bn is called cylinder with base Bn.

• Bn is measurable if Bn P σpF1 � � � � � Fnq.
• Bn is a rectangle if Bn = A1 � � � � �An and Aj � Ωj;

Bn is a measurable rectangle if Aj P Fj.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Ionescu–Tulcea Theorem
Let P1 be a probability measure on F1 and for each pω1, . . . , ωjq, j P N,

assume a measurable probability measure P pω1, . . . , ωj, �q on Fj+1.

Let Pn be defined on σpF1 � � � � � Fnq:
PnpF q =

»
Ω1

P1pdω1q »
Ω2

P pω1, dω2q � � � »
Ωn

IF pω1, . . . , ωnq P pω1, . . . , ωn−1, dωnq.
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Measures on Infinite Product Spaces

Ionescu–Tulcea Theorem
Let P1 be a probability measure on F1 and for each pω1, . . . , ωjq, j P N,

assume a measurable probability measure P pω1, . . . , ωj, �q on Fj+1.

Let Pn be defined on σpF1 � � � � � Fnq:
PnpF q =

»
Ω1

P1pdω1q »
Ω2

P pω1, dω2q � � � »
Ωn

IF pω1, . . . , ωnq P pω1, . . . , ωn−1, dωnq.
There is a unique prob. measure P on σ

��8
j=1

Fj

	
such that for all n:

P tω P Ω | pω1, . . . , ωnq P Bnu = PnpBnq
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Measures on Infinite Product Spaces

Ionescu–Tulcea Theorem
Let P1 be a probability measure on F1 and for each pω1, . . . , ωjq, j P N,

assume a measurable probability measure P pω1, . . . , ωj, �q on Fj+1.

Let Pn be defined on σpF1 � � � � � Fnq:
PnpF q =

»
Ω1

P1pdω1q »
Ω2

P pω1, dω2q � � � »
Ωn

IF pω1, . . . , ωnq P pω1, . . . , ωn−1, dωnq.
There is a unique prob. measure P on σ

��8
j=1

Fj

	
such that for all n:

P tω P Ω | pω1, . . . , ωnq P Bnu = PnpBnq
Intuition: The measure of a cylinder equals the measure of its finite base.
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