

# From Measure Theory to CTMDPs

Martin Neuhäußer

Software Modeling and Verification Group, RWTH-Aachen

November 9th, 2006

# Measure Theory

## Our Setting

Assume a set  $\Omega$ , called **sample space**.

Subsets  $A$  of  $\Omega$  are called **events**.

**Idea:** Measure the {size | probability | volume | length} of events!

**Intuition:** Let  $\omega \in \Omega$  be the outcome of an experiment.

Then  $A$  is an event if  $\omega \in A$  can be decided.

# Fields and $\sigma$ -fields

## Definition (Field)

A class of subsets  $\mathfrak{F}$  of  $\Omega$  is a field iff

- ①  $\Omega \in \mathfrak{F}$ .
- ②  $A \in \mathfrak{F} \Rightarrow A^c \in \mathfrak{F}$ .
- ③  $A_1, \dots, A_n \in \mathfrak{F} \implies \bigcup_{i=1}^n A_i \in \mathfrak{F}$   
where  $n \in \mathbb{N}$

# Fields and $\sigma$ -fields

## Definition (Field)

A class of subsets  $\mathfrak{F}$  of  $\Omega$  is a field iff

- ①  $\Omega \in \mathfrak{F}$ .
- ②  $A \in \mathfrak{F} \Rightarrow A^c \in \mathfrak{F}$ .
- ③  $A_1, \dots, A_n \in \mathfrak{F} \implies \bigcup_{i=1}^n A_i \in \mathfrak{F}$   
where  $n \in \mathbb{N}$

## Definition ( $\sigma$ -Field)

$\mathfrak{F}$  is a  **$\sigma$ -field** iff it is closed under countable union:

$$A_1, A_2, \dots \in \mathfrak{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathfrak{F}$$

# Fields and $\sigma$ -fields

## Definition (Field)

A class of subsets  $\mathfrak{F}$  of  $\Omega$  is a field iff

- ①  $\Omega \in \mathfrak{F}$ .
- ②  $A \in \mathfrak{F} \Rightarrow A^c \in \mathfrak{F}$ .
- ③  $A_1, \dots, A_n \in \mathfrak{F} \implies \bigcup_{i=1}^n A_i \in \mathfrak{F}$   
where  $n \in \mathbb{N}$

## Definition ( $\sigma$ -Field)

$\mathfrak{F}$  is a  **$\sigma$ -field** iff it is closed under countable union:

$$A_1, A_2, \dots \in \mathfrak{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathfrak{F}$$

Let  $\mathcal{C} \subseteq 2^\Omega$ .  $\sigma(\mathcal{C})$  denotes the **smallest  $\sigma$ -field** containing  $\mathcal{C}$ .

# Example: The Borel $\sigma$ -field

Define **right-semiclosed intervals** to be

- $(a, b]$  where  $-\infty \leq a < b < +\infty$  and

# Example: The Borel $\sigma$ -field

Define **right-semiclosed intervals** to be

- $(a, b]$  where  $-\infty \leq a < b < +\infty$  and
- $(a, +\infty)$  where  $-\infty \leq a < +\infty$ .

# Example: The Borel $\sigma$ -field

Define **right-semiclosed intervals** to be

- $(a, b]$  where  $-\infty \leq a < b < +\infty$  and
- $(a, +\infty)$  where  $-\infty \leq a < +\infty$ .

## Finite Disjoint Unions

Define the class of **finite disjoint unions** of right-semiclosed intervals:

$$\mathfrak{F}_0(\mathbb{R}) := \{I_1 \uplus I_2 \uplus \cdots \uplus I_n \mid n \in \mathbb{N}\}.$$

# Example: The Borel $\sigma$ -field

Define **right-semiclosed intervals** to be

- $(a, b]$  where  $-\infty \leq a < b < +\infty$  and
- $(a, +\infty)$  where  $-\infty \leq a < +\infty$ .

## Finite Disjoint Unions

Define the class of **finite disjoint unions** of right-semiclosed intervals:

$$\mathfrak{F}_0(\mathbb{R}) := \{I_1 \uplus I_2 \uplus \cdots \uplus I_n \mid n \in \mathbb{N}\}.$$

Verify the properties of a field:

①  $\mathbb{R} = (-\infty, +\infty) \in \mathfrak{F}_0(\mathbb{R})$ .

# Example: The Borel $\sigma$ -field

Define **right-semiclosed intervals** to be

- $(a, b]$  where  $-\infty \leq a < b < +\infty$  and
- $(a, +\infty)$  where  $-\infty \leq a < +\infty$ .

## Finite Disjoint Unions

Define the class of **finite disjoint unions** of right-semiclosed intervals:

$$\mathfrak{F}_0(\mathbb{R}) := \{I_1 \uplus I_2 \uplus \cdots \uplus I_n \mid n \in \mathbb{N}\}.$$

Verify the properties of a field:

- ①  $\mathbb{R} = (-\infty, +\infty) \in \mathfrak{F}_0(\mathbb{R})$ .
- ②  $I_1 \uplus \cdots \uplus I_n \in \mathfrak{F}_0(\mathbb{R}) \Rightarrow (I_1 \uplus \cdots \uplus I_n)^c \in \mathfrak{F}_0(\mathbb{R})$ .

# Example: The Borel $\sigma$ -field

Define **right-semiclosed intervals** to be

- $(a, b]$  where  $-\infty \leq a < b < +\infty$  and
- $(a, +\infty)$  where  $-\infty \leq a < +\infty$ .

## Finite Disjoint Unions

Define the class of **finite disjoint unions** of right-semiclosed intervals:

$$\mathfrak{F}_0(\mathbb{R}) := \{I_1 \uplus I_2 \uplus \cdots \uplus I_n \mid n \in \mathbb{N}\}.$$

Verify the properties of a field:

- ①  $\mathbb{R} = (-\infty, +\infty) \in \mathfrak{F}_0(\mathbb{R})$ .
- ②  $I_1 \uplus \cdots \uplus I_n \in \mathfrak{F}_0(\mathbb{R}) \Rightarrow (I_1 \uplus \cdots \uplus I_n)^c \in \mathfrak{F}_0(\mathbb{R})$ .
- ③ If  $I_1 \uplus \cdots \uplus I_n \in \mathfrak{F}_0(\mathbb{R})$  and  $J_1 \uplus \cdots \uplus J_n \in \mathfrak{F}_0(\mathbb{R})$   
then  $(I_1 \uplus \cdots \uplus I_n) \cup (J_1 \uplus \cdots \uplus J_n) \in \mathfrak{F}_0(\mathbb{R})$ .

# Example: The Borel $\sigma$ -field

Define **right-semiclosed intervals** to be

- $(a, b]$  where  $-\infty \leq a < b < +\infty$  and
- $(a, +\infty)$  where  $-\infty \leq a < +\infty$ .

## Finite Disjoint Unions

Define the class of **finite disjoint unions** of right-semiclosed intervals:

$$\mathfrak{F}_0(\mathbb{R}) := \{I_1 \uplus I_2 \uplus \cdots \uplus I_n \mid n \in \mathbb{N}\}.$$

Verify the properties of a field:

- ①  $\mathbb{R} = (-\infty, +\infty) \in \mathfrak{F}_0(\mathbb{R})$ .
- ②  $I_1 \uplus \cdots \uplus I_n \in \mathfrak{F}_0(\mathbb{R}) \Rightarrow (I_1 \uplus \cdots \uplus I_n)^c \in \mathfrak{F}_0(\mathbb{R})$ .
- ③ If  $I_1 \uplus \cdots \uplus I_n \in \mathfrak{F}_0(\mathbb{R})$  and  $J_1 \uplus \cdots \uplus J_n \in \mathfrak{F}_0(\mathbb{R})$   
then  $(I_1 \uplus \cdots \uplus I_n) \cup (J_1 \uplus \cdots \uplus J_n) \in \mathfrak{F}_0(\mathbb{R})$ .

$\mathfrak{F}_0(\mathbb{R})$  is a field.

# Example: The Borel $\sigma$ -field

## Borel $\sigma$ -field

Let  $\mathcal{E} = \{(a, b] \mid a, b \in \mathbb{R} \text{ and } a < b\}$  and

let  $\sigma(\mathcal{E})$  denote the **smallest  $\sigma$ -field** containing  $\mathcal{E}$ .

Then  $\mathfrak{B}(\mathbb{R}) = \sigma(\mathcal{E})$  is the **Borel  $\sigma$ -field**.

# Example: The Borel $\sigma$ -field

## Borel $\sigma$ -field

Let  $\mathcal{E} = \{(a, b] \mid a, b \in \mathbb{R} \text{ and } a < b\}$  and

let  $\sigma(\mathcal{E})$  denote the **smallest  $\sigma$ -field** containing  $\mathcal{E}$ .

Then  $\mathfrak{B}(\mathbb{R}) = \sigma(\mathcal{E})$  is the **Borel  $\sigma$ -field**.

## Example

$\mathfrak{B}(\mathbb{R})$  has many generators:

- $\mathfrak{F}_0(\mathbb{R})$ , the set of finite disjoint unions of right-semiclosed intervals,
- $\mathcal{E}' = \{[a, b] \mid a, b \in \mathbb{R} \text{ and } a < b\}$ ,
- $\mathcal{E}'' = \{(-\infty, b] \mid b \in \mathbb{R}\}$ , ...

# Example: The Borel $\sigma$ -field

## Borel $\sigma$ -field

Let  $\mathcal{E} = \{(a, b] \mid a, b \in \mathbb{R} \text{ and } a < b\}$  and

let  $\sigma(\mathcal{E})$  denote the **smallest  $\sigma$ -field** containing  $\mathcal{E}$ .

Then  $\mathfrak{B}(\mathbb{R}) = \sigma(\mathcal{E})$  is the **Borel  $\sigma$ -field**.

## Example

$\mathfrak{B}(\mathbb{R})$  has many generators:

- $\mathfrak{F}_0(\mathbb{R})$ , the set of finite disjoint unions of right-semiclosed intervals,
- $\mathcal{E}' = \{[a, b] \mid a, b \in \mathbb{R} \text{ and } a < b\}$ ,
- $\mathcal{E}'' = \{(-\infty, b] \mid b \in \mathbb{R}\}$ , ...

**Intuition:** Construct  $\sigma$ -field by forming countable unions and complements of intervals in all possible ways.

# Measures

## Intuition

Measure the “size” of sets in  $\sigma$ –field  $\mathfrak{F}$ .

Notions of **length**, **volume** or **probability**.

# Measures

## Intuition

Measure the “size” of sets in  $\sigma$ –field  $\mathfrak{F}$ .

Notions of **length**, **volume** or **probability**.

## Definition (Measure)

Let  $\mathfrak{F}$  be a  $\sigma$ –field over subsets of  $\Omega$ . A **measure** is a function

$$\mu : \mathfrak{F} \rightarrow \bar{\mathbb{R}}_{\geq 0} \quad \text{where } \bar{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$$

which is **countably additive**:

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i) \quad \text{for disjoint sets } A_i \in \mathfrak{F}.$$

# Measures

## Intuition

Measure the “size” of sets in  $\sigma$ –field  $\mathfrak{F}$ .

Notions of **length**, **volume** or **probability**.

## Definition (Measure)

Let  $\mathfrak{F}$  be a  $\sigma$ –field over subsets of  $\Omega$ . A **measure** is a function

$$\mu : \mathfrak{F} \rightarrow \bar{\mathbb{R}}_{\geq 0} \quad \text{where } \bar{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$$

which is **countably additive**:

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i) \quad \text{for disjoint sets } A_i \in \mathfrak{F}.$$

**Remark:** If  $\mu(\Omega) = 1$ ,  $\mu$  is a **probability measure**.

# Example: A Measure on $\mathfrak{B}(\mathbb{R})$

## The size of intervals

Given interval  $(a, b]$ ,  $a < b \in \mathbb{R}$ . Define its “length” as follows:

$$\mu(a, b] = b - a$$

# Example: A Measure on $\mathfrak{B}(\mathbb{R})$

## The size of intervals

Given interval  $(a, b]$ ,  $a < b \in \mathbb{R}$ . Define its “length” as follows:

$$\mu(a, b] = b - a$$

## Sizes on the field $\mathfrak{F}_0(\mathbb{R})$

On the set of **finite disjoint unions** of right–semiclosed intervals:

Let  $I_1 \uplus \dots \uplus I_n \in \mathfrak{F}_0(\mathbb{R})$ . Extend  $\mu$  to  $\mathfrak{F}_0(\mathbb{R})$  by defining

$$\mu(I_1 \uplus \dots \uplus I_n) = \sum_{i=1}^n \mu(I_i)$$

# Example: A Measure on $\mathfrak{B}(\mathbb{R})$

## The size of intervals

Given interval  $(a, b]$ ,  $a < b \in \mathbb{R}$ . Define its “length” as follows:

$$\mu(a, b] = b - a$$

## Sizes on the field $\mathfrak{F}_0(\mathbb{R})$

On the set of **finite disjoint unions** of right–semiclosed intervals:

Let  $I_1 \uplus \dots \uplus I_n \in \mathfrak{F}_0(\mathbb{R})$ . Extend  $\mu$  to  $\mathfrak{F}_0(\mathbb{R})$  by defining

$$\mu(I_1 \uplus \dots \uplus I_n) = \sum_{i=1}^n \mu(I_i)$$

**But:** What about  $\mu(A)$  for **arbitrary**  $A \in \mathfrak{B}(\mathbb{R})$ ?

# Extension of Measures

## Motivation

Define **countably additive** set function  $\mu$  on a field  $\mathfrak{F}_0$ .  
Then extend it to the  $\sigma$ -field **by magic**.

# Extension of Measures

## Motivation

Define **countably additive** set function  $\mu$  on a field  $\mathfrak{F}_0$ .  
Then extend it to the  $\sigma$ -field **by magic**.

## Theorem (Carathéodory Extension Theorem)

Let  $\mathfrak{F}_0$  be a field over subsets of a set  $\Omega$  and let  $\mu$  be a **measure** on  $\mathfrak{F}_0$ .  
If  $\mu$  is  $\sigma$ -finite, i.e.

$$\Omega = \bigcup_{i=1}^{\infty} A_i \quad \text{where } A_i \in \mathfrak{F}_0 \text{ and } \mu(A_i) < \infty,$$

then  $\mu$  has a **unique** extension to  $\sigma(\mathfrak{F}_0)$ .

# Extension of Measures

## Motivation

Define **countably additive** set function  $\mu$  on a field  $\mathfrak{F}_0$ .  
Then extend it to the  $\sigma$ -field **by magic**.

## Theorem (Carathéodory Extension Theorem)

Let  $\mathfrak{F}_0$  be a field over subsets of a set  $\Omega$  and let  $\mu$  be a **measure** on  $\mathfrak{F}_0$ .  
If  $\mu$  is  $\sigma$ -finite, i.e.

$$\Omega = \bigcup_{i=1}^{\infty} A_i \quad \text{where } A_i \in \mathfrak{F}_0 \text{ and } \mu(A_i) < \infty,$$

then  $\mu$  has a **unique** extension to  $\sigma(\mathfrak{F}_0)$ .

**In practice:** Avoid the  $\sigma$ -field whenever possible!

# There's Still a Catch in it: Countable Additivity!

## Example

Up to now, we defined the “length”  $\mu$  on subclasses of  $\mathfrak{B}(\mathbb{R})$ :

# There's Still a Catch in it: Countable Additivity!

## Example

Up to now, we defined the “length”  $\mu$  on subclasses of  $\mathfrak{B}(\mathbb{R})$ :

- 1  $\mu(a, b] = b - a$  for right–semiclosed intervals

# There's Still a Catch in it: Countable Additivity!

## Example

Up to now, we defined the “length”  $\mu$  on subclasses of  $\mathfrak{B}(\mathbb{R})$ :

- ①  $\mu(a, b] = b - a$  for right–semiclosed intervals
- ②  $\mu(I_1 \uplus I_2 \uplus \dots \uplus I_n) = \sum_{j=1}^n \mu(I_j)$  for finite disjoint unions

# There's Still a Catch in it: Countable Additivity!

## Example

Up to now, we defined the “length”  $\mu$  on subclasses of  $\mathfrak{B}(\mathbb{R})$ :

- ①  $\mu(a, b] = b - a$  for right–semiclosed intervals
- ②  $\mu(I_1 \uplus I_2 \uplus \dots \uplus I_n) = \sum_{j=1}^n \mu(I_j)$  for finite disjoint unions
- ③ **But:** For the extension from  $\mathfrak{F}_0(\mathbb{R})$  to  $\mathfrak{B}(\mathbb{R})$  by Carathéodory:

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mu(A_j)$$

where  $A_1, A_2, \dots \in \mathfrak{F}_0(\mathbb{R})$ ,  $\bigcup_{j=1}^{\infty} A_j \in \mathfrak{F}_0$  and the  $A_j$  disjoint.

# There's Still a Catch in it: Countable Additivity!

## Example

Up to now, we defined the “length”  $\mu$  on subclasses of  $\mathfrak{B}(\mathbb{R})$ :

- ①  $\mu(a, b] = b - a$  for right–semiclosed intervals
- ②  $\mu(I_1 \uplus I_2 \uplus \cdots \uplus I_n) = \sum_{j=1}^n \mu(I_j)$  for finite disjoint unions
- ③ **But:** For the extension from  $\mathfrak{F}_0(\mathbb{R})$  to  $\mathfrak{B}(\mathbb{R})$  by Carathéodory:

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mu(A_j)$$

where  $A_1, A_2, \dots \in \mathfrak{F}_0(\mathbb{R})$ ,  $\bigcup_{j=1}^{\infty} A_j \in \mathfrak{F}_0$  and the  $A_j$  disjoint.

## Theorem

Let  $F : \mathbb{R} \rightarrow \mathbb{R}$  be a distrib. function. Let  $\mu(a, b] := F(b) - F(a)$ .

There is a unique extension of  $\mu$  to a Lebesgue–Stieltjes measure on  $\mathbb{R}$ .

**Thus:** Countable additivity of  $\mu$  follows by defining  $F(x) := x$ .

# Lebesgue's Intuition

## Lebesgue about his integral

"One might say that Riemann's approach is comparable to a messy merchant who counts coins in the order they come to his hand whereas we act like a prudent merchant who says:

- I have  $A_1$  coins à one crown, that is  $A_1 \cdot 1$  crowns,
- $A_2$  coins à two crowns, that is  $A_2 \cdot 2$  crowns and
- $A_3$  coins à five crowns, that is  $A_3 \cdot 5$  crowns.

Therefore I have  $A_1 \cdot 1 + A_2 \cdot 2 + A_3 \cdot 5$  crowns.



Both approaches – no matter how rich the merchant might be – lead to the same result since he only has to count a finite number of coins.  
But for us who must add infinitely many indivisibles, the difference between the approaches is essential."

H. Lebesgue, 1926

# Measurability

## Definition (Measurability)

Let  $\Omega_1, \Omega_2$  be sets with associated  $\sigma$ -fields  $\mathfrak{F}_1$  and  $\mathfrak{F}_2$ .

$h : \Omega_1 \rightarrow \Omega_2$  is **measurable** iff

$$h^{-1}(A) \in \mathfrak{F}_1 \quad \text{for each } A \in \mathfrak{F}_2$$

Notation:  $h : (\Omega_1, \mathfrak{F}_1) \rightarrow (\Omega_2, \mathfrak{F}_2)$ .

# Measurability

## Definition (Measurability)

Let  $\Omega_1, \Omega_2$  be sets with associated  $\sigma$ -fields  $\mathfrak{F}_1$  and  $\mathfrak{F}_2$ .

$h : \Omega_1 \rightarrow \Omega_2$  is **measurable** iff

$$h^{-1}(A) \in \mathfrak{F}_1 \quad \text{for each } A \in \mathfrak{F}_2$$

Notation:  $h : (\Omega_1, \mathfrak{F}_1) \rightarrow (\Omega_2, \mathfrak{F}_2)$ .

Some remarks:

- $h$  is **Borel measurable** if  $h : (\Omega, \mathfrak{F}) \rightarrow (\bar{\mathbb{R}}, \mathfrak{B}(\bar{\mathbb{R}}))$ .

# Measurability

## Definition (Measurability)

Let  $\Omega_1, \Omega_2$  be sets with associated  $\sigma$ -fields  $\mathfrak{F}_1$  and  $\mathfrak{F}_2$ .

$h : \Omega_1 \rightarrow \Omega_2$  is **measurable** iff

$$h^{-1}(A) \in \mathfrak{F}_1 \quad \text{for each } A \in \mathfrak{F}_2$$

Notation:  $h : (\Omega_1, \mathfrak{F}_1) \rightarrow (\Omega_2, \mathfrak{F}_2)$ .

Some remarks:

- $h$  is **Borel measurable** if  $h : (\Omega, \mathfrak{F}) \rightarrow (\bar{\mathbb{R}}, \mathfrak{B}(\bar{\mathbb{R}}))$ .
- In probability theory,  $h$  is called a **random variable**.

# Simple Functions

## Definition (Simple Functions)

Let  $h : \Omega \rightarrow \bar{\mathbb{R}}$ .  $h$  is **simple** iff

- ①  $h$  is measurable and
- ② takes on only finitely many values.

# Simple Functions

## Definition (Simple Functions)

Let  $h : \Omega \rightarrow \bar{\mathbb{R}}$ .  $h$  is **simple** iff

- ①  $h$  is measurable and
- ② takes on only finitely many values.

If  $h$  is a **simple** function, it can be represented as

$$h(\omega) := \sum_{i=1}^n x_i \cdot \mathbf{I}_{A_i}(\omega)$$

where  $A_i \in \mathfrak{F}$  are pairwisely disjoint.

$\mathbf{I}_{A_i}$  denotes the indicator function  $\mathbf{I}_{A_i}(\omega) := \begin{cases} 1 & \text{if } \omega \in A_i \\ 0 & \text{otherwise} \end{cases}$ .

# Simple Functions

## Definition (Simple Functions)

Let  $h : \Omega \rightarrow \bar{\mathbb{R}}$ .  $h$  is **simple** iff

- ①  $h$  is measurable and
- ② takes on only finitely many values.

If  $h$  is a **simple** function, it can be represented as

$$h(\omega) := \sum_{i=1}^n x_i \cdot \mathbf{I}_{A_i}(\omega)$$

where  $A_i \in \mathfrak{F}$  are pairwisely disjoint.

$\mathbf{I}_{A_i}$  denotes the indicator function  $\mathbf{I}_{A_i}(\omega) := \begin{cases} 1 & \text{if } \omega \in A_i \\ 0 & \text{otherwise} \end{cases}$ .

**Intuition:** Choose  $A_i$  as the **preimage** of  $x_i$ !

# Lebesgue Integral

## Definition (Lebesgue Integral for **Simple** Functions)

Let  $(\Omega, \mathfrak{F}, \mu)$  be a measure space,  $h : \Omega \rightarrow \bar{\mathbb{R}}$  simple:

$$h(\omega) := \sum_{i=1}^n x_i \cdot \mathbf{1}_{A_i}(\omega) \quad \text{where the } A_i \text{ are disjoint sets in } \mathfrak{F}.$$

# Lebesgue Integral

## Definition (Lebesgue Integral for **Simple** Functions)

Let  $(\Omega, \mathfrak{F}, \mu)$  be a measure space,  $h : \Omega \rightarrow \bar{\mathbb{R}}$  simple:

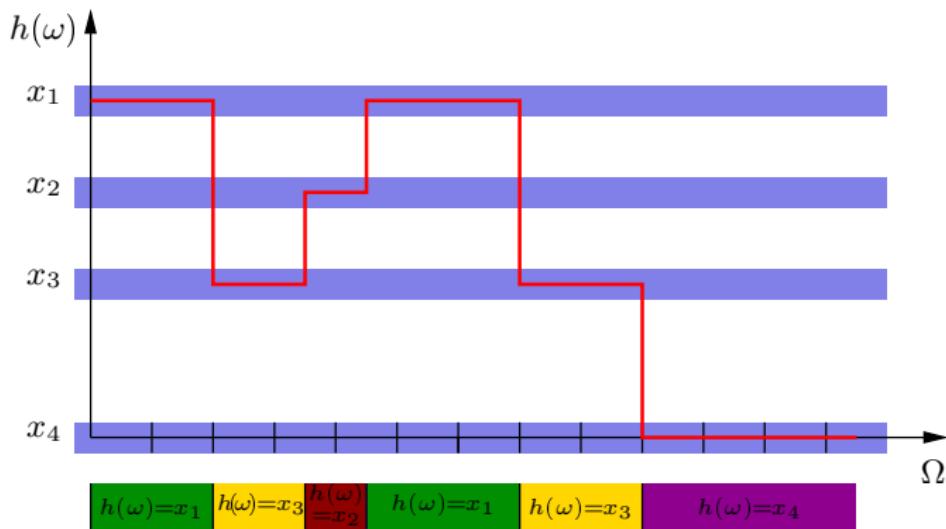
$$h(\omega) := \sum_{i=1}^n x_i \cdot \mathbf{1}_{A_i}(\omega) \quad \text{where the } A_i \text{ are disjoint sets in } \mathfrak{F}.$$

The **Lebesgue-integral** of  $h$  is defined as

$$\int_{\Omega} h \, d\mu := \sum_{i=1}^n x_i \cdot \mu(A_i).$$

**Intuition:** Multiply each  $x_i$  with the measure of its preimage  $A_i$ .

# Example: Lebesgue Integral



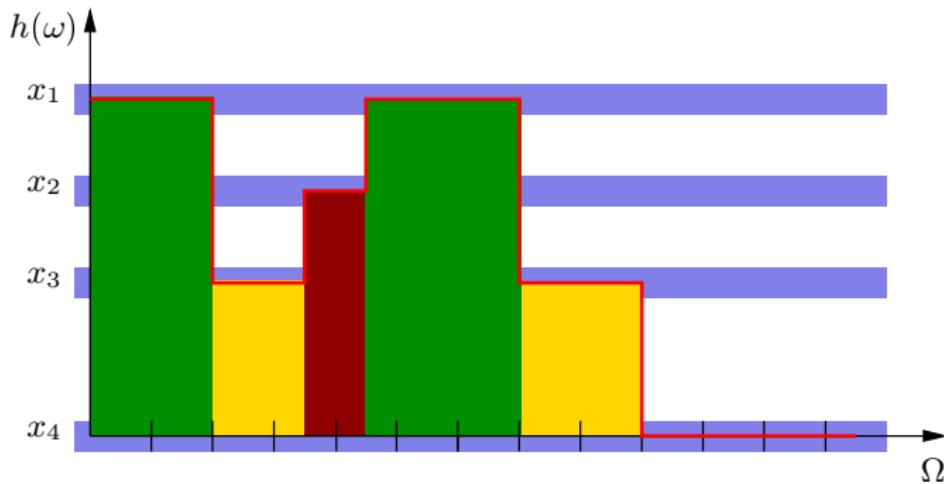
$$\mu(A_1) = \mu(\text{[green box]})$$

$$\mu(A_3) = \mu(\text{[yellow box]} \quad \text{[yellow box]})$$

$$\mu(A_2) = \mu(\text{[red box]})$$

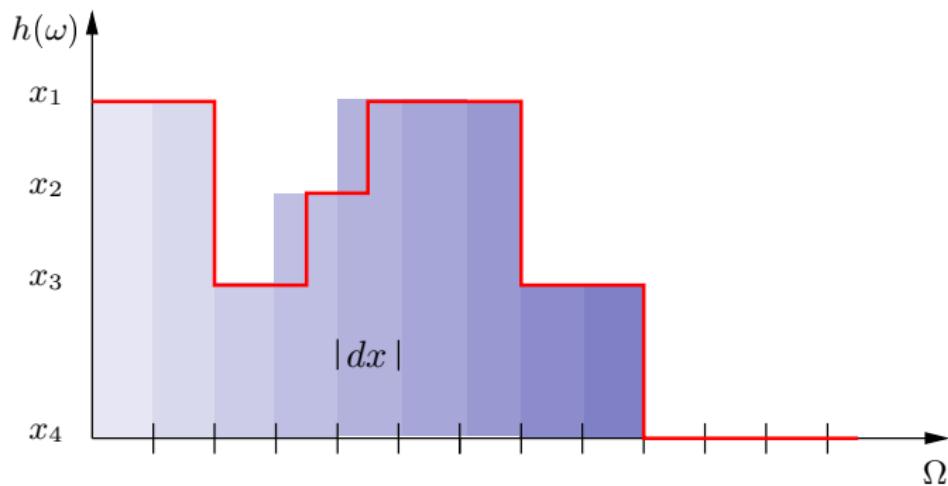
$$\mu(A_4) = \mu(\text{[purple box]})$$

# Example: Lebesgue Integral



$$\int_{\Omega} h \, d\mu = x_1\mu(A_1) + x_2\mu(A_2) + x_3\mu(A_3)$$

# Example: Riemann (Darboux) Integral



# Lebesgue Integral on Nonnegative Functions

## Definition

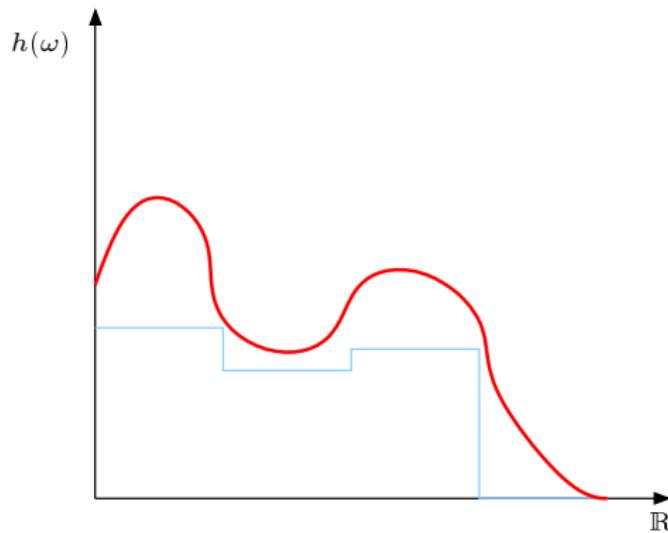
If  $h$  is **nonnegative Borel measurable**, then

$$\int_{\Omega} h \, d\mu := \sup \left\{ \int_{\Omega} s \, d\mu \mid s \text{ is simple and } 0 \leq s \leq h \right\}.$$

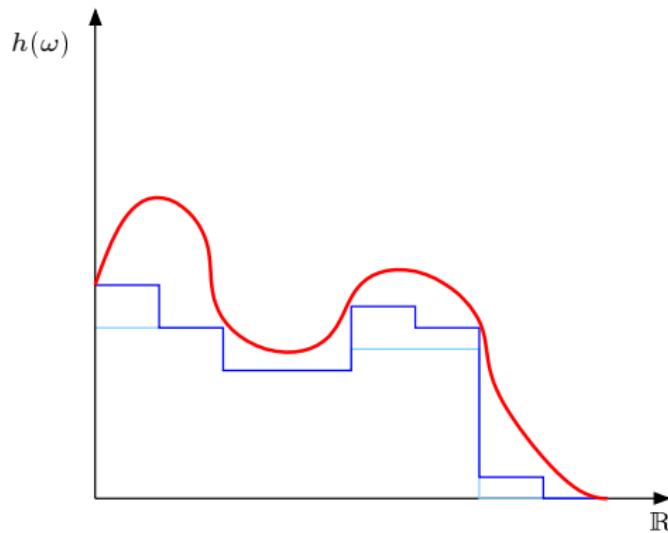
## Theorem

*A nonnegative Borel measurable function  $h$  is the limit of an increasing sequence of nonnegative simple functions  $h_n$ .*

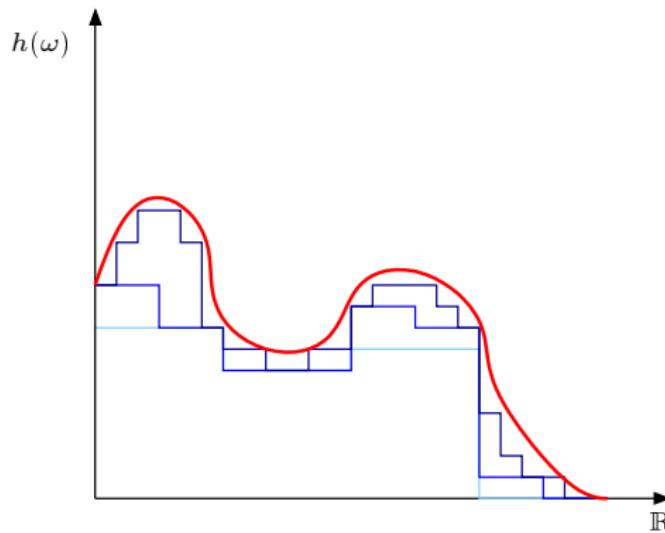
# Example: Lebesgue Integral



# Example: Lebesgue Integral



# Example: Lebesgue Integral



# Finite Product Spaces

## Definition (Product Space)

Let  $(\Omega_j, \mathfrak{F}_j)$  be a measurable space,  $j = 1, \dots, n$ . Then

# Finite Product Spaces

## Definition (Product Space)

Let  $(\Omega_j, \mathfrak{F}_j)$  be a measurable space,  $j = 1, \dots, n$ . Then

- $\Omega = \Omega_1 \times \dots \times \Omega_n$

# Finite Product Spaces

## Definition (Product Space)

Let  $(\Omega_j, \mathfrak{F}_j)$  be a measurable space,  $j = 1, \dots, n$ . Then

- $\Omega = \Omega_1 \times \dots \times \Omega_n$
- $A = A_1 \times A_2 \times \dots \times A_n$  is a **measurable rectangle** if  $A_j \in \mathfrak{F}_j$ .

# Finite Product Spaces

## Definition (Product Space)

Let  $(\Omega_j, \mathfrak{F}_j)$  be a measurable space,  $j = 1, \dots, n$ . Then

- $\Omega = \Omega_1 \times \dots \times \Omega_n$
- $A = A_1 \times A_2 \times \dots \times A_n$  is a **measurable rectangle** if  $A_j \in \mathfrak{F}_j$ .
- The set of measurable rectangles is denoted

$$\mathfrak{F}_1 \times \mathfrak{F}_2 \times \dots \times \mathfrak{F}_n.$$

# Finite Product Spaces

## Definition (Product Space)

Let  $(\Omega_j, \mathfrak{F}_j)$  be a measurable space,  $j = 1, \dots, n$ . Then

- $\Omega = \Omega_1 \times \dots \times \Omega_n$
- $A = A_1 \times A_2 \times \dots \times A_n$  is a **measurable rectangle** if  $A_j \in \mathfrak{F}_j$ .
- The set of measurable rectangles is denoted

$$\mathfrak{F}_1 \times \mathfrak{F}_2 \times \dots \times \mathfrak{F}_n.$$

- The **product  $\sigma$ -field**  $\mathfrak{F}$  is the smallest  $\sigma$ -field containing all measurable rectangles:

$$\mathfrak{F} := \sigma(\mathfrak{F}_1 \times \mathfrak{F}_2 \times \dots \times \mathfrak{F}_n)$$

# Measures on Finite Product Spaces

To start with: Only products of **two  $\sigma$ -fields!**

## Preparation

Let  $(\Omega_1, \mathfrak{F}_1, \mu_1)$  be a measure space,  $\mu_1$   $\sigma$ -finite on  $\mathfrak{F}_1$ .

# Measures on Finite Product Spaces

To start with: Only products of **two  $\sigma$ -fields!**

## Preparation

Let  $(\Omega_1, \mathfrak{F}_1, \mu_1)$  be a measure space,  $\mu_1$   $\sigma$ -finite on  $\mathfrak{F}_1$ .  
Further let  $\mathfrak{F}_2$  be a  $\sigma$ -field over subsets of  $\Omega_2$ .

# Measures on Finite Product Spaces

To start with: Only products of **two  $\sigma$ -fields!**

## Preparation

Let  $(\Omega_1, \mathfrak{F}_1, \mu_1)$  be a measure space,  $\mu_1$   $\sigma$ -finite on  $\mathfrak{F}_1$ .

Further let  $\mathfrak{F}_2$  be a  $\sigma$ -field over subsets of  $\Omega_2$ .

Assume that **for each**  $\omega_1 \in \Omega_1$  we have a function

$$\mu(\omega_1, \cdot) : \mathfrak{F}_2 \rightarrow \bar{\mathbb{R}}$$

which is

# Measures on Finite Product Spaces

To start with: Only products of **two  $\sigma$ -fields!**

## Preparation

Let  $(\Omega_1, \mathfrak{F}_1, \mu_1)$  be a measure space,  $\mu_1$   $\sigma$ -finite on  $\mathfrak{F}_1$ .

Further let  $\mathfrak{F}_2$  be a  $\sigma$ -field over subsets of  $\Omega_2$ .

Assume that **for each**  $\omega_1 \in \Omega_1$  we have a function

$$\mu(\omega_1, \cdot) : \mathfrak{F}_2 \rightarrow \bar{\mathbb{R}}$$

which is

- ① a measure on  $\mathfrak{F}_2$ ,

# Measures on Finite Product Spaces

To start with: Only products of **two  $\sigma$ -fields!**

## Preparation

Let  $(\Omega_1, \mathfrak{F}_1, \mu_1)$  be a measure space,  $\mu_1$   $\sigma$ -finite on  $\mathfrak{F}_1$ .

Further let  $\mathfrak{F}_2$  be a  $\sigma$ -field over subsets of  $\Omega_2$ .

Assume that **for each**  $\omega_1 \in \Omega_1$  we have a function

$$\mu(\omega_1, \cdot) : \mathfrak{F}_2 \rightarrow \bar{\mathbb{R}}$$

which is

- ① a measure on  $\mathfrak{F}_2$ ,
- ② Borel measurable in  $\omega_1$  and

# Measures on Finite Product Spaces

To start with: Only products of **two  $\sigma$ -fields!**

## Preparation

Let  $(\Omega_1, \mathfrak{F}_1, \mu_1)$  be a measure space,  $\mu_1$   $\sigma$ -finite on  $\mathfrak{F}_1$ .

Further let  $\mathfrak{F}_2$  be a  $\sigma$ -field over subsets of  $\Omega_2$ .

Assume that **for each**  $\omega_1 \in \Omega_1$  we have a function

$$\mu(\omega_1, \cdot) : \mathfrak{F}_2 \rightarrow \bar{\mathbb{R}}$$

which is

- ① a measure on  $\mathfrak{F}_2$ ,
- ② Borel measurable in  $\omega_1$  and
- ③ uniformly  $\sigma$ -finite:

$$\Omega_2 = \bigcup_{n=1}^{\infty} B_n \text{ where } \mu(\omega_1, B_n) \leq k_n \text{ for all } \omega_1 \text{ and fixed } k_n \in \mathbb{R}.$$

# Measures on Finite Product Spaces

## Theorem (Product Measure Theorem)

Given  $(\Omega_1, \mathfrak{F}_1, \mu_1)$ ,  $(\Omega_2, \mathfrak{F}_2)$  and  $\mu(\omega_1, \cdot)$  as before.

# Measures on Finite Product Spaces

## Theorem (Product Measure Theorem)

Given  $(\Omega_1, \mathfrak{F}_1, \mu_1)$ ,  $(\Omega_2, \mathfrak{F}_2)$  and  $\mu(\omega_1, \cdot)$  as before.

There is a **unique** measure  $\mu$  on  $\mathfrak{F}$  such that on  $\mathfrak{F}_1 \times \mathfrak{F}_2$ :

$$\mu(A \times B) = \int_A \mu(\omega_1, B) \mu_1(d\omega_1).$$

# Measures on Finite Product Spaces

## Theorem (Product Measure Theorem)

Given  $(\Omega_1, \mathfrak{F}_1, \mu_1)$ ,  $(\Omega_2, \mathfrak{F}_2)$  and  $\mu(\omega_1, \cdot)$  as before.

There is a **unique** measure  $\mu$  on  $\mathfrak{F}$  such that on  $\mathfrak{F}_1 \times \mathfrak{F}_2$ :

$$\mu(A \times B) = \int_A \mu(\omega_1, B) \mu_1(d\omega_1).$$

$\mu$  is defined (now on the entire  $\sigma$ -field) as follows:

$$\mu(\textcolor{orange}{F}) := \int_{\Omega_1} \mu(\omega_1, \textcolor{orange}{F}(\omega_1)) \mu_1(d\omega_1), \quad \text{for all } \textcolor{orange}{F} \in \mathfrak{F}$$

where  $\textcolor{orange}{F}(\omega_1) := \{\omega_2 \mid (\omega_1, \omega_2) \in \textcolor{orange}{F}\}$ .

# Lebesgue Integrals on Finite Product Spaces

## Theorem (Fubini's Theorem)

Let  $f : (\Omega, \mathfrak{F}) \rightarrow (\bar{\mathbb{R}}, \mathfrak{B}(\bar{\mathbb{R}}))$ . If  $f$  is **nonnegative**, then

$$\int_{\Omega_2} f(\omega_1, \omega_2) \mu(\omega_1, d\omega_2)$$

exists and defines a **Borel measurable** function.

# Lebesgue Integrals on Finite Product Spaces

## Theorem (Fubini's Theorem)

Let  $f : (\Omega, \mathfrak{F}) \rightarrow (\bar{\mathbb{R}}, \mathfrak{B}(\bar{\mathbb{R}}))$ . If  $f$  is **nonnegative**, then

$$\int_{\Omega_2} f(\omega_1, \omega_2) \mu(\omega_1, d\omega_2)$$

exists and defines a **Borel measurable** function. Also

$$\int_{\Omega} f \, d\mu = \int_{\Omega_1} \left( \int_{\Omega_2} f(\omega_1, \omega_2) \mu(\omega_1, d\omega_2) \right) \mu_1(d\omega_1).$$

**Justification of iterated integration!**

# Extension to Larger Product Spaces

Now, consider products of **more than two**  $\sigma$ -fields!

## Preparation

Let  $\mathfrak{F}_j$  be a  $\sigma$ -field of subsets of  $\Omega_j$ ,  $j = 1, \dots, n$ .

# Extension to Larger Product Spaces

Now, consider products of **more than two**  $\sigma$ -fields!

## Preparation

Let  $\mathfrak{F}_j$  be a  $\sigma$ -field of subsets of  $\Omega_j$ ,  $j = 1, \dots, n$ .

Let  $\mu_1$  be a  $\sigma$ -finite measure on  $\mathfrak{F}_1$

# Extension to Larger Product Spaces

Now, consider products of **more than two**  $\sigma$ -fields!

## Preparation

Let  $\mathfrak{F}_j$  be a  $\sigma$ -field of subsets of  $\Omega_j$ ,  $j = 1, \dots, n$ .

Let  $\mu_1$  be a  $\sigma$ -finite measure on  $\mathfrak{F}_1$  and

assume that **for each**  $(\omega_1, \dots, \omega_j)$  we have a function

$$\mu(\omega_1, \omega_2, \dots, \omega_j, \cdot) : \mathfrak{F}_{j+1} \rightarrow \bar{\mathbb{R}}$$

which is

# Extension to Larger Product Spaces

Now, consider products of **more than two**  $\sigma$ -fields!

## Preparation

Let  $\mathfrak{F}_j$  be a  $\sigma$ -field of subsets of  $\Omega_j$ ,  $j = 1, \dots, n$ .

Let  $\mu_1$  be a  $\sigma$ -finite measure on  $\mathfrak{F}_1$  and

assume that **for each**  $(\omega_1, \dots, \omega_j)$  we have a function

$$\mu(\omega_1, \omega_2, \dots, \omega_j, \cdot) : \mathfrak{F}_{j+1} \rightarrow \bar{\mathbb{R}}$$

which is

- ① a measure on  $\mathfrak{F}_{j+1}$  and

# Extension to Larger Product Spaces

Now, consider products of **more than two**  $\sigma$ -fields!

## Preparation

Let  $\mathfrak{F}_j$  be a  $\sigma$ -field of subsets of  $\Omega_j$ ,  $j = 1, \dots, n$ .

Let  $\mu_1$  be a  $\sigma$ -finite measure on  $\mathfrak{F}_1$  and

assume that **for each**  $(\omega_1, \dots, \omega_j)$  we have a function

$$\mu(\omega_1, \omega_2, \dots, \omega_j, \cdot) : \mathfrak{F}_{j+1} \rightarrow \bar{\mathbb{R}}$$

which is

- ① a measure on  $\mathfrak{F}_{j+1}$  and
- ② is measurable, i.e. for all fixed  $C \in \mathfrak{F}_{j+1}$ :

$$\mu(\omega_1, \dots, \omega_j, C) : (\Omega_1 \times \dots \times \Omega_j, \sigma(\mathfrak{F}_1 \times \dots \times \mathfrak{F}_j)) \rightarrow (\bar{\mathbb{R}}, \mathcal{B}(\bar{\mathbb{R}}))$$

- ③ uniformly  $\sigma$ -finite.

# Measures on Larger Product Spaces

Theorem (Product Measure Theorem)

*There is a **unique** measure  $\mu$  on  $\mathfrak{F}$  such that on  $\mathfrak{F}_1 \times \cdots \times \mathfrak{F}_n$ :*

$$\begin{aligned}\mu(A_1 \times \cdots \times A_n) &= \int_{A_1} \mu_1(d\omega_1) \int_{A_2} \mu(\omega_1, d\omega_2) \\ &\cdots \int_{A_{n-1}} \mu(\omega_1, \dots, \omega_{n-2}, d\omega_{n-1}) \int_{A_n} \mu(\omega_1, \dots, \omega_{n-1}, d\omega_n).\end{aligned}$$

# Measures on Larger Product Spaces

Theorem (Product Measure Theorem)

*There is a **unique** measure  $\mu$  on  $\mathfrak{F}$  such that on  $\mathfrak{F}_1 \times \cdots \times \mathfrak{F}_n$ :*

$$\begin{aligned} \mu(A_1 \times \cdots \times A_n) &= \int_{A_1} \mu_1(d\omega_1) \int_{A_2} \mu(\omega_1, d\omega_2) \\ &\quad \cdots \int_{A_{n-1}} \mu(\omega_1, \dots, \omega_{n-2}, d\omega_{n-1}) \int_{A_n} \mu(\omega_1, \dots, \omega_{n-1}, d\omega_n). \end{aligned}$$

Let  $f : (\Omega, \mathfrak{F}) \rightarrow (\bar{\mathbb{R}}, \mathfrak{B}(\bar{\mathbb{R}}))$ . If  $f \geq 0$ , then

$$\begin{aligned} \int_{\Omega} f \, d\mu &= \int_{\Omega_1} \mu_1(d\omega_1) \int_{\Omega_2} \mu(\omega_1, d\omega_2) \\ &\quad \cdots \int_{\Omega_n} f(\omega_1, \dots, \omega_n) \, \mu(\omega_1, \dots, \omega_{n-1}, d\omega_n). \end{aligned}$$

# Measures on Infinite Product Spaces

## Definition (Cylinder Set)

Let  $(\Omega_j, \mathfrak{F}_j)$  be a measurable space,  $j = 1, 2, \dots$ .

Let  $\Omega = \times_{j=1}^{\infty} \Omega_j$ . If  $B^n \subseteq \Omega_1 \times \dots \times \Omega_n$ , define

$$B_n := \{\omega \in \Omega \mid (\omega_1, \omega_2, \dots, \omega_n) \in B^n\}.$$

# Measures on Infinite Product Spaces

## Definition (Cylinder Set)

Let  $(\Omega_j, \mathfrak{F}_j)$  be a measurable space,  $j = 1, 2, \dots$ .

Let  $\Omega = \times_{j=1}^{\infty} \Omega_j$ . If  $B^n \subseteq \Omega_1 \times \dots \times \Omega_n$ , define

$$B_n := \{\omega \in \Omega \mid (\omega_1, \omega_2, \dots, \omega_n) \in B^n\}.$$

$B_n$  is called **cylinder** with **base**  $B^n$ .

# Measures on Infinite Product Spaces

## Definition (Cylinder Set)

Let  $(\Omega_j, \mathfrak{F}_j)$  be a measurable space,  $j = 1, 2, \dots$ .

Let  $\Omega = \times_{j=1}^{\infty} \Omega_j$ . If  $B^n \subseteq \Omega_1 \times \dots \times \Omega_n$ , define

$$B_n := \{\omega \in \Omega \mid (\omega_1, \omega_2, \dots, \omega_n) \in B^n\}.$$

$B_n$  is called **cylinder** with **base**  $B^n$ .

- $B_n$  is **measurable** if  $B^n \in \sigma(\mathfrak{F}_1 \times \dots \times \mathfrak{F}_n)$ .

# Measures on Infinite Product Spaces

## Definition (Cylinder Set)

Let  $(\Omega_j, \mathfrak{F}_j)$  be a measurable space,  $j = 1, 2, \dots$ .

Let  $\Omega = \times_{j=1}^{\infty} \Omega_j$ . If  $B^n \subseteq \Omega_1 \times \dots \times \Omega_n$ , define

$$B_n := \{\omega \in \Omega \mid (\omega_1, \omega_2, \dots, \omega_n) \in B^n\}.$$

$B_n$  is called **cylinder** with **base**  $B^n$ .

- $B_n$  is **measurable** if  $B^n \in \sigma(\mathfrak{F}_1 \times \dots \times \mathfrak{F}_n)$ .
- $B_n$  is a **rectangle** if  $B^n = A_1 \times \dots \times A_n$  and  $A_j \subseteq \Omega_j$ ;  
 $B_n$  is a **measurable rectangle** if  $A_j \in \mathfrak{F}_j$ .

# Measures on Infinite Product Spaces

## Ionescu–Tulcea Theorem

Let  $P_1$  be a **probability measure** on  $\mathfrak{F}_1$  and **for each**  $(\omega_1, \dots, \omega_j)$ ,  $j \in \mathbb{N}$ , assume a measurable probability measure  $P(\omega_1, \dots, \omega_j, \cdot)$  on  $\mathfrak{F}_{j+1}$ .

Let  $P_n$  be defined on  $\sigma(\mathfrak{F}_1 \times \dots \times \mathfrak{F}_n)$ :

$$P_n(F) = \int_{\Omega_1} P_1(d\omega_1) \int_{\Omega_2} P(\omega_1, d\omega_2) \cdots \int_{\Omega_n} \mathbf{1}_F(\omega_1, \dots, \omega_n) P(\omega_1, \dots, \omega_{n-1}, d\omega_n).$$

# Measures on Infinite Product Spaces

## Ionescu–Tulcea Theorem

Let  $P_1$  be a **probability measure** on  $\mathfrak{F}_1$  and **for each**  $(\omega_1, \dots, \omega_j)$ ,  $j \in \mathbb{N}$ , assume a measurable probability measure  $P(\omega_1, \dots, \omega_j, \cdot)$  on  $\mathfrak{F}_{j+1}$ .

Let  $P_n$  be defined on  $\sigma(\mathfrak{F}_1 \times \dots \times \mathfrak{F}_n)$ :

$$P_n(F) = \int_{\Omega_1} P_1(d\omega_1) \int_{\Omega_2} P(\omega_1, d\omega_2) \cdots \int_{\Omega_n} \mathbf{1}_F(\omega_1, \dots, \omega_n) P(\omega_1, \dots, \omega_{n-1}, d\omega_n).$$

There is a **unique** prob. measure  $P$  on  $\sigma\left(\bigtimes_{j=1}^{\infty} \mathfrak{F}_j\right)$  such that for all  $n$ :

$$P\{\omega \in \Omega \mid (\omega_1, \dots, \omega_n) \in B^n\} = P_n(B^n)$$

# Measures on Infinite Product Spaces

## Ionescu–Tulcea Theorem

Let  $P_1$  be a **probability measure** on  $\mathfrak{F}_1$  and **for each**  $(\omega_1, \dots, \omega_j)$ ,  $j \in \mathbb{N}$ , assume a measurable probability measure  $P(\omega_1, \dots, \omega_j, \cdot)$  on  $\mathfrak{F}_{j+1}$ .

Let  $P_n$  be defined on  $\sigma(\mathfrak{F}_1 \times \dots \times \mathfrak{F}_n)$ :

$$P_n(F) = \int_{\Omega_1} P_1(d\omega_1) \int_{\Omega_2} P(\omega_1, d\omega_2) \cdots \int_{\Omega_n} \mathbf{1}_F(\omega_1, \dots, \omega_n) P(\omega_1, \dots, \omega_{n-1}, d\omega_n).$$

There is a **unique** prob. measure  $P$  on  $\sigma\left(\bigtimes_{j=1}^{\infty} \mathfrak{F}_j\right)$  such that for all  $n$ :

$$P\{\omega \in \Omega \mid (\omega_1, \dots, \omega_n) \in B^n\} = P_n(B^n)$$

**Intuition:** The measure of a cylinder equals the measure of its finite base.