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From informal to formal logics

m We have seen that natural languages are not well-suited for correct
reasoning.
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From informal to formal logics

m We have seen that natural languages are not well-suited for correct
reasoning.
m Assume the argumentation:

All women love shopping.
Eve is a woman.
Thus Eve loves shopping.

m We can formalize it by defining

constants: Eve

variables: X

predicate symbols:  isWoman(-), lovesShopping(-)
Assume

Vx. isWoman(x) — lovesShopping(x)
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From informal to formal logics

m We have seen that natural languages are not well-suited for correct
reasoning.
m Assume the argumentation:
All women love shopping.
Eve is a woman.
Thus Eve loves shopping.
m We can formalize it by defining
constants: Eve
variables: X
predicate symbols:  isWoman(-), lovesShopping(-)

Assume

Vx. isWoman(x) — lovesShopping(x)
isWoman(Eve)

Then
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From informal to formal logics

m We have seen that natural languages are not well-suited for correct
reasoning.
m Assume the argumentation:
All women love shopping.
Eve is a woman.
Thus Eve loves shopping.
m We can formalize it by defining
constants: Eve
variables: X
predicate symbols:  isWoman(-), lovesShopping(-)
Assume
Vx. isWoman(x) — lovesShopping(x)
isWoman(Eve)
Then
lovesShopping(Eve)
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First-Order Logic

m First-order (FO) logic is a framework.

m It gives us a generic syntax by recursively defining strings on an
alphabet.
m Non-logical elements are logically combined using:
m constants (Eve, 0, true, ...)
variables (xy,...)
function symbols (+(-,-), vaterOf(-),...)
predicate symbols (>(-, ), isPrime(-), isBrotherOf(-,-),...)
logical symbols ((,), A, —,...,3,V).
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First-Order Logic

m First-order (FO) logic is a framework.

m It gives us a generic syntax by recursively defining strings on an
alphabet.

m Non-logical elements are logically combined using:
m constants (Eve, 0, true, ...)
variables (xy,...)
function symbols (+(-,-), vaterOf(-),...)
predicate symbols (>(-, ), isPrime(-), isBrotherOf(-,-),...)
logical symbols ((,), A, —,...,3,V).

Note:
m Constants can also be seen as function symbols of arity 0.
m Sometimes equality (=) is included as a logical symbol.

m E.g., the Boolean connectives negation (=) and conjunction (A) and
the existential quantifier 3 would be sufficient, the remaining syntax
(V,—,4>,...,V) are syntactic sugar.
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Prof. Dr. Erika Abraham - Satisfiability Checking



Formation rules

Terms are inductively defined by the following rules:
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Formation rules

Terms are inductively defined by the following rules:
All constants and variables are terms.
If t1,...,t, (n > 0) are terms and f an n-ary function symbol then
f(ti,...,ty) is a term.
Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:
If Pis an n-ary predicate symbol and ti,...,t, are terms then
P(ti,...,t,) is a formula.
If ¢ is a formula, then (—¢p) is a formula.
If ¢ and 1) are formulae, then (p A ) is a formula.
Similar rules apply to other binary logical connectives.
If ¢ is a formula and x is a variable, then (Vx.¢) and (3x. ¢) are
formulae.
Only expressions which can be obtained by finitely many applications of
rules 1-5 are formulae.
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Formation rules

Terms are inductively defined by the following rules:
All constants and variables are terms.
If t1,...,t, (n > 0) are terms and f an n-ary function symbol then
f(ti,...,ty) is a term.
Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:
If Pis an n-ary predicate symbol and ti,...,t, are terms then
P(ti,...,t,) is a formula.
If ¢ is a formula, then (—¢p) is a formula.
If ¢ and 1) are formulae, then (p A ) is a formula.
Similar rules apply to other binary logical connectives.
If ¢ is a formula and x is a variable, then (Vx.¢) and (3x. ¢) are
formulae.
Only expressions which can be obtained by finitely many applications of
rules 1-5 are formulae.

The formulae obtained by the first rule are said to be atomic.
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Notational conventions

We omit parenthesis whenever we may restore them through operator
precedence:

binds stronger

- AV — < VY
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Notational conventions

We omit parenthesis whenever we may restore them through operator
precedence:

binds stronger

- AV — < VY

m Thus, we write:
—a for (—(—a)),
da. 3b. (aA b — F(a,b)) for Fa. 3b. ((aNb)— F(a,b))
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Free and bound variables
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Free and bound variables
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Free and bound variables

The free and bound variables of a formula are defined inductively:

m If ¢ is an atomic formula then a variable x is free in ¢ iff x occurs in .
Moreover, there are no bound variables in any atomic formula.
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Free and bound variables

The free and bound variables of a formula are defined inductively:

m If ¢ is an atomic formula then a variable x is free in ¢ iff x occurs in .
Moreover, there are no bound variables in any atomic formula.

m A variable x is free in (=) iff x is free in ¢.
Moreover, x is bound in (—¢) iff x is bound in .
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Free and bound variables

The free and bound variables of a formula are defined inductively:
m If ¢ is an atomic formula then a variable x is free in ¢ iff x occurs in .
Moreover, there are no bound variables in any atomic formula.

m A variable x is free in (=) iff x is free in ¢.
Moreover, x is bound in (—¢) iff x is bound in .
m x is free in (o A1) iff x is free in either ¢ or .
Moreover, x is bound in (¢ A ) iff x is bound in either ¢ or 9.
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Free and bound variables

The free and bound variables of a formula are defined inductively:

m If ¢ is an atomic formula then a variable x is free in ¢ iff x occurs in .
Moreover, there are no bound variables in any atomic formula.

m A variable x is free in (=) iff x is free in ¢.
Moreover, x is bound in (—¢) iff x is bound in .

m x is free in (o A1) iff x is free in either ¢ or .
Moreover, x is bound in (¢ A ) iff x is bound in either ¢ or 9.

m The same rule applies to any other binary connective in place of A.

m x is free in (Jy. @) iff x is free in ¢ and x is a symbol different from y.
Moreover, x is bound in (Jy. ¢) iff x is y or x is bound in .
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Free and bound variables

The free and bound variables of a formula are defined inductively:

m If ¢ is an atomic formula then a variable x is free in ¢ iff x occurs in .
Moreover, there are no bound variables in any atomic formula.

A variable x is free in (—¢) iff x is free in ¢.
Moreover, x is bound in (—¢) iff x is bound in .

x is free in (p A1) iff x is free in either ¢ or .
Moreover, x is bound in (¢ A ) iff x is bound in either ¢ or 9.

The same rule applies to any other binary connective in place of A.

x is free in (Jy. @) iff x is free in ¢ and x is a symbol different from y.
Moreover, x is bound in (Jy. ¢) iff x is y or x is bound in .

m The same rule holds with V in place of 3.
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Free and bound variables

Examples:
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Free and bound variables

Examples:
m In zVV¥x. Vy. (P(x) = Q(z)), x and y are bound variables, z is a
free variable, and w is neither bound nor free.
m In 2V Vz.P(z), z is both bound and free.

Freeness and boundness can be also specialized to specific occurrences of
variables in a formula. In z V' Vz.P(z), the first occurrence of z is free while
the second is bound.
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Some definitions

m A signature X fixes a set of non-logical symbols.
m A Y-formula is a formula with non-logical symbols from %.
m A variable is free if it is not bound by a quantifier.

m A sentence is a formula without free variables.
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Some definitions

m A signature X fixes a set of non-logical symbols.
m A Y-formula is a formula with non-logical symbols from %.
m A variable is free if it is not bound by a quantifier.

m A sentence is a formula without free variables.

In the previous example:
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Some definitions

m A signature X fixes a set of non-logical symbols.
m A Y-formula is a formula with non-logical symbols from %.
m A variable is free if it is not bound by a quantifier.
m A sentence is a formula without free variables.
In the previous example:
Y = (Eve, isWoman(-), lovesShopping(-)) with
m Eve a constant and
m isWoman and lovesShopping unary predicate symbols.
The formulae
Vx. isWoman(x) — lovesShopping(x)
isWoman(Eve)
lovesShopping(Eve)
are Y-sentences (the only variable x is bound).
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m > ={0,1+,>}
m 0,1 are constant symbols
m + is a binary function symbol
m > is a binary predicate symbol
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m > ={0,1+,>}
m 0,1 are constant symbols
m + is a binary function symbol
m > is a binary predicate symbol

m Examples of X-formulae:
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m > ={0,1+,>}
m 0,1 are constant symbols
m + is a binary function symbol
m > is a binary predicate symbol
m Examples of X-formulae:
Ix.Vy. x>y
Vx. dy. x>y
Vx. x4+1>x
Vx. =(x+0>xVx>x+0)
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m Y ={0,1,+,x, <, isPrime}
m 0,1 constant symbols
m +, x binary function symbols
m < binary predicate symbol
m isPrime unary predicate symbol
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m Y ={0,1,+,x, <, isPrime}
m 0,1 constant symbols
m +, x binary function symbols
m < binary predicate symbol
m isPrime unary predicate symbol
m An example ¥-formula:
Vn. 3p. 1 < n— isPrime(p) A\n<p<2x%n

Prof. Dr. Erika Abraham - Satisfiability Checking




m Let ¥ ={0,1,+,=} where 0,1 are constants, + is a binary function
symbol and = a binary predicate symbol.

m Let o = 3x. x+0=1a X-formula.
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m Let ¥ ={0,1,+,=} where 0,1 are constants, + is a binary function
symbol and = a binary predicate symbol.

m Let o = 3x. x+0=1a X-formula.
m Q: Is ¢ true?
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m Let ¥ ={0,1,+,=} where 0,1 are constants, + is a binary function
symbol and = a binary predicate symbol.

m Let o = 3x. x+0=1a X-formula.
Q: Is ¢ true?

m A: So far these are only symbols, strings. No meaning yet.
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m Let ¥ ={0,1,+,=} where 0,1 are constants, + is a binary function
symbol and = a binary predicate symbol.

m Let o = 3x. x+0=1a X-formula.
m Q: Is ¢ true?
m A: So far these are only symbols, strings. No meaning yet.

B Q: What do we need to fix for the semantics?
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Let ¥ ={0,1,+,=} where 0,1 are constants, + is a binary function
symbol and = a binary predicate symbol.

Let ¢ = 3x. x+ 0 =1 a X-formula.

Q: Is ¢ true?

A: So far these are only symbols, strings. No meaning yet.
Q: What do we need to fix for the semantics?

A: We need a domain for the variables. Let's say No.
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Let ¥ ={0,1,+,=} where 0,1 are constants, + is a binary function
symbol and = a binary predicate symbol.

Let ¢ = 3x. x+ 0 =1 a X-formula.

Q: Is ¢ true?

A: So far these are only symbols, strings. No meaning yet.
Q: What do we need to fix for the semantics?

A: We need a domain for the variables. Let's say No.

m Q: Is ¢ true in No?

Prof. Dr. Erika Abraham - Satisfiability Checking



m Let ¥ ={0,1,+,=} where 0,1 are constants, + is a binary function
symbol and = a binary predicate symbol.

m Let o = 3x. x+0=1a X-formula.

m Q: Is ¢ true?

m A: So far these are only symbols, strings. No meaning yet.
B Q: What do we need to fix for the semantics?

m A: We need a domain for the variables. Let's say Np.

m Q: Is ¢ true in No?

m A: Depends on the interpretation of '+’ and '="!
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Structures, satisfiability, validity

m A structure is given by:
m a domain D,
m an interpretation / of the non-logical symbols that
B maps each constant symbol to a domain element,

B maps each function symbol to a function of the same arity, and
B maps each predicate symbol to a predicate of the same arity,

m an assignment of a domain element to each free (unquantified) variable.
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m an interpretation / of the non-logical symbols that
B maps each constant symbol to a domain element,

B maps each function symbol to a function of the same arity, and
B maps each predicate symbol to a predicate of the same arity,

m an assignment of a domain element to each free (unquantified) variable.

m A formula is satisfiable if there exists a structure that satisfies it.
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Structures, satisfiability, validity

m A structure is given by:

m a domain D,
m an interpretation / of the non-logical symbols that

B maps each constant symbol to a domain element,
B maps each function symbol to a function of the same arity, and
B maps each predicate symbol to a predicate of the same arity,

m an assignment of a domain element to each free (unquantified) variable.
m A formula is satisfiable if there exists a structure that satisfies it.

m A formula is valid if it is satisfied by all structures.
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Semantics

Semantics of terms and formulae under a structure (D, /):
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Semantics

Semantics of terms and formulae under a structure (D, /):

constants: [clo.n =1(c)
variables: [xIo.1) = I(x)
functions: ﬂ:f(tl-/---atn)]](D,l) ( )([[tl]](D,l)?'"al[tn]](D,l))
predicates: [p(te, . t)lio.y = 1)t D1y, - - - [tal(D,1))

logical structure:

-] _ [ true if[¢](p,n=Tfalse
IR | false if[el(p,n=true
_ [ true if[¢l(p,) = true and [](p,n=true
le A vdon = { false if [¢l(p,i) = false or [¢](p,;y=false
[B3x. o] _ [ true if there exists v€D such that [¢](p,ijx—v))=true
X PlOD T false if for all veD we have [l (D, 1jx—svy)=Talse
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m X ={0,1,+,=}
mp=3dx.x+0=1a X-formula
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m X ={0,1,+,=}
mp=3dx.x+0=1a X-formula
m Q: Is ¢ satisfiable?
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¥ ={0,1,+,=}

¢ =3x. x+0=1a X-formula
Q: Is ¢ satisfiable?

A: Yes. Consider the structure S:

m Domain: Ny

m Interpretation:
m 0 and 1 are mapped to 0 and 1 in Ny
B — means equality
B + means addition

S satisfies . S is said to be a model of ¢.
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Example (cont.)

m X ={0,1,+,=}
mp=3dx.x+0=1a X-formula
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Example (cont.)

m X ={0,1,+,=}
mp=3dx.x+0=1a X-formula
m Q: Is ¢ valid?
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Example (cont.)

m X ={0,1,+,=}
mp=3dx.x+0=1a X-formula
m Q: Is ¢ valid?

m A: No. Consider the structure S’

m Domain: Ny

m Interpretation:
m 0 and 1 are mapped to 0 and 1 in Ny
B — means equality
B + means multiplication

S’ does not satisfy .
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Theories, T-safisfiability and T-validity

m A Y-theory T is defined by a set of X-sentences.
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Theories, T-safisfiability and T-validity

m A Y-theory T is defined by a set of X-sentences.

m The number of sentences that are necessary for defining a theory may
be large or infinite.

m Instead, it is common to define a theory through a set of axioms.

m The theory is defined by these axioms and everything that can be
inferred from them by a sound inference system.
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Theories, T-safisfiability and T-validity

A Y-theory T is defined by a set of X-sentences.

m The number of sentences that are necessary for defining a theory may
be large or infinite.

Instead, it is common to define a theory through a set of axioms.

The theory is defined by these axioms and everything that can be
inferred from them by a sound inference system.

m A Y-formula ¢ is T-satisfiable if there exists a structure that satisfies
both the sentences of T and ¢.

m A Y-formula ¢ is T-valid if all structures that satisfy the sentences
defining T also satisfy .
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m Y ={0,1,+,=}
B p=3x.x+0=1a X-formula.

m We now define the X-theory T by the following axioms:

Vx. x =x // = must be reflexive
Vx.Vy.x+y=y+x //+ must be commutative
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m Y ={0,1,+,=}
B p=3x.x+0=1a X-formula.

m We now define the X-theory T by the following axioms:

Vx. x =x // = must be reflexive
Vx.Vy.x+y=y+x //+ must be commutative

m Q: Is ¢ T-satisfiable?
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Y ={0,1,+,=}
@ =13x. x+0=1a X-formula.

We now define the X-theory T by the following axioms:

Vx. x =x // = must be reflexive
Vx.Vy.x+y=y+x //+ must be commutative

Q: Is ¢ T-satisfiable?

m A: Yes, S is a model.
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Y ={0,1,+,=}
@ =13x. x+0=1a X-formula.

We now define the X-theory T by the following axioms:

Vx. x =x // = must be reflexive
Vx.Vy.x+y=y+x //+ must be commutative

m Q: Is ¢ T-satisfiable?
m A: Yes, S is a model.
m Q:Is p T-valid?
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Y ={0,1,+,=}
@ =13x. x+0=1a X-formula.

We now define the X-theory T by the following axioms:

Vx. x =x // = must be reflexive
Vx.Vy.x+y=y+x //+ must be commutative

m Q: Is ¢ T-satisfiable?
m A: Yes, S is a model.
m Q:Is p T-valid?

m A: No. S’ satisfies the sentences in T but not (.
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m Y ={0,1,+,=}
B p=73x.x+0=1a X-formula.

m We now define the X-theory T by the following axioms:

Vx. x =x [/ = must be reflexive
Vx.Vy.x+y=y+x //+ must be commutative
Vx. 04+ x =x
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m Y ={0,1,+,=}
B p=73x.x+0=1a X-formula.

m We now define the X-theory T by the following axioms:

Vx. x =x [/ = must be reflexive
Vx.Vy.x+y=y+x //+ must be commutative
Vx. 04+ x =x

m Q: Is ¢ T-satisfiable?
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£ ={0,1,4,=}
@ =73x. x+0=1a X-formula.

We now define the X-theory T by the following axioms:

Vx. x =x [/ = must be reflexive
Vx.Vy.x+y=y+x //+ must be commutative
Vx. 04+ x =x

Q: Is ¢ T-satisfiable?

m A: Yes, S is a model.
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m Y ={0,1,+,=}
B p=73x.x+0=1a X-formula.

m We now define the X-theory T by the following axioms:

Vx. x =x [/ = must be reflexive
Vx.Vy.x+y=y+x //+ must be commutative
Vx. 04+ x =x

m Q: Is ¢ T-satisfiable?
m A: Yes, S is a model.
m Q:Is p T-valid?
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m Y ={0,1,+,=}
B p=73x.x+0=1a X-formula.

m We now define the X-theory T by the following axioms:

Vx. x =x [/ = must be reflexive
Vx.Vy.x+y=y+x //+ must be commutative
Vx. 04+ x =x

m Q: Is ¢ T-satisfiable?

m A: Yes, S is a model.

m Q:Is p T-valid?

m A: Yes. (S’ does not satisfy the third axiom.)
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={=}
=(x=yAy#2z)— x+# za X-formula
e now define the X-theory T by the following axioms:

Vx. x = x (reflexivity)
Vx. Vy. x =y = y = x (symmetry)
Vx. Vy.Vz. x =y ANy = z = x = z (transitivity)

DX
m
W
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Y ={=}
mpop=(x=yAy#z)— x#zaX-formula
m We now define the X-theory T by the following axioms:

H Vx. x = x (reflexivity)
Vx. Vy. x =y = y = x (symmetry)
Vx. Vy.Vz. x =y ANy = z = x = z (transitivity)

m Q: Is ¢ T-satisfiable?
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Y ={=}
p=(x=yANy#z)— x#zaX-formula
We now define the X-theory T by the following axioms:

Vx. x = x (reflexivity)
Vx. Vy. x =y = y = x (symmetry)
Vx. Vy.Vz. x =y ANy = z = x = z (transitivity)

Q: Is ¢ T-satisfiable?
m A: Yes.
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Y ={=}
p=(x=yANy#z)— x#zaX-formula
We now define the X-theory T by the following axioms:

Vx. x = x (reflexivity)
Vx. Vy. x =y = y = x (symmetry)
Vx. Vy.Vz. x =y ANy = z = x = z (transitivity)

m Q: Is ¢ T-satisfiable?
m A: Yes.
m Q:Is ¢ T-valid?
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Y ={=}
p=(x=yANy#z)— x#zaX-formula
We now define the X-theory T by the following axioms:

Vx. x = x (reflexivity)
Vx. Vy. x =y = y = x (symmetry)
Vx. Vy.Vz. x =y ANy = z = x = z (transitivity)

m Q: Is ¢ T-satisfiable?

m A: Yes.

m Q:Is ¢ T-valid?

m A: Yes. Every structure that satisfies T also satisfies .
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Y ={<}
m p:Vx. dy. y < x a X-formula
m Consider the X-theory T defined by the axioms:

Vx. Vy. Vz. x <y ANy < z = x < z (transitivity)
Vx. Vy. x < y = =(y < x) (anti-symmetry)
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r={<}
¢ :Vx. Jy. y < x a X-formula
Consider the X-theory T defined by the axioms:

Vx. Vy. Vz. x <y ANy < z = x < z (transitivity)
Vx. Vy. x < y = =(y < x) (anti-symmetry)

Q: Is ¢ T-satisfiable?
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Y ={<}

m p:Vx. dy. y < x a X-formula

m Consider the X-theory T defined by the axioms:
Vx. Vy. Vz. x <y ANy < z = x < z (transitivity)
Vx. Vy. x < y = =(y < x) (anti-symmetry)

m Q: Is ¢ T-satisfiable?

m A: Yes. We construct a model for it:

m Domain: Z
m < means “less than”
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r={<}

¢ :Vx. Jy. y < x a X-formula

Consider the X-theory T defined by the axioms:
Vx. Vy. Vz. x <y ANy < z = x < z (transitivity)
Vx. Vy. x < y = =(y < x) (anti-symmetry)

Q: Is ¢ T-satisfiable?

m A: Yes. We construct a model for it:

m Domain: Z
m < means “less than”

Q: Is ¢ T-valid?
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Y ={<}

m p:Vx. dy. y < x a X-formula

m Consider the X-theory T defined by the axioms:
Vx. Vy. Vz. x <y ANy < z = x < z (transitivity)
Vx. Vy. x < y = =(y < x) (anti-symmetry)

m Q: Is ¢ T-satisfiable?

m A: Yes. We construct a model for it:

m Domain: Z
m < means “less than”

Q: Is ¢ T-valid?
A: No. We construct a structure to the contrary:

m Domain: Ny
m < means ‘less than”
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Logic fragments

m So far we only restricted the non-logical symbols by signatures and
their interpretation by theories.

m Sometimes we want to restrict the grammar and the logical symbols
that we can use as well.

m These are called logic fragments.

m Examples:

m The quantifier-free fragment over ¥ = {0,1,=,+}
m The conjunctive fragment over ¥ = {0,1,=,+}
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m Let T be a theory with ¥ = {} without axioms.
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m Let T be a theory with ¥ = {} without axioms.
m Q: What is the quantifier-free frament of T7?
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m Let T be a theory with ¥ = {} without axioms.

m Q: What is the quantifier-free frament of T7?

m A: Propositional logic
Example: x1 — (x2 V x3)
Thus, propositional logic is also a first-order theory.
(A very degenerate one.)
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m Let T be a theory with ¥ = {} without axioms.
m Q: What is the quantifier-free frament of T7?
m A: Propositional logic

Example: x1 — (x2 V x3)
Thus, propositional logic is also a first-order theory.
(A very degenerate one.)

B Q: Whatis T?
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m Let T be a theory with ¥ = {} without axioms.

m Q: What is the quantifier-free frament of T7?

m A: Propositional logic
Example: x1 — (x2 V x3)
Thus, propositional logic is also a first-order theory.
(A very degenerate one.)

B Q: Whatis T?
m A: Quantified Boolean formulae (QBF)

Example:
B Vxi. Ixo. Vxz. x1 — (X2 V x3)

Prof. Dr. Erika Abraham - Satisfiability Checking



Some famous theories

Presburger arithmetic: ¥ = {0,1,+4,=} over integers
Peano arithmetic: ¥ = {0, 1,4+, %, =} over integers
Linear real argebra: ¥ = {0, 1, +,=} over reals

Real algebra: ¥ = {0,1, +,%,=} over reals

Theory of arrays

Theory of pointers

Prof. Dr. Erika Abraham - Satisfiability Checking



The algorithmic point of view...

m It is also common to present theories NOT through the axioms that
define them.
m The interpretation of symbols is fixed to their common use.
m Thus + is plus, ...
m The fragment is defined via grammar rules rather than restrictions on
the generic first-order grammar.
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The algorithmic point of view...

m Example: Equality logic

m Grammar:

formula ::= atom | formula A formula | ~formula

atom = Boolean-variable |
variable = variable |
variable = constant |
constant = constant

m Interpretation: = is equality.
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Expressiveness of a theory

m Each formula defines a language:
The set of satisfying assignments (models) are the words accepted by

this language.

m Consider the fragment '2-CNF':

formula = (literal \ literal) | formula A formula
literal ~ ::= Boolean-variable | =Boolean-variable

m Example formula:
(X1 V —|X2) VAN (—|X3 V X2)
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Expressiveness of a theory

m Now consider the propositional logic formula ¢ : (x1 V x2 V x3)

m Q: Can we express this language with 2-CNF?
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Expressiveness of a theory

Now consider the propositional logic formula ¢ : (x1 V x2 V x3)
Q: Can we express this language with 2-CNF?

A: No.
Proof:
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Expressiveness of a theory

m Now consider the propositional logic formula ¢ : (x1 V x2 V x3)
m Q: Can we express this language with 2-CNF?

m A: No.

m Proof:

m The language accepted by ¢ has 7 words: all assignments other than
x1 = x2 = x3 = 0 (false).

m A 2-CNF clause removes 2 assignments, which leaves us with 6
accepted words.
E.g., (x1 V x2) removes the assignments x; = xo = x3 = 0 and
X1:X2:0, X3:]..

m Additional clauses only remove more assignments.
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Languages defined by L5

Languages defined by £

L5 is more expressive than £1. Notation: £1 < L5.
m Claim: 2-CNF < propositional logic.

m Generally there is only a partial order between theories.
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The Tradeoff

m So we see that theories can have different expressive power.

m Q: Why would we want to restrict ourselves to a theory or a fragment?
Why not take some 'maximal theory'?
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The Tradeoff

m So we see that theories can have different expressive power.

m Q: Why would we want to restrict ourselves to a theory or a fragment?
Why not take some 'maximal theory'?

m A: Adding axioms to the theory may make it harder to decide or even
undecidable.

Prof. Dr. Erika Abraham - Satisfiability Checking



Example: Hilbert axiom system (H)

m Let H be (M.P) + the following axiom schemas:

A=A ()

(A= (B=0)=(AsB)= (A=) (H2)

CB=-A=(A=B) (H3)

m H is sound and complete for propositional logic.

m This means that with H we can prove any valid propositional formula,
and only such formulae. The proof is finite.
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m But there exist first order theories defined by axioms which are not
sufficient for proving all T-valid formulae.
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Example: First Order Peano Arithmetic

m Y ={0,1,+,x% =}
m Domain: Natural numbers
m Axioms (“semantics”):
Vx. (x #x+1)
Ux.Vy. (x#£y)—= (x+1#y+1)
Induction
Vx. x+0=x
Vx.Vy: (x+y)+1l=x+(y+1)
B Vx. xx0=0
Ux. Vy. xx(y+1)=x*xy+x

UNDECIDABLE!
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Reduction: Peano Arithmetic to Presburger Arithmetic

m Y ={0,1,+ %=}
m Domain: Natural numbers

m Axioms (“semantics”):

Vx. (#x+1)

Vx.Vy. (x#£y) = (x+1#y+1)
Induction

Vx. x+0=x

Vx. Vy. (x+y)+1=x+(y+1)

A Yxxx0=0
W

DECIDABLE!
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Tradeoff: expressiveness/computational hardness

Our course

Computational

£1 Challenge! L
n
< >
Easier to decide More expressive
Tractable Intractable
(polynomial) | (exponential)

Decidable | Undecidable

Prof. Dr. Erika Abraham - Satisfiability Checking



When is a specific theory useful?

m Expressible enough to state something interesting.

m Decidable (or semi-decidable) and more efficiently solvable than richer
theories.

m More expressible, or more natural for expressing some models in
comparison to 'leaner’ theories.
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Expressiveness and complexity

m Q1: Let £1 and £; be two theories whose satisfiability problem is
decidable and in the same complexity class. Is the satisfiability problem
of an £ formula reducible to a satisfiability problem of an £ formula?
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Expressiveness and complexity

m Q1: Let £1 and £; be two theories whose satisfiability problem is
decidable and in the same complexity class. Is the satisfiability problem
of an £ formula reducible to a satisfiability problem of an £ formula?

m Q2: Let £ and L5 be two theories whose satisfiability problems are
reducible to each other. Are £1 and £5 in the same complexity class?
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