
Satisfiability Checking
First Order Logic

Prof. Dr. Erika Ábrahám

Theory of Hybrid Systems
Informatik 2

WS 11/12

Prof. Dr. Erika Ábrahám - Satisfiability Checking 1 / 36

From informal to formal logics

We have seen that natural languages are not well-suited for correct
reasoning.

Assume the argumentation:
1 All women love shopping.
2 Eve is a woman.
3 Thus Eve loves shopping.

We can formalize it by defining
constants: Eve
variables: x
predicate symbols: isWoman(·), lovesShopping(·)

Assume
1 ∀x . isWoman(x)→ lovesShopping(x)
2 isWoman(Eve)

Then
3 lovesShopping(Eve)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 2 / 36

From informal to formal logics

We have seen that natural languages are not well-suited for correct
reasoning.
Assume the argumentation:

1 All women love shopping.
2 Eve is a woman.
3 Thus Eve loves shopping.

We can formalize it by defining
constants: Eve
variables: x
predicate symbols: isWoman(·), lovesShopping(·)

Assume
1 ∀x . isWoman(x)→ lovesShopping(x)
2 isWoman(Eve)

Then
3 lovesShopping(Eve)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 2 / 36

From informal to formal logics

We have seen that natural languages are not well-suited for correct
reasoning.
Assume the argumentation:

1 All women love shopping.
2 Eve is a woman.
3 Thus Eve loves shopping.

We can formalize it by defining

constants: Eve
variables: x
predicate symbols: isWoman(·), lovesShopping(·)

Assume
1 ∀x . isWoman(x)→ lovesShopping(x)
2 isWoman(Eve)

Then
3 lovesShopping(Eve)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 2 / 36

From informal to formal logics

We have seen that natural languages are not well-suited for correct
reasoning.
Assume the argumentation:

1 All women love shopping.
2 Eve is a woman.
3 Thus Eve loves shopping.

We can formalize it by defining
constants: Eve
variables: x
predicate symbols: isWoman(·), lovesShopping(·)

Assume
1 ∀x . isWoman(x)→ lovesShopping(x)
2 isWoman(Eve)

Then
3 lovesShopping(Eve)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 2 / 36

From informal to formal logics

We have seen that natural languages are not well-suited for correct
reasoning.
Assume the argumentation:

1 All women love shopping.
2 Eve is a woman.
3 Thus Eve loves shopping.

We can formalize it by defining
constants: Eve
variables: x
predicate symbols: isWoman(·), lovesShopping(·)

Assume

1 ∀x . isWoman(x)→ lovesShopping(x)
2 isWoman(Eve)

Then
3 lovesShopping(Eve)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 2 / 36

From informal to formal logics

We have seen that natural languages are not well-suited for correct
reasoning.
Assume the argumentation:

1 All women love shopping.
2 Eve is a woman.
3 Thus Eve loves shopping.

We can formalize it by defining
constants: Eve
variables: x
predicate symbols: isWoman(·), lovesShopping(·)

Assume
1 ∀x . isWoman(x)→ lovesShopping(x)

2 isWoman(Eve)
Then

3 lovesShopping(Eve)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 2 / 36

From informal to formal logics

We have seen that natural languages are not well-suited for correct
reasoning.
Assume the argumentation:

1 All women love shopping.
2 Eve is a woman.
3 Thus Eve loves shopping.

We can formalize it by defining
constants: Eve
variables: x
predicate symbols: isWoman(·), lovesShopping(·)

Assume
1 ∀x . isWoman(x)→ lovesShopping(x)
2 isWoman(Eve)

Then
3 lovesShopping(Eve)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 2 / 36

From informal to formal logics

We have seen that natural languages are not well-suited for correct
reasoning.
Assume the argumentation:

1 All women love shopping.
2 Eve is a woman.
3 Thus Eve loves shopping.

We can formalize it by defining
constants: Eve
variables: x
predicate symbols: isWoman(·), lovesShopping(·)

Assume
1 ∀x . isWoman(x)→ lovesShopping(x)
2 isWoman(Eve)

Then

3 lovesShopping(Eve)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 2 / 36

From informal to formal logics

We have seen that natural languages are not well-suited for correct
reasoning.
Assume the argumentation:

1 All women love shopping.
2 Eve is a woman.
3 Thus Eve loves shopping.

We can formalize it by defining
constants: Eve
variables: x
predicate symbols: isWoman(·), lovesShopping(·)

Assume
1 ∀x . isWoman(x)→ lovesShopping(x)
2 isWoman(Eve)

Then
3 lovesShopping(Eve)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 2 / 36

First-Order Logic

First-order (FO) logic is a framework.
It gives us a generic syntax by recursively defining strings on an
alphabet.
Non-logical elements are logically combined using:

constants (Eve, 0, true, . . .)
variables (x,y,. . .)
function symbols (+(·, ·), vaterOf(·),. . .)
predicate symbols (>(·, ·), isPrime(·), isBrotherOf(·, ·),. . .)
logical symbols ((,),∧,¬, . . . ,∃,∀).

Note:
Constants can also be seen as function symbols of arity 0.
Sometimes equality (=) is included as a logical symbol.
E.g., the Boolean connectives negation (¬) and conjunction (∧) and
the existential quantifier ∃ would be sufficient, the remaining syntax
(∨,→,↔, . . . ,∀) are syntactic sugar.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 3 / 36

First-Order Logic

First-order (FO) logic is a framework.
It gives us a generic syntax by recursively defining strings on an
alphabet.
Non-logical elements are logically combined using:

constants (Eve, 0, true, . . .)
variables (x,y,. . .)
function symbols (+(·, ·), vaterOf(·),. . .)
predicate symbols (>(·, ·), isPrime(·), isBrotherOf(·, ·),. . .)
logical symbols ((,),∧,¬, . . . ,∃,∀).

Note:
Constants can also be seen as function symbols of arity 0.
Sometimes equality (=) is included as a logical symbol.
E.g., the Boolean connectives negation (¬) and conjunction (∧) and
the existential quantifier ∃ would be sufficient, the remaining syntax
(∨,→,↔, . . . ,∀) are syntactic sugar.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 3 / 36

Formation rules

Terms are inductively defined by the following rules:
1 All constants and variables are terms.
2 If t1, . . . , tn (n > 0) are terms and f an n-ary function symbol then

f (t1, ..., tn) is a term.
Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:
1 If P is an n-ary predicate symbol and t1, . . . , tn are terms then

P(t1, . . . , tn) is a formula.
2 If ϕ is a formula, then (¬ϕ) is a formula.
3 If ϕ and ψ are formulae, then (ϕ ∧ ψ) is a formula.
4 Similar rules apply to other binary logical connectives.
5 If ϕ is a formula and x is a variable, then (∀x .ϕ) and (∃x . ϕ) are

formulae.
Only expressions which can be obtained by finitely many applications of
rules 1–5 are formulae.
The formulae obtained by the first rule are said to be atomic.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 36

Formation rules

Terms are inductively defined by the following rules:

1 All constants and variables are terms.
2 If t1, . . . , tn (n > 0) are terms and f an n-ary function symbol then

f (t1, ..., tn) is a term.
Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:
1 If P is an n-ary predicate symbol and t1, . . . , tn are terms then

P(t1, . . . , tn) is a formula.
2 If ϕ is a formula, then (¬ϕ) is a formula.
3 If ϕ and ψ are formulae, then (ϕ ∧ ψ) is a formula.
4 Similar rules apply to other binary logical connectives.
5 If ϕ is a formula and x is a variable, then (∀x .ϕ) and (∃x . ϕ) are

formulae.
Only expressions which can be obtained by finitely many applications of
rules 1–5 are formulae.
The formulae obtained by the first rule are said to be atomic.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 36

Formation rules

Terms are inductively defined by the following rules:
1 All constants and variables are terms.

2 If t1, . . . , tn (n > 0) are terms and f an n-ary function symbol then
f (t1, ..., tn) is a term.

Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:
1 If P is an n-ary predicate symbol and t1, . . . , tn are terms then

P(t1, . . . , tn) is a formula.
2 If ϕ is a formula, then (¬ϕ) is a formula.
3 If ϕ and ψ are formulae, then (ϕ ∧ ψ) is a formula.
4 Similar rules apply to other binary logical connectives.
5 If ϕ is a formula and x is a variable, then (∀x .ϕ) and (∃x . ϕ) are

formulae.
Only expressions which can be obtained by finitely many applications of
rules 1–5 are formulae.
The formulae obtained by the first rule are said to be atomic.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 36

Formation rules

Terms are inductively defined by the following rules:
1 All constants and variables are terms.
2 If t1, . . . , tn (n > 0) are terms and f an n-ary function symbol then

f (t1, ..., tn) is a term.

Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:
1 If P is an n-ary predicate symbol and t1, . . . , tn are terms then

P(t1, . . . , tn) is a formula.
2 If ϕ is a formula, then (¬ϕ) is a formula.
3 If ϕ and ψ are formulae, then (ϕ ∧ ψ) is a formula.
4 Similar rules apply to other binary logical connectives.
5 If ϕ is a formula and x is a variable, then (∀x .ϕ) and (∃x . ϕ) are

formulae.
Only expressions which can be obtained by finitely many applications of
rules 1–5 are formulae.
The formulae obtained by the first rule are said to be atomic.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 36

Formation rules

Terms are inductively defined by the following rules:
1 All constants and variables are terms.
2 If t1, . . . , tn (n > 0) are terms and f an n-ary function symbol then

f (t1, ..., tn) is a term.
Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:
1 If P is an n-ary predicate symbol and t1, . . . , tn are terms then

P(t1, . . . , tn) is a formula.
2 If ϕ is a formula, then (¬ϕ) is a formula.
3 If ϕ and ψ are formulae, then (ϕ ∧ ψ) is a formula.
4 Similar rules apply to other binary logical connectives.
5 If ϕ is a formula and x is a variable, then (∀x .ϕ) and (∃x . ϕ) are

formulae.
Only expressions which can be obtained by finitely many applications of
rules 1–5 are formulae.
The formulae obtained by the first rule are said to be atomic.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 36

Formation rules

Terms are inductively defined by the following rules:
1 All constants and variables are terms.
2 If t1, . . . , tn (n > 0) are terms and f an n-ary function symbol then

f (t1, ..., tn) is a term.
Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:

1 If P is an n-ary predicate symbol and t1, . . . , tn are terms then
P(t1, . . . , tn) is a formula.

2 If ϕ is a formula, then (¬ϕ) is a formula.
3 If ϕ and ψ are formulae, then (ϕ ∧ ψ) is a formula.
4 Similar rules apply to other binary logical connectives.
5 If ϕ is a formula and x is a variable, then (∀x .ϕ) and (∃x . ϕ) are

formulae.
Only expressions which can be obtained by finitely many applications of
rules 1–5 are formulae.
The formulae obtained by the first rule are said to be atomic.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 36

Formation rules

Terms are inductively defined by the following rules:
1 All constants and variables are terms.
2 If t1, . . . , tn (n > 0) are terms and f an n-ary function symbol then

f (t1, ..., tn) is a term.
Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:
1 If P is an n-ary predicate symbol and t1, . . . , tn are terms then

P(t1, . . . , tn) is a formula.

2 If ϕ is a formula, then (¬ϕ) is a formula.
3 If ϕ and ψ are formulae, then (ϕ ∧ ψ) is a formula.
4 Similar rules apply to other binary logical connectives.
5 If ϕ is a formula and x is a variable, then (∀x .ϕ) and (∃x . ϕ) are

formulae.
Only expressions which can be obtained by finitely many applications of
rules 1–5 are formulae.
The formulae obtained by the first rule are said to be atomic.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 36

Formation rules

Terms are inductively defined by the following rules:
1 All constants and variables are terms.
2 If t1, . . . , tn (n > 0) are terms and f an n-ary function symbol then

f (t1, ..., tn) is a term.
Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:
1 If P is an n-ary predicate symbol and t1, . . . , tn are terms then

P(t1, . . . , tn) is a formula.
2 If ϕ is a formula, then (¬ϕ) is a formula.

3 If ϕ and ψ are formulae, then (ϕ ∧ ψ) is a formula.
4 Similar rules apply to other binary logical connectives.
5 If ϕ is a formula and x is a variable, then (∀x .ϕ) and (∃x . ϕ) are

formulae.
Only expressions which can be obtained by finitely many applications of
rules 1–5 are formulae.
The formulae obtained by the first rule are said to be atomic.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 36

Formation rules

Terms are inductively defined by the following rules:
1 All constants and variables are terms.
2 If t1, . . . , tn (n > 0) are terms and f an n-ary function symbol then

f (t1, ..., tn) is a term.
Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:
1 If P is an n-ary predicate symbol and t1, . . . , tn are terms then

P(t1, . . . , tn) is a formula.
2 If ϕ is a formula, then (¬ϕ) is a formula.
3 If ϕ and ψ are formulae, then (ϕ ∧ ψ) is a formula.

4 Similar rules apply to other binary logical connectives.
5 If ϕ is a formula and x is a variable, then (∀x .ϕ) and (∃x . ϕ) are

formulae.
Only expressions which can be obtained by finitely many applications of
rules 1–5 are formulae.
The formulae obtained by the first rule are said to be atomic.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 36

Formation rules

Terms are inductively defined by the following rules:
1 All constants and variables are terms.
2 If t1, . . . , tn (n > 0) are terms and f an n-ary function symbol then

f (t1, ..., tn) is a term.
Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:
1 If P is an n-ary predicate symbol and t1, . . . , tn are terms then

P(t1, . . . , tn) is a formula.
2 If ϕ is a formula, then (¬ϕ) is a formula.
3 If ϕ and ψ are formulae, then (ϕ ∧ ψ) is a formula.
4 Similar rules apply to other binary logical connectives.

5 If ϕ is a formula and x is a variable, then (∀x .ϕ) and (∃x . ϕ) are
formulae.

Only expressions which can be obtained by finitely many applications of
rules 1–5 are formulae.
The formulae obtained by the first rule are said to be atomic.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 36

Formation rules

Terms are inductively defined by the following rules:
1 All constants and variables are terms.
2 If t1, . . . , tn (n > 0) are terms and f an n-ary function symbol then

f (t1, ..., tn) is a term.
Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:
1 If P is an n-ary predicate symbol and t1, . . . , tn are terms then

P(t1, . . . , tn) is a formula.
2 If ϕ is a formula, then (¬ϕ) is a formula.
3 If ϕ and ψ are formulae, then (ϕ ∧ ψ) is a formula.
4 Similar rules apply to other binary logical connectives.
5 If ϕ is a formula and x is a variable, then (∀x .ϕ) and (∃x . ϕ) are

formulae.

Only expressions which can be obtained by finitely many applications of
rules 1–5 are formulae.
The formulae obtained by the first rule are said to be atomic.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 36

Formation rules

Terms are inductively defined by the following rules:
1 All constants and variables are terms.
2 If t1, . . . , tn (n > 0) are terms and f an n-ary function symbol then

f (t1, ..., tn) is a term.
Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:
1 If P is an n-ary predicate symbol and t1, . . . , tn are terms then

P(t1, . . . , tn) is a formula.
2 If ϕ is a formula, then (¬ϕ) is a formula.
3 If ϕ and ψ are formulae, then (ϕ ∧ ψ) is a formula.
4 Similar rules apply to other binary logical connectives.
5 If ϕ is a formula and x is a variable, then (∀x .ϕ) and (∃x . ϕ) are

formulae.
Only expressions which can be obtained by finitely many applications of
rules 1–5 are formulae.

The formulae obtained by the first rule are said to be atomic.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 36

Formation rules

Terms are inductively defined by the following rules:
1 All constants and variables are terms.
2 If t1, . . . , tn (n > 0) are terms and f an n-ary function symbol then

f (t1, ..., tn) is a term.
Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:
1 If P is an n-ary predicate symbol and t1, . . . , tn are terms then

P(t1, . . . , tn) is a formula.
2 If ϕ is a formula, then (¬ϕ) is a formula.
3 If ϕ and ψ are formulae, then (ϕ ∧ ψ) is a formula.
4 Similar rules apply to other binary logical connectives.
5 If ϕ is a formula and x is a variable, then (∀x .ϕ) and (∃x . ϕ) are

formulae.
Only expressions which can be obtained by finitely many applications of
rules 1–5 are formulae.
The formulae obtained by the first rule are said to be atomic.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 36

Notational conventions

We omit parenthesis whenever we may restore them through operator
precedence:

binds stronger

¬ ∧ ∨ → ↔ ∃ ∀

Thus, we write:
¬¬a for (¬(¬a)),
∃a. ∃b. (a ∧ b → F (a, b)) for ∃a. ∃b. ((a ∧ b)→ F (a, b))

Prof. Dr. Erika Ábrahám - Satisfiability Checking 5 / 36

Notational conventions

We omit parenthesis whenever we may restore them through operator
precedence:

binds stronger

¬ ∧ ∨ → ↔ ∃ ∀

Thus, we write:
¬¬a for (¬(¬a)),
∃a. ∃b. (a ∧ b → F (a, b)) for ∃a. ∃b. ((a ∧ b)→ F (a, b))

Prof. Dr. Erika Ábrahám - Satisfiability Checking 5 / 36

Free and bound variables

The free and bound variables of a formula are defined inductively:

If ϕ is an atomic formula then a variable x is free in ϕ iff x occurs in ϕ.
Moreover, there are no bound variables in any atomic formula.
A variable x is free in (¬ϕ) iff x is free in ϕ.
Moreover, x is bound in (¬ϕ) iff x is bound in ϕ.
x is free in (ϕ ∧ ψ) iff x is free in either ϕ or ψ.
Moreover, x is bound in (ϕ ∧ ψ) iff x is bound in either ϕ or ψ.
The same rule applies to any other binary connective in place of ∧.
x is free in (∃y . ϕ) iff x is free in ϕ and x is a symbol different from y .
Moreover, x is bound in (∃y . ϕ) iff x is y or x is bound in ϕ.
The same rule holds with ∀ in place of ∃.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 6 / 36

Free and bound variables

The free and bound variables of a formula are defined inductively:

If ϕ is an atomic formula then a variable x is free in ϕ iff x occurs in ϕ.
Moreover, there are no bound variables in any atomic formula.
A variable x is free in (¬ϕ) iff x is free in ϕ.
Moreover, x is bound in (¬ϕ) iff x is bound in ϕ.
x is free in (ϕ ∧ ψ) iff x is free in either ϕ or ψ.
Moreover, x is bound in (ϕ ∧ ψ) iff x is bound in either ϕ or ψ.
The same rule applies to any other binary connective in place of ∧.
x is free in (∃y . ϕ) iff x is free in ϕ and x is a symbol different from y .
Moreover, x is bound in (∃y . ϕ) iff x is y or x is bound in ϕ.
The same rule holds with ∀ in place of ∃.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 6 / 36

Free and bound variables

The free and bound variables of a formula are defined inductively:
If ϕ is an atomic formula then a variable x is free in ϕ iff x occurs in ϕ.
Moreover, there are no bound variables in any atomic formula.

A variable x is free in (¬ϕ) iff x is free in ϕ.
Moreover, x is bound in (¬ϕ) iff x is bound in ϕ.
x is free in (ϕ ∧ ψ) iff x is free in either ϕ or ψ.
Moreover, x is bound in (ϕ ∧ ψ) iff x is bound in either ϕ or ψ.
The same rule applies to any other binary connective in place of ∧.
x is free in (∃y . ϕ) iff x is free in ϕ and x is a symbol different from y .
Moreover, x is bound in (∃y . ϕ) iff x is y or x is bound in ϕ.
The same rule holds with ∀ in place of ∃.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 6 / 36

Free and bound variables

The free and bound variables of a formula are defined inductively:
If ϕ is an atomic formula then a variable x is free in ϕ iff x occurs in ϕ.
Moreover, there are no bound variables in any atomic formula.
A variable x is free in (¬ϕ) iff x is free in ϕ.
Moreover, x is bound in (¬ϕ) iff x is bound in ϕ.

x is free in (ϕ ∧ ψ) iff x is free in either ϕ or ψ.
Moreover, x is bound in (ϕ ∧ ψ) iff x is bound in either ϕ or ψ.
The same rule applies to any other binary connective in place of ∧.
x is free in (∃y . ϕ) iff x is free in ϕ and x is a symbol different from y .
Moreover, x is bound in (∃y . ϕ) iff x is y or x is bound in ϕ.
The same rule holds with ∀ in place of ∃.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 6 / 36

Free and bound variables

The free and bound variables of a formula are defined inductively:
If ϕ is an atomic formula then a variable x is free in ϕ iff x occurs in ϕ.
Moreover, there are no bound variables in any atomic formula.
A variable x is free in (¬ϕ) iff x is free in ϕ.
Moreover, x is bound in (¬ϕ) iff x is bound in ϕ.
x is free in (ϕ ∧ ψ) iff x is free in either ϕ or ψ.
Moreover, x is bound in (ϕ ∧ ψ) iff x is bound in either ϕ or ψ.

The same rule applies to any other binary connective in place of ∧.
x is free in (∃y . ϕ) iff x is free in ϕ and x is a symbol different from y .
Moreover, x is bound in (∃y . ϕ) iff x is y or x is bound in ϕ.
The same rule holds with ∀ in place of ∃.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 6 / 36

Free and bound variables

The free and bound variables of a formula are defined inductively:
If ϕ is an atomic formula then a variable x is free in ϕ iff x occurs in ϕ.
Moreover, there are no bound variables in any atomic formula.
A variable x is free in (¬ϕ) iff x is free in ϕ.
Moreover, x is bound in (¬ϕ) iff x is bound in ϕ.
x is free in (ϕ ∧ ψ) iff x is free in either ϕ or ψ.
Moreover, x is bound in (ϕ ∧ ψ) iff x is bound in either ϕ or ψ.
The same rule applies to any other binary connective in place of ∧.

x is free in (∃y . ϕ) iff x is free in ϕ and x is a symbol different from y .
Moreover, x is bound in (∃y . ϕ) iff x is y or x is bound in ϕ.
The same rule holds with ∀ in place of ∃.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 6 / 36

Free and bound variables

The free and bound variables of a formula are defined inductively:
If ϕ is an atomic formula then a variable x is free in ϕ iff x occurs in ϕ.
Moreover, there are no bound variables in any atomic formula.
A variable x is free in (¬ϕ) iff x is free in ϕ.
Moreover, x is bound in (¬ϕ) iff x is bound in ϕ.
x is free in (ϕ ∧ ψ) iff x is free in either ϕ or ψ.
Moreover, x is bound in (ϕ ∧ ψ) iff x is bound in either ϕ or ψ.
The same rule applies to any other binary connective in place of ∧.
x is free in (∃y . ϕ) iff x is free in ϕ and x is a symbol different from y .
Moreover, x is bound in (∃y . ϕ) iff x is y or x is bound in ϕ.

The same rule holds with ∀ in place of ∃.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 6 / 36

Free and bound variables

The free and bound variables of a formula are defined inductively:
If ϕ is an atomic formula then a variable x is free in ϕ iff x occurs in ϕ.
Moreover, there are no bound variables in any atomic formula.
A variable x is free in (¬ϕ) iff x is free in ϕ.
Moreover, x is bound in (¬ϕ) iff x is bound in ϕ.
x is free in (ϕ ∧ ψ) iff x is free in either ϕ or ψ.
Moreover, x is bound in (ϕ ∧ ψ) iff x is bound in either ϕ or ψ.
The same rule applies to any other binary connective in place of ∧.
x is free in (∃y . ϕ) iff x is free in ϕ and x is a symbol different from y .
Moreover, x is bound in (∃y . ϕ) iff x is y or x is bound in ϕ.
The same rule holds with ∀ in place of ∃.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 6 / 36

Free and bound variables

Examples:

In z ∨ ∀x . ∀y . (P(x)→ Q(z)), x and y are bound variables, z is a
free variable, and w is neither bound nor free.
In z ∨ ∀z .P(z), z is both bound and free.

Freeness and boundness can be also specialized to specific occurrences of
variables in a formula. In z ∨ ∀z .P(z), the first occurrence of z is free while
the second is bound.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 7 / 36

Free and bound variables

Examples:
In z ∨ ∀x . ∀y . (P(x)→ Q(z)), x and y are bound variables, z is a
free variable, and w is neither bound nor free.
In z ∨ ∀z .P(z), z is both bound and free.

Freeness and boundness can be also specialized to specific occurrences of
variables in a formula. In z ∨ ∀z .P(z), the first occurrence of z is free while
the second is bound.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 7 / 36

Some definitions

A signature Σ fixes a set of non-logical symbols.
A Σ-formula is a formula with non-logical symbols from Σ.
A variable is free if it is not bound by a quantifier.
A sentence is a formula without free variables.

In the previous example:
Σ = (Eve, isWoman(·), lovesShopping(·)) with

Eve a constant and
isWoman and lovesShopping unary predicate symbols.

The formulae
1 ∀x . isWoman(x)→ lovesShopping(x)

2 isWoman(Eve)
3 lovesShopping(Eve)

are Σ-sentences (the only variable x is bound).

Prof. Dr. Erika Ábrahám - Satisfiability Checking 8 / 36

Some definitions

A signature Σ fixes a set of non-logical symbols.
A Σ-formula is a formula with non-logical symbols from Σ.
A variable is free if it is not bound by a quantifier.
A sentence is a formula without free variables.

In the previous example:

Σ = (Eve, isWoman(·), lovesShopping(·)) with
Eve a constant and
isWoman and lovesShopping unary predicate symbols.

The formulae
1 ∀x . isWoman(x)→ lovesShopping(x)

2 isWoman(Eve)
3 lovesShopping(Eve)

are Σ-sentences (the only variable x is bound).

Prof. Dr. Erika Ábrahám - Satisfiability Checking 8 / 36

Some definitions

A signature Σ fixes a set of non-logical symbols.
A Σ-formula is a formula with non-logical symbols from Σ.
A variable is free if it is not bound by a quantifier.
A sentence is a formula without free variables.

In the previous example:
Σ = (Eve, isWoman(·), lovesShopping(·)) with

Eve a constant and
isWoman and lovesShopping unary predicate symbols.

The formulae
1 ∀x . isWoman(x)→ lovesShopping(x)

2 isWoman(Eve)
3 lovesShopping(Eve)

are Σ-sentences (the only variable x is bound).

Prof. Dr. Erika Ábrahám - Satisfiability Checking 8 / 36

Examples

Σ = {0, 1,+, >}
0, 1 are constant symbols
+ is a binary function symbol
> is a binary predicate symbol

Examples of Σ-formulae:
∃x . ∀y . x > y
∀x . ∃y . x > y
∀x . x + 1 > x
∀x . ¬(x + 0 > x ∨ x > x + 0)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 9 / 36

Examples

Σ = {0, 1,+, >}
0, 1 are constant symbols
+ is a binary function symbol
> is a binary predicate symbol

Examples of Σ-formulae:

∃x . ∀y . x > y
∀x . ∃y . x > y
∀x . x + 1 > x
∀x . ¬(x + 0 > x ∨ x > x + 0)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 9 / 36

Examples

Σ = {0, 1,+, >}
0, 1 are constant symbols
+ is a binary function symbol
> is a binary predicate symbol

Examples of Σ-formulae:
∃x . ∀y . x > y
∀x . ∃y . x > y
∀x . x + 1 > x
∀x . ¬(x + 0 > x ∨ x > x + 0)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 9 / 36

Examples

Σ = {0, 1,+, ∗, <, isPrime}
0, 1 constant symbols
+, ∗ binary function symbols
< binary predicate symbol
isPrime unary predicate symbol

An example Σ-formula:
∀n. ∃p. 1 < n→ isPrime(p) ∧ n < p < 2 ∗ n

Prof. Dr. Erika Ábrahám - Satisfiability Checking 10 / 36

Examples

Σ = {0, 1,+, ∗, <, isPrime}
0, 1 constant symbols
+, ∗ binary function symbols
< binary predicate symbol
isPrime unary predicate symbol

An example Σ-formula:
∀n. ∃p. 1 < n→ isPrime(p) ∧ n < p < 2 ∗ n

Prof. Dr. Erika Ábrahám - Satisfiability Checking 10 / 36

Example

Let Σ = {0, 1,+,=} where 0, 1 are constants, + is a binary function
symbol and = a binary predicate symbol.
Let ϕ = ∃x . x + 0 = 1 a Σ-formula.

Q: Is ϕ true?
A: So far these are only symbols, strings. No meaning yet.
Q: What do we need to fix for the semantics?
A: We need a domain for the variables. Let’s say N0.
Q: Is ϕ true in N0?
A: Depends on the interpretation of ’+’ and ’=’ !

Prof. Dr. Erika Ábrahám - Satisfiability Checking 11 / 36

Example

Let Σ = {0, 1,+,=} where 0, 1 are constants, + is a binary function
symbol and = a binary predicate symbol.
Let ϕ = ∃x . x + 0 = 1 a Σ-formula.
Q: Is ϕ true?

A: So far these are only symbols, strings. No meaning yet.
Q: What do we need to fix for the semantics?
A: We need a domain for the variables. Let’s say N0.
Q: Is ϕ true in N0?
A: Depends on the interpretation of ’+’ and ’=’ !

Prof. Dr. Erika Ábrahám - Satisfiability Checking 11 / 36

Example

Let Σ = {0, 1,+,=} where 0, 1 are constants, + is a binary function
symbol and = a binary predicate symbol.
Let ϕ = ∃x . x + 0 = 1 a Σ-formula.
Q: Is ϕ true?
A: So far these are only symbols, strings. No meaning yet.

Q: What do we need to fix for the semantics?
A: We need a domain for the variables. Let’s say N0.
Q: Is ϕ true in N0?
A: Depends on the interpretation of ’+’ and ’=’ !

Prof. Dr. Erika Ábrahám - Satisfiability Checking 11 / 36

Example

Let Σ = {0, 1,+,=} where 0, 1 are constants, + is a binary function
symbol and = a binary predicate symbol.
Let ϕ = ∃x . x + 0 = 1 a Σ-formula.
Q: Is ϕ true?
A: So far these are only symbols, strings. No meaning yet.
Q: What do we need to fix for the semantics?

A: We need a domain for the variables. Let’s say N0.
Q: Is ϕ true in N0?
A: Depends on the interpretation of ’+’ and ’=’ !

Prof. Dr. Erika Ábrahám - Satisfiability Checking 11 / 36

Example

Let Σ = {0, 1,+,=} where 0, 1 are constants, + is a binary function
symbol and = a binary predicate symbol.
Let ϕ = ∃x . x + 0 = 1 a Σ-formula.
Q: Is ϕ true?
A: So far these are only symbols, strings. No meaning yet.
Q: What do we need to fix for the semantics?
A: We need a domain for the variables. Let’s say N0.

Q: Is ϕ true in N0?
A: Depends on the interpretation of ’+’ and ’=’ !

Prof. Dr. Erika Ábrahám - Satisfiability Checking 11 / 36

Example

Let Σ = {0, 1,+,=} where 0, 1 are constants, + is a binary function
symbol and = a binary predicate symbol.
Let ϕ = ∃x . x + 0 = 1 a Σ-formula.
Q: Is ϕ true?
A: So far these are only symbols, strings. No meaning yet.
Q: What do we need to fix for the semantics?
A: We need a domain for the variables. Let’s say N0.
Q: Is ϕ true in N0?

A: Depends on the interpretation of ’+’ and ’=’ !

Prof. Dr. Erika Ábrahám - Satisfiability Checking 11 / 36

Example

Let Σ = {0, 1,+,=} where 0, 1 are constants, + is a binary function
symbol and = a binary predicate symbol.
Let ϕ = ∃x . x + 0 = 1 a Σ-formula.
Q: Is ϕ true?
A: So far these are only symbols, strings. No meaning yet.
Q: What do we need to fix for the semantics?
A: We need a domain for the variables. Let’s say N0.
Q: Is ϕ true in N0?
A: Depends on the interpretation of ’+’ and ’=’ !

Prof. Dr. Erika Ábrahám - Satisfiability Checking 11 / 36

Structures, satisfiability, validity

A structure is given by:
a domain D,
an interpretation I of the non-logical symbols that

maps each constant symbol to a domain element,
maps each function symbol to a function of the same arity, and
maps each predicate symbol to a predicate of the same arity,

an assignment of a domain element to each free (unquantified) variable.

A formula is satisfiable if there exists a structure that satisfies it.
A formula is valid if it is satisfied by all structures.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 12 / 36

Structures, satisfiability, validity

A structure is given by:
a domain D,
an interpretation I of the non-logical symbols that

maps each constant symbol to a domain element,
maps each function symbol to a function of the same arity, and
maps each predicate symbol to a predicate of the same arity,

an assignment of a domain element to each free (unquantified) variable.

A formula is satisfiable if there exists a structure that satisfies it.

A formula is valid if it is satisfied by all structures.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 12 / 36

Structures, satisfiability, validity

A structure is given by:
a domain D,
an interpretation I of the non-logical symbols that

maps each constant symbol to a domain element,
maps each function symbol to a function of the same arity, and
maps each predicate symbol to a predicate of the same arity,

an assignment of a domain element to each free (unquantified) variable.

A formula is satisfiable if there exists a structure that satisfies it.
A formula is valid if it is satisfied by all structures.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 12 / 36

Semantics

Semantics of terms and formulae under a structure (D, I):

constants: [[c]](D,I) = I (c)
variables: [[x]](D,I) = I (x)
functions: [[f (t1, . . . , tn)]](D,I) = I (f)([[t1]](D,I), . . . , [[tn]](D,I))
predicates: [[p(t1, . . . , tn)]](D,I) = I (p)([[t1]](D,I), . . . , [[tn]](D,I))
logical structure:

[[¬ϕ]](D,I) =

{
true if [[ϕ]](D,I)=false
false if [[ϕ]](D,I)=true

[[ϕ ∧ ψ]](D,I) =

{
true if [[ϕ]](D,I) = true and [[ψ]](D,I)=true
false if [[ϕ]](D,I) = false or [[ψ]](D,I)=false

[[∃x . ϕ]](D,I) =

{
true if there exists v∈D such that [[ϕ]](D,I [x 7→v])=true
false if for all v∈D we have [[ϕ]](D,I [x 7→v])=false

Prof. Dr. Erika Ábrahám - Satisfiability Checking 13 / 36

Semantics

Semantics of terms and formulae under a structure (D, I):
constants: [[c]](D,I) = I (c)
variables: [[x]](D,I) = I (x)
functions: [[f (t1, . . . , tn)]](D,I) = I (f)([[t1]](D,I), . . . , [[tn]](D,I))
predicates: [[p(t1, . . . , tn)]](D,I) = I (p)([[t1]](D,I), . . . , [[tn]](D,I))
logical structure:

[[¬ϕ]](D,I) =

{
true if [[ϕ]](D,I)=false
false if [[ϕ]](D,I)=true

[[ϕ ∧ ψ]](D,I) =

{
true if [[ϕ]](D,I) = true and [[ψ]](D,I)=true
false if [[ϕ]](D,I) = false or [[ψ]](D,I)=false

[[∃x . ϕ]](D,I) =

{
true if there exists v∈D such that [[ϕ]](D,I [x 7→v])=true
false if for all v∈D we have [[ϕ]](D,I [x 7→v])=false

Prof. Dr. Erika Ábrahám - Satisfiability Checking 13 / 36

Example

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula

Q: Is ϕ satisfiable?
A: Yes. Consider the structure S :

Domain: N0
Interpretation:

0 and 1 are mapped to 0 and 1 in N0

= means equality
+ means addition

S satisfies ϕ. S is said to be a model of ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 14 / 36

Example

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula
Q: Is ϕ satisfiable?

A: Yes. Consider the structure S :
Domain: N0
Interpretation:

0 and 1 are mapped to 0 and 1 in N0

= means equality
+ means addition

S satisfies ϕ. S is said to be a model of ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 14 / 36

Example

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula
Q: Is ϕ satisfiable?
A: Yes. Consider the structure S :

Domain: N0
Interpretation:

0 and 1 are mapped to 0 and 1 in N0

= means equality
+ means addition

S satisfies ϕ. S is said to be a model of ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 14 / 36

Example (cont.)

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula

Q: Is ϕ valid?
A: No. Consider the structure S ′:

Domain: N0
Interpretation:

0 and 1 are mapped to 0 and 1 in N0

= means equality
+ means multiplication

S ′ does not satisfy ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 15 / 36

Example (cont.)

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula
Q: Is ϕ valid?

A: No. Consider the structure S ′:
Domain: N0
Interpretation:

0 and 1 are mapped to 0 and 1 in N0

= means equality
+ means multiplication

S ′ does not satisfy ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 15 / 36

Example (cont.)

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula
Q: Is ϕ valid?
A: No. Consider the structure S ′:

Domain: N0
Interpretation:

0 and 1 are mapped to 0 and 1 in N0

= means equality
+ means multiplication

S ′ does not satisfy ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 15 / 36

Theories, T -safisfiability and T -validity

A Σ-theory T is defined by a set of Σ-sentences.

The number of sentences that are necessary for defining a theory may
be large or infinite.
Instead, it is common to define a theory through a set of axioms.
The theory is defined by these axioms and everything that can be
inferred from them by a sound inference system.

A Σ-formula ϕ is T -satisfiable if there exists a structure that satisfies
both the sentences of T and ϕ.
A Σ-formula ϕ is T -valid if all structures that satisfy the sentences
defining T also satisfy ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 16 / 36

Theories, T -safisfiability and T -validity

A Σ-theory T is defined by a set of Σ-sentences.

The number of sentences that are necessary for defining a theory may
be large or infinite.
Instead, it is common to define a theory through a set of axioms.
The theory is defined by these axioms and everything that can be
inferred from them by a sound inference system.

A Σ-formula ϕ is T -satisfiable if there exists a structure that satisfies
both the sentences of T and ϕ.
A Σ-formula ϕ is T -valid if all structures that satisfy the sentences
defining T also satisfy ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 16 / 36

Theories, T -safisfiability and T -validity

A Σ-theory T is defined by a set of Σ-sentences.

The number of sentences that are necessary for defining a theory may
be large or infinite.
Instead, it is common to define a theory through a set of axioms.
The theory is defined by these axioms and everything that can be
inferred from them by a sound inference system.

A Σ-formula ϕ is T -satisfiable if there exists a structure that satisfies
both the sentences of T and ϕ.
A Σ-formula ϕ is T -valid if all structures that satisfy the sentences
defining T also satisfy ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 16 / 36

Examples

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula.
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x // = must be reflexive
2 ∀x . ∀y . x + y = y + x //+ must be commutative

Q: Is ϕ T -satisfiable?
A: Yes, S is a model.
Q: Is ϕ T -valid?
A: No. S ′ satisfies the sentences in T but not ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 17 / 36

Examples

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula.
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x // = must be reflexive
2 ∀x . ∀y . x + y = y + x //+ must be commutative

Q: Is ϕ T -satisfiable?

A: Yes, S is a model.
Q: Is ϕ T -valid?
A: No. S ′ satisfies the sentences in T but not ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 17 / 36

Examples

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula.
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x // = must be reflexive
2 ∀x . ∀y . x + y = y + x //+ must be commutative

Q: Is ϕ T -satisfiable?
A: Yes, S is a model.

Q: Is ϕ T -valid?
A: No. S ′ satisfies the sentences in T but not ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 17 / 36

Examples

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula.
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x // = must be reflexive
2 ∀x . ∀y . x + y = y + x //+ must be commutative

Q: Is ϕ T -satisfiable?
A: Yes, S is a model.
Q: Is ϕ T -valid?

A: No. S ′ satisfies the sentences in T but not ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 17 / 36

Examples

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula.
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x // = must be reflexive
2 ∀x . ∀y . x + y = y + x //+ must be commutative

Q: Is ϕ T -satisfiable?
A: Yes, S is a model.
Q: Is ϕ T -valid?
A: No. S ′ satisfies the sentences in T but not ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 17 / 36

Examples

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula.
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x // = must be reflexive
2 ∀x . ∀y . x + y = y + x //+ must be commutative
3 ∀x . 0 + x = x

Q: Is ϕ T -satisfiable?
A: Yes, S is a model.
Q: Is ϕ T -valid?
A: Yes. (S ′ does not satisfy the third axiom.)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 18 / 36

Examples

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula.
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x // = must be reflexive
2 ∀x . ∀y . x + y = y + x //+ must be commutative
3 ∀x . 0 + x = x

Q: Is ϕ T -satisfiable?

A: Yes, S is a model.
Q: Is ϕ T -valid?
A: Yes. (S ′ does not satisfy the third axiom.)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 18 / 36

Examples

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula.
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x // = must be reflexive
2 ∀x . ∀y . x + y = y + x //+ must be commutative
3 ∀x . 0 + x = x

Q: Is ϕ T -satisfiable?
A: Yes, S is a model.

Q: Is ϕ T -valid?
A: Yes. (S ′ does not satisfy the third axiom.)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 18 / 36

Examples

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula.
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x // = must be reflexive
2 ∀x . ∀y . x + y = y + x //+ must be commutative
3 ∀x . 0 + x = x

Q: Is ϕ T -satisfiable?
A: Yes, S is a model.
Q: Is ϕ T -valid?

A: Yes. (S ′ does not satisfy the third axiom.)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 18 / 36

Examples

Σ = {0, 1,+,=}
ϕ = ∃x . x + 0 = 1 a Σ-formula.
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x // = must be reflexive
2 ∀x . ∀y . x + y = y + x //+ must be commutative
3 ∀x . 0 + x = x

Q: Is ϕ T -satisfiable?
A: Yes, S is a model.
Q: Is ϕ T -valid?
A: Yes. (S ′ does not satisfy the third axiom.)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 18 / 36

Example

Σ = {=}
ϕ = (x = y ∧ y 6= z)→ x 6= z a Σ-formula
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x (reflexivity)
2 ∀x . ∀y . x = y → y = x (symmetry)
3 ∀x . ∀y . ∀z . x = y ∧ y = z → x = z (transitivity)

Q: Is ϕ T -satisfiable?
A: Yes.
Q: Is ϕ T -valid?
A: Yes. Every structure that satisfies T also satisfies ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 19 / 36

Example

Σ = {=}
ϕ = (x = y ∧ y 6= z)→ x 6= z a Σ-formula
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x (reflexivity)
2 ∀x . ∀y . x = y → y = x (symmetry)
3 ∀x . ∀y . ∀z . x = y ∧ y = z → x = z (transitivity)

Q: Is ϕ T -satisfiable?

A: Yes.
Q: Is ϕ T -valid?
A: Yes. Every structure that satisfies T also satisfies ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 19 / 36

Example

Σ = {=}
ϕ = (x = y ∧ y 6= z)→ x 6= z a Σ-formula
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x (reflexivity)
2 ∀x . ∀y . x = y → y = x (symmetry)
3 ∀x . ∀y . ∀z . x = y ∧ y = z → x = z (transitivity)

Q: Is ϕ T -satisfiable?
A: Yes.

Q: Is ϕ T -valid?
A: Yes. Every structure that satisfies T also satisfies ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 19 / 36

Example

Σ = {=}
ϕ = (x = y ∧ y 6= z)→ x 6= z a Σ-formula
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x (reflexivity)
2 ∀x . ∀y . x = y → y = x (symmetry)
3 ∀x . ∀y . ∀z . x = y ∧ y = z → x = z (transitivity)

Q: Is ϕ T -satisfiable?
A: Yes.
Q: Is ϕ T -valid?

A: Yes. Every structure that satisfies T also satisfies ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 19 / 36

Example

Σ = {=}
ϕ = (x = y ∧ y 6= z)→ x 6= z a Σ-formula
We now define the Σ-theory T by the following axioms:

1 ∀x . x = x (reflexivity)
2 ∀x . ∀y . x = y → y = x (symmetry)
3 ∀x . ∀y . ∀z . x = y ∧ y = z → x = z (transitivity)

Q: Is ϕ T -satisfiable?
A: Yes.
Q: Is ϕ T -valid?
A: Yes. Every structure that satisfies T also satisfies ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 19 / 36

Example

Σ = {<}
ϕ : ∀x . ∃y . y < x a Σ-formula
Consider the Σ-theory T defined by the axioms:

1 ∀x . ∀y . ∀z . x < y ∧ y < z → x < z (transitivity)
2 ∀x . ∀y . x < y → ¬(y < x) (anti-symmetry)

Q: Is ϕ T -satisfiable?
A: Yes. We construct a model for it:

Domain: Z
< means “less than”

Q: Is ϕ T -valid?
A: No. We construct a structure to the contrary:

Domain: N0
< means “less than”

Prof. Dr. Erika Ábrahám - Satisfiability Checking 20 / 36

Example

Σ = {<}
ϕ : ∀x . ∃y . y < x a Σ-formula
Consider the Σ-theory T defined by the axioms:

1 ∀x . ∀y . ∀z . x < y ∧ y < z → x < z (transitivity)
2 ∀x . ∀y . x < y → ¬(y < x) (anti-symmetry)

Q: Is ϕ T -satisfiable?

A: Yes. We construct a model for it:
Domain: Z
< means “less than”

Q: Is ϕ T -valid?
A: No. We construct a structure to the contrary:

Domain: N0
< means “less than”

Prof. Dr. Erika Ábrahám - Satisfiability Checking 20 / 36

Example

Σ = {<}
ϕ : ∀x . ∃y . y < x a Σ-formula
Consider the Σ-theory T defined by the axioms:

1 ∀x . ∀y . ∀z . x < y ∧ y < z → x < z (transitivity)
2 ∀x . ∀y . x < y → ¬(y < x) (anti-symmetry)

Q: Is ϕ T -satisfiable?
A: Yes. We construct a model for it:

Domain: Z
< means “less than”

Q: Is ϕ T -valid?
A: No. We construct a structure to the contrary:

Domain: N0
< means “less than”

Prof. Dr. Erika Ábrahám - Satisfiability Checking 20 / 36

Example

Σ = {<}
ϕ : ∀x . ∃y . y < x a Σ-formula
Consider the Σ-theory T defined by the axioms:

1 ∀x . ∀y . ∀z . x < y ∧ y < z → x < z (transitivity)
2 ∀x . ∀y . x < y → ¬(y < x) (anti-symmetry)

Q: Is ϕ T -satisfiable?
A: Yes. We construct a model for it:

Domain: Z
< means “less than”

Q: Is ϕ T -valid?

A: No. We construct a structure to the contrary:
Domain: N0
< means “less than”

Prof. Dr. Erika Ábrahám - Satisfiability Checking 20 / 36

Example

Σ = {<}
ϕ : ∀x . ∃y . y < x a Σ-formula
Consider the Σ-theory T defined by the axioms:

1 ∀x . ∀y . ∀z . x < y ∧ y < z → x < z (transitivity)
2 ∀x . ∀y . x < y → ¬(y < x) (anti-symmetry)

Q: Is ϕ T -satisfiable?
A: Yes. We construct a model for it:

Domain: Z
< means “less than”

Q: Is ϕ T -valid?
A: No. We construct a structure to the contrary:

Domain: N0
< means “less than”

Prof. Dr. Erika Ábrahám - Satisfiability Checking 20 / 36

Logic fragments

So far we only restricted the non-logical symbols by signatures and
their interpretation by theories.
Sometimes we want to restrict the grammar and the logical symbols
that we can use as well.
These are called logic fragments.
Examples:

The quantifier-free fragment over Σ = {0, 1,=,+}
The conjunctive fragment over Σ = {0, 1,=,+}

Prof. Dr. Erika Ábrahám - Satisfiability Checking 21 / 36

Fragments

Let T be a theory with Σ = {} without axioms.

Q: What is the quantifier-free frament of T?
A: Propositional logic
Example: x1 → (x2 ∨ x3)

Thus, propositional logic is also a first-order theory.
(A very degenerate one.)

Q: What is T?
A: Quantified Boolean formulae (QBF)
Example:

∀x1. ∃x2. ∀x3. x1 → (x2 ∨ x3)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 22 / 36

Fragments

Let T be a theory with Σ = {} without axioms.
Q: What is the quantifier-free frament of T?

A: Propositional logic
Example: x1 → (x2 ∨ x3)

Thus, propositional logic is also a first-order theory.
(A very degenerate one.)

Q: What is T?
A: Quantified Boolean formulae (QBF)
Example:

∀x1. ∃x2. ∀x3. x1 → (x2 ∨ x3)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 22 / 36

Fragments

Let T be a theory with Σ = {} without axioms.
Q: What is the quantifier-free frament of T?
A: Propositional logic
Example: x1 → (x2 ∨ x3)

Thus, propositional logic is also a first-order theory.
(A very degenerate one.)

Q: What is T?
A: Quantified Boolean formulae (QBF)
Example:

∀x1. ∃x2. ∀x3. x1 → (x2 ∨ x3)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 22 / 36

Fragments

Let T be a theory with Σ = {} without axioms.
Q: What is the quantifier-free frament of T?
A: Propositional logic
Example: x1 → (x2 ∨ x3)

Thus, propositional logic is also a first-order theory.
(A very degenerate one.)

Q: What is T?

A: Quantified Boolean formulae (QBF)
Example:

∀x1. ∃x2. ∀x3. x1 → (x2 ∨ x3)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 22 / 36

Fragments

Let T be a theory with Σ = {} without axioms.
Q: What is the quantifier-free frament of T?
A: Propositional logic
Example: x1 → (x2 ∨ x3)

Thus, propositional logic is also a first-order theory.
(A very degenerate one.)

Q: What is T?
A: Quantified Boolean formulae (QBF)
Example:

∀x1. ∃x2. ∀x3. x1 → (x2 ∨ x3)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 22 / 36

Some famous theories

Presburger arithmetic: Σ = {0, 1,+,=} over integers
Peano arithmetic: Σ = {0, 1,+, ∗,=} over integers
Linear real argebra: Σ = {0, 1,+,=} over reals
Real algebra: Σ = {0, 1,+, ∗,=} over reals
Theory of arrays
Theory of pointers
. . .

Prof. Dr. Erika Ábrahám - Satisfiability Checking 23 / 36

The algorithmic point of view...

It is also common to present theories NOT through the axioms that
define them.
The interpretation of symbols is fixed to their common use.

Thus + is plus, . . .

The fragment is defined via grammar rules rather than restrictions on
the generic first-order grammar.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 24 / 36

The algorithmic point of view...

Example: Equality logic
Grammar:
formula ::= atom | formula ∧ formula | ¬formula

atom ::= Boolean-variable |
variable = variable |
variable = constant |
constant = constant

Interpretation: = is equality.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 25 / 36

Expressiveness of a theory

Each formula defines a language:
The set of satisfying assignments (models) are the words accepted by
this language.

Consider the fragment ’2-CNF’:

formula ::= (literal ∨ literal) | formula ∧ formula
literal ::= Boolean-variable | ¬Boolean-variable

Example formula:
(x1 ∨ ¬x2) ∧ (¬x3 ∨ x2)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 26 / 36

Expressiveness of a theory

Now consider the propositional logic formula ϕ : (x1 ∨ x2 ∨ x3)

Q: Can we express this language with 2-CNF?

A: No.
Proof:

The language accepted by ϕ has 7 words: all assignments other than
x1 = x2 = x3 = 0 (false).
A 2-CNF clause removes 2 assignments, which leaves us with 6
accepted words.
E.g., (x1 ∨ x2) removes the assignments x1 = x2 = x3 = 0 and
x1 = x2 = 0, x3 = 1.
Additional clauses only remove more assignments.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 27 / 36

Expressiveness of a theory

Now consider the propositional logic formula ϕ : (x1 ∨ x2 ∨ x3)

Q: Can we express this language with 2-CNF?
A: No.
Proof:

The language accepted by ϕ has 7 words: all assignments other than
x1 = x2 = x3 = 0 (false).
A 2-CNF clause removes 2 assignments, which leaves us with 6
accepted words.
E.g., (x1 ∨ x2) removes the assignments x1 = x2 = x3 = 0 and
x1 = x2 = 0, x3 = 1.
Additional clauses only remove more assignments.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 27 / 36

Expressiveness of a theory

Now consider the propositional logic formula ϕ : (x1 ∨ x2 ∨ x3)

Q: Can we express this language with 2-CNF?
A: No.
Proof:

The language accepted by ϕ has 7 words: all assignments other than
x1 = x2 = x3 = 0 (false).
A 2-CNF clause removes 2 assignments, which leaves us with 6
accepted words.
E.g., (x1 ∨ x2) removes the assignments x1 = x2 = x3 = 0 and
x1 = x2 = 0, x3 = 1.
Additional clauses only remove more assignments.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 27 / 36

Examples

Languages defined by L1

Languages defined by L2

L2 is more expressive than L1. Notation: L1 ≺ L2.
Claim: 2-CNF ≺ propositional logic.
Generally there is only a partial order between theories.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 28 / 36

The Tradeoff

So we see that theories can have different expressive power.
Q: Why would we want to restrict ourselves to a theory or a fragment?
Why not take some ’maximal theory’?

A: Adding axioms to the theory may make it harder to decide or even
undecidable.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 29 / 36

The Tradeoff

So we see that theories can have different expressive power.
Q: Why would we want to restrict ourselves to a theory or a fragment?
Why not take some ’maximal theory’?
A: Adding axioms to the theory may make it harder to decide or even
undecidable.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 29 / 36

Example: Hilbert axiom system (H)

Let H be (M.P) + the following axiom schemas:

A→(B→A) (H1)

((A→(B→C))→((A→B)→(A→C)) (H2)

(¬B→¬A)→(A→B) (H3)

H is sound and complete for propositional logic.
This means that with H we can prove any valid propositional formula,
and only such formulae. The proof is finite.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 30 / 36

Example

But there exist first order theories defined by axioms which are not
sufficient for proving all T -valid formulae.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 31 / 36

Example: First Order Peano Arithmetic

Σ = {0, 1,+, ∗,=}
Domain: Natural numbers
Axioms (“semantics”):

1 ∀x . (x 6= x + 1)
2 ∀x . ∀y . (x 6= y)→ (x + 1 6= y + 1)
3 Induction
4 ∀x . x + 0 = x
5 ∀x . ∀y : (x + y) + 1 = x + (y + 1)
6 ∀x . x ∗ 0 = 0
7 ∀x . ∀y . x ∗ (y + 1) = x ∗ y + x

UNDECIDABLE!

Prof. Dr. Erika Ábrahám - Satisfiability Checking 32 / 36

Reduction: Peano Arithmetic to Presburger Arithmetic

Σ = {0, 1,+,��∗, =}
Domain: Natural numbers
Axioms (“semantics”):

1 ∀x . (6= x + 1)
2 ∀x . ∀y . (x 6= y)→ (x + 1 6= y + 1)
3 Induction
4 ∀x . x + 0 = x
5 ∀x . ∀y . (x + y) + 1 = x + (y + 1)
6 (((

(((∀x . x ∗ 0 = 0

7
((((

((((
(((

(((
∀x . ∀y . x ∗ (y + 1) = x ∗ y + x

DECIDABLE!

Prof. Dr. Erika Ábrahám - Satisfiability Checking 33 / 36

Tradeoff: expressiveness/computational hardness

Prof. Dr. Erika Ábrahám - Satisfiability Checking 34 / 36

When is a specific theory useful?

Expressible enough to state something interesting.
Decidable (or semi-decidable) and more efficiently solvable than richer
theories.
More expressible, or more natural for expressing some models in
comparison to ’leaner’ theories.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 35 / 36

Expressiveness and complexity

Q1: Let L1 and L2 be two theories whose satisfiability problem is
decidable and in the same complexity class. Is the satisfiability problem
of an L1 formula reducible to a satisfiability problem of an L2 formula?

Q2: Let L1 and L2 be two theories whose satisfiability problems are
reducible to each other. Are L1 and L2 in the same complexity class?

Prof. Dr. Erika Ábrahám - Satisfiability Checking 36 / 36

Expressiveness and complexity

Q1: Let L1 and L2 be two theories whose satisfiability problem is
decidable and in the same complexity class. Is the satisfiability problem
of an L1 formula reducible to a satisfiability problem of an L2 formula?
Q2: Let L1 and L2 be two theories whose satisfiability problems are
reducible to each other. Are L1 and L2 in the same complexity class?

Prof. Dr. Erika Ábrahám - Satisfiability Checking 36 / 36

