

Satisfiability Checking

First Order Logic

Prof. Dr. Erika Ábrahám

Theory of Hybrid Systems
Informatik 2

WS 11/12

From informal to formal logics

- We have seen that natural languages are not well-suited for correct reasoning.

From informal to formal logics

- We have seen that natural languages are not well-suited for correct reasoning.
- Assume the argumentation:
 - 1 All women love shopping.
 - 2 Eve is a woman.
 - 3 Thus Eve loves shopping.

From informal to formal logics

- We have seen that natural languages are not well-suited for correct reasoning.
- Assume the argumentation:
 - 1 All women love shopping.
 - 2 Eve is a woman.
 - 3 Thus Eve loves shopping.
- We can formalize it by defining

From informal to formal logics

- We have seen that natural languages are not well-suited for correct reasoning.
- Assume the argumentation:
 - 1 All women love shopping.
 - 2 Eve is a woman.
 - 3 Thus Eve loves shopping.
- We can formalize it by defining
 - constants: *Eve*
 - variables: *x*
 - predicate symbols: *isWoman(·)*, *lovesShopping(·)*

From informal to formal logics

- We have seen that natural languages are not well-suited for correct reasoning.
- Assume the argumentation:
 - 1 All women love shopping.
 - 2 Eve is a woman.
 - 3 Thus Eve loves shopping.
- We can formalize it by defining
 - constants: *Eve*
 - variables: *x*
 - predicate symbols: *isWoman(·)*, *lovesShopping(·)*

Assume

From informal to formal logics

- We have seen that natural languages are not well-suited for correct reasoning.
- Assume the argumentation:
 - 1 All women love shopping.
 - 2 Eve is a woman.
 - 3 Thus Eve loves shopping.
- We can formalize it by defining
 - constants: *Eve*
 - variables: *x*
 - predicate symbols: *isWoman(·)*, *lovesShopping(·)*

Assume

- 1 $\forall x. \text{isWoman}(x) \rightarrow \text{lovesShopping}(x)$

From informal to formal logics

- We have seen that natural languages are not well-suited for correct reasoning.
- Assume the argumentation:
 - 1 All women love shopping.
 - 2 Eve is a woman.
 - 3 Thus Eve loves shopping.
- We can formalize it by defining
 - constants: *Eve*
 - variables: *x*
 - predicate symbols: *isWoman(·)*, *lovesShopping(·)*

Assume

- 1 $\forall x. \text{isWoman}(x) \rightarrow \text{lovesShopping}(x)$
- 2 $\text{isWoman}(\text{Eve})$

From informal to formal logics

- We have seen that natural languages are not well-suited for correct reasoning.
- Assume the argumentation:
 - 1 All women love shopping.
 - 2 Eve is a woman.
 - 3 Thus Eve loves shopping.
- We can formalize it by defining
 - constants: *Eve*
 - variables: *x*
 - predicate symbols: *isWoman(·)*, *lovesShopping(·)*

Assume

- 1 $\forall x. \text{isWoman}(x) \rightarrow \text{lovesShopping}(x)$
- 2 $\text{isWoman}(\text{Eve})$

Then

From informal to formal logics

- We have seen that natural languages are not well-suited for correct reasoning.
- Assume the argumentation:
 - 1 All women love shopping.
 - 2 Eve is a woman.
 - 3 Thus Eve loves shopping.
- We can formalize it by defining
 - constants: *Eve*
 - variables: *x*
 - predicate symbols: *isWoman(·)*, *lovesShopping(·)*

Assume

- 1 $\forall x. \text{isWoman}(x) \rightarrow \text{lovesShopping}(x)$
- 2 $\text{isWoman}(\text{Eve})$

Then

- 3 $\text{lovesShopping}(\text{Eve})$

First-Order Logic

- First-order (FO) logic is a framework.
- It gives us a generic syntax by recursively defining strings on an alphabet.
- Non-logical elements are logically combined using:
 - constants (Eve, 0, true, ...)
 - variables (x,y,...)
 - function symbols ($+$ (\cdot , \cdot), vaterOf(\cdot),...)
 - predicate symbols ($>$ (\cdot , \cdot), isPrime(\cdot), isBrotherOf(\cdot , \cdot),...)
 - logical symbols (($,$), \wedge , \neg , ..., \exists , \forall).

First-Order Logic

- First-order (FO) logic is a framework.
- It gives us a generic syntax by recursively defining strings on an alphabet.
- Non-logical elements are logically combined using:
 - constants (Eve, 0, true, ...)
 - variables (x,y,...)
 - function symbols ($+(\cdot, \cdot)$, $\text{vaterOf}(\cdot, \cdot)$, ...)
 - predicate symbols ($>(\cdot, \cdot)$, $\text{isPrime}(\cdot)$, $\text{isBrotherOf}(\cdot, \cdot)$, ...)
 - logical symbols ($(,)$, \wedge , \neg , \dots , \exists , \forall).

Note:

- Constants can also be seen as function symbols of arity 0.
- Sometimes equality ($=$) is included as a logical symbol.
- E.g., the Boolean connectives negation (\neg) and conjunction (\wedge) and the existential quantifier \exists would be sufficient, the remaining syntax ($\vee, \rightarrow, \leftrightarrow, \dots, \forall$) are syntactic sugar.

Formation rules

Formation rules

Terms are inductively defined by the following rules:

Formation rules

Terms are inductively defined by the following rules:

- 1 All constants and variables are terms.

Formation rules

Terms are inductively defined by the following rules:

- 1 All constants and variables are terms.
- 2 If t_1, \dots, t_n ($n > 0$) are terms and f an n -ary function symbol then $f(t_1, \dots, t_n)$ is a term.

Formation rules

Terms are inductively defined by the following rules:

- 1 All **constants** and **variables** are terms.
- 2 If t_1, \dots, t_n ($n > 0$) are terms and f an n -ary function symbol then $f(t_1, \dots, t_n)$ is a term.

Only strings obtained by finitely many applications of these rules are terms.

Formation rules

Terms are inductively defined by the following rules:

- 1 All constants and variables are terms.
- 2 If t_1, \dots, t_n ($n > 0$) are terms and f an n -ary function symbol then $f(t_1, \dots, t_n)$ is a term.

Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:

Formation rules

Terms are inductively defined by the following rules:

- 1 All **constants** and **variables** are terms.
- 2 If t_1, \dots, t_n ($n > 0$) are terms and f an n -ary function symbol then $f(t_1, \dots, t_n)$ is a term.

Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:

- 1 If P is an n -ary predicate symbol and t_1, \dots, t_n are terms then $P(t_1, \dots, t_n)$ is a formula.

Formation rules

Terms are inductively defined by the following rules:

- 1 All **constants** and **variables** are terms.
- 2 If t_1, \dots, t_n ($n > 0$) are terms and f an n -ary function symbol then $f(t_1, \dots, t_n)$ is a term.

Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:

- 1 If P is an n -ary predicate symbol and t_1, \dots, t_n are terms then $P(t_1, \dots, t_n)$ is a formula.
- 2 If φ is a formula, then $(\neg\varphi)$ is a formula.

Formation rules

Terms are inductively defined by the following rules:

- 1 All **constants** and **variables** are terms.
- 2 If t_1, \dots, t_n ($n > 0$) are terms and f an n -ary function symbol then $f(t_1, \dots, t_n)$ is a term.

Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:

- 1 If P is an n -ary predicate symbol and t_1, \dots, t_n are terms then $P(t_1, \dots, t_n)$ is a formula.
- 2 If φ is a formula, then $(\neg\varphi)$ is a formula.
- 3 If φ and ψ are formulae, then $(\varphi \wedge \psi)$ is a formula.

Formation rules

Terms are inductively defined by the following rules:

- 1 All **constants** and **variables** are terms.
- 2 If t_1, \dots, t_n ($n > 0$) are terms and f an n -ary function symbol then $f(t_1, \dots, t_n)$ is a term.

Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:

- 1 If P is an n -ary predicate symbol and t_1, \dots, t_n are terms then $P(t_1, \dots, t_n)$ is a formula.
- 2 If φ is a formula, then $(\neg\varphi)$ is a formula.
- 3 If φ and ψ are formulae, then $(\varphi \wedge \psi)$ is a formula.
- 4 Similar rules apply to other binary logical connectives.

Formation rules

Terms are inductively defined by the following rules:

- 1 All **constants** and **variables** are terms.
- 2 If t_1, \dots, t_n ($n > 0$) are terms and f an n -ary function symbol then $f(t_1, \dots, t_n)$ is a term.

Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:

- 1 If P is an n -ary predicate symbol and t_1, \dots, t_n are terms then $P(t_1, \dots, t_n)$ is a formula.
- 2 If φ is a formula, then $(\neg\varphi)$ is a formula.
- 3 If φ and ψ are formulae, then $(\varphi \wedge \psi)$ is a formula.
- 4 Similar rules apply to other binary logical connectives.
- 5 If φ is a formula and x is a variable, then $(\forall x. \varphi)$ and $(\exists x. \varphi)$ are formulae.

Formation rules

Terms are inductively defined by the following rules:

- 1 All **constants** and **variables** are terms.
- 2 If t_1, \dots, t_n ($n > 0$) are terms and f an n -ary function symbol then $f(t_1, \dots, t_n)$ is a term.

Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:

- 1 If P is an n -ary predicate symbol and t_1, \dots, t_n are terms then $P(t_1, \dots, t_n)$ is a formula.
- 2 If φ is a formula, then $(\neg\varphi)$ is a formula.
- 3 If φ and ψ are formulae, then $(\varphi \wedge \psi)$ is a formula.
- 4 Similar rules apply to other binary logical connectives.
- 5 If φ is a formula and x is a variable, then $(\forall x. \varphi)$ and $(\exists x. \varphi)$ are formulae.

Only expressions which can be obtained by finitely many applications of rules 1–5 are formulae.

Formation rules

Terms are inductively defined by the following rules:

- 1 All constants and variables are terms.
- 2 If t_1, \dots, t_n ($n > 0$) are terms and f an n -ary function symbol then $f(t_1, \dots, t_n)$ is a term.

Only strings obtained by finitely many applications of these rules are terms.

(Well-formed) formulae are inductively defined by the following rules:

- 1 If P is an n -ary predicate symbol and t_1, \dots, t_n are terms then $P(t_1, \dots, t_n)$ is a formula.
- 2 If φ is a formula, then $(\neg\varphi)$ is a formula.
- 3 If φ and ψ are formulae, then $(\varphi \wedge \psi)$ is a formula.
- 4 Similar rules apply to other binary logical connectives.
- 5 If φ is a formula and x is a variable, then $(\forall x. \varphi)$ and $(\exists x. \varphi)$ are formulae.

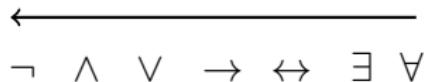
Only expressions which can be obtained by finitely many applications of rules 1–5 are formulae.

The formulae obtained by the first rule are said to be atomic.

Notational conventions

We omit parenthesis whenever we may restore them through operator precedence:

binds stronger



Notational conventions

We omit parenthesis whenever we may restore them through operator precedence:

binds stronger

←
 $\neg \quad \wedge \quad \vee \quad \rightarrow \quad \leftrightarrow \quad \exists \quad \forall$

■ Thus, we write:

$\neg\neg a$ for $(\neg(\neg a))$,
 $\exists a. \exists b. (a \wedge b \rightarrow F(a, b))$ for $\exists a. \exists b. ((a \wedge b) \rightarrow F(a, b))$

Free and bound variables

Free and bound variables

The **free and bound variables** of a formula are defined inductively:

Free and bound variables

The **free and bound variables** of a formula are defined inductively:

- If φ is an **atomic formula** then a variable x is free in φ iff x occurs in φ .
Moreover, there are no bound variables in any atomic formula.

Free and bound variables

The **free and bound variables** of a formula are defined inductively:

- If φ is an **atomic formula** then a variable x is free in φ iff x occurs in φ .
Moreover, there are no bound variables in any atomic formula.
- A variable x is free in $(\neg\varphi)$ iff x is free in φ .
Moreover, x is bound in $(\neg\varphi)$ iff x is bound in φ .

Free and bound variables

The **free and bound variables** of a formula are defined inductively:

- If φ is an **atomic formula** then a variable x is free in φ iff x occurs in φ .
Moreover, there are no bound variables in any atomic formula.
- A variable x is free in $(\neg\varphi)$ iff x is free in φ .
Moreover, x is bound in $(\neg\varphi)$ iff x is bound in φ .
- x is free in $(\varphi \wedge \psi)$ iff x is free in either φ or ψ .
Moreover, x is bound in $(\varphi \wedge \psi)$ iff x is bound in either φ or ψ .

Free and bound variables

The **free and bound variables** of a formula are defined inductively:

- If φ is an **atomic formula** then a variable x is free in φ iff x occurs in φ .
Moreover, there are no bound variables in any atomic formula.
- A variable x is free in $(\neg\varphi)$ iff x is free in φ .
Moreover, x is bound in $(\neg\varphi)$ iff x is bound in φ .
- x is free in $(\varphi \wedge \psi)$ iff x is free in either φ or ψ .
Moreover, x is bound in $(\varphi \wedge \psi)$ iff x is bound in either φ or ψ .
- The same rule applies to any **other binary connective** in place of \wedge .

Free and bound variables

The **free and bound variables** of a formula are defined inductively:

- If φ is an **atomic formula** then a variable x is free in φ iff x occurs in φ .
Moreover, there are no bound variables in any atomic formula.
- A variable x is free in $(\neg\varphi)$ iff x is free in φ .
Moreover, x is bound in $(\neg\varphi)$ iff x is bound in φ .
- x is free in $(\varphi \wedge \psi)$ iff x is free in either φ or ψ .
Moreover, x is bound in $(\varphi \wedge \psi)$ iff x is bound in either φ or ψ .
- The same rule applies to any **other binary connective** in place of \wedge .
- x is free in $(\exists y. \varphi)$ iff x is free in φ and x is a symbol different from y .
Moreover, x is bound in $(\exists y. \varphi)$ iff x is y or x is bound in φ .

Free and bound variables

The **free and bound variables** of a formula are defined inductively:

- If φ is an **atomic formula** then a variable x is free in φ iff x occurs in φ .
Moreover, there are no bound variables in any atomic formula.
- A variable x is free in $(\neg\varphi)$ iff x is free in φ .
Moreover, x is bound in $(\neg\varphi)$ iff x is bound in φ .
- x is free in $(\varphi \wedge \psi)$ iff x is free in either φ or ψ .
Moreover, x is bound in $(\varphi \wedge \psi)$ iff x is bound in either φ or ψ .
- The same rule applies to any **other binary connective** in place of \wedge .
- x is free in $(\exists y. \varphi)$ iff x is free in φ and x is a symbol different from y .
Moreover, x is bound in $(\exists y. \varphi)$ iff x is y or x is bound in φ .
- The same rule holds with \forall in place of \exists .

Free and bound variables

Examples:

Free and bound variables

Examples:

- $\text{In } z \vee \forall x. \forall y. (P(x) \rightarrow Q(z))$, x and y are bound variables, z is a free variable, and w is neither bound nor free.
- $\text{In } z \vee \forall z. P(z)$, z is both bound and free.

Freeness and boundness can be also specialized to specific **occurrences** of variables in a formula. $\text{In } z \vee \forall z. P(z)$, the first occurrence of z is free while the second is bound.

Some definitions

- A **signature** Σ fixes a set of non-logical symbols.
- A **Σ -formula** is a formula with non-logical symbols from Σ .
- A variable is **free** if it is not bound by a quantifier.
- A **sentence** is a formula without free variables.

Some definitions

- A **signature** Σ fixes a set of non-logical symbols.
- A Σ -formula is a formula with non-logical symbols from Σ .
- A variable is **free** if it is not bound by a quantifier.
- A **sentence** is a formula without free variables.

In the previous example:

Some definitions

- A **signature** Σ fixes a set of non-logical symbols.
- A Σ -formula is a formula with non-logical symbols from Σ .
- A variable is **free** if it is not bound by a quantifier.
- A **sentence** is a formula without free variables.

In the previous example:

$\Sigma = (\text{Eve}, \text{isWoman}(\cdot), \text{lovesShopping}(\cdot))$ with

- *Eve* a constant and
- *isWoman* and *lovesShopping* unary predicate symbols.

The formulae

- 1 $\forall x. \text{isWoman}(x) \rightarrow \text{lovesShopping}(x)$
- 2 $\text{isWoman}(\text{Eve})$
- 3 $\text{lovesShopping}(\text{Eve})$

are Σ -sentences (the only variable x is bound).

Examples

- $\Sigma = \{0, 1, +, >\}$
 - 0, 1 are constant symbols
 - + is a binary function symbol
 - > is a binary predicate symbol

Examples

- $\Sigma = \{0, 1, +, >\}$
 - 0, 1 are constant symbols
 - + is a binary function symbol
 - > is a binary predicate symbol
- Examples of Σ -formulae:

Examples

- $\Sigma = \{0, 1, +, >\}$
 - 0, 1 are constant symbols
 - + is a binary function symbol
 - > is a binary predicate symbol

- Examples of Σ -formulae:

$$\exists x. \forall y. x > y$$

$$\forall x. \exists y. x > y$$

$$\forall x. x + 1 > x$$

$$\forall x. \neg(x + 0 > x \vee x > x + 0)$$

Examples

- $\Sigma = \{0, 1, +, *, <, \text{isPrime}\}$
 - 0, 1 constant symbols
 - +, * binary function symbols
 - < binary predicate symbol
 - *isPrime* unary predicate symbol

Examples

- $\Sigma = \{0, 1, +, *, <, \text{isPrime}\}$
 - 0, 1 constant symbols
 - +, * binary function symbols
 - < binary predicate symbol
 - *isPrime* unary predicate symbol
- An example Σ -formula:
$$\forall n. \exists p. 1 < n \rightarrow \text{isPrime}(p) \wedge n < p < 2 * n$$

Example

- Let $\Sigma = \{0, 1, +, =\}$ where 0, 1 are constants, + is a binary function symbol and = a binary predicate symbol.
- Let $\varphi = \exists x. x + 0 = 1$ a Σ -formula.

Example

- Let $\Sigma = \{0, 1, +, =\}$ where 0, 1 are constants, + is a binary function symbol and = a binary predicate symbol.
- Let $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- **Q:** Is φ true?

Example

- Let $\Sigma = \{0, 1, +, =\}$ where 0, 1 are constants, + is a binary function symbol and = a binary predicate symbol.
- Let $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- **Q:** Is φ true?
- **A:** So far these are only symbols, strings. **No meaning** yet.

Example

- Let $\Sigma = \{0, 1, +, =\}$ where 0, 1 are constants, + is a binary function symbol and = a binary predicate symbol.
- Let $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- **Q:** Is φ true?
- **A:** So far these are only symbols, strings. **No meaning** yet.
- **Q:** What do we need to fix for the semantics?

Example

- Let $\Sigma = \{0, 1, +, =\}$ where 0, 1 are constants, + is a binary function symbol and = a binary predicate symbol.
- Let $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- Q: Is φ true?
- A: So far these are only symbols, strings. **No meaning** yet.
- Q: What do we need to fix for the semantics?
- A: We need a **domain** for the variables. Let's say \mathbb{N}_0 .

Example

- Let $\Sigma = \{0, 1, +, =\}$ where 0, 1 are constants, + is a binary function symbol and = a binary predicate symbol.
- Let $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- Q: Is φ true?
- A: So far these are only symbols, strings. **No meaning** yet.
- Q: What do we need to fix for the semantics?
- A: We need a **domain** for the variables. Let's say \mathbb{N}_0 .
- Q: Is φ true in \mathbb{N}_0 ?

Example

- Let $\Sigma = \{0, 1, +, =\}$ where 0, 1 are constants, + is a binary function symbol and = a binary predicate symbol.
- Let $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- Q: Is φ true?
- A: So far these are only symbols, strings. **No meaning** yet.
- Q: What do we need to fix for the semantics?
- A: We need a **domain** for the variables. Let's say \mathbb{N}_0 .
- Q: Is φ true in \mathbb{N}_0 ?
- A: Depends on the **interpretation** of '+' and '='!

Structures, satisfiability, validity

- A **structure** is given by:
 - a **domain** D ,
 - an **interpretation** I of the non-logical symbols that
 - maps each **constant symbol** to a domain element,
 - maps each **function symbol** to a function of the same arity, and
 - maps each **predicate symbol** to a predicate of the same arity,
 - an **assignment** of a domain element to each free (unquantified) variable.

Structures, satisfiability, validity

- A **structure** is given by:
 - a **domain** D ,
 - an **interpretation** I of the non-logical symbols that
 - maps each **constant symbol** to a domain element,
 - maps each **function symbol** to a function of the same arity, and
 - maps each **predicate symbol** to a predicate of the same arity,
 - an **assignment** of a domain element to each free (unquantified) variable.
- A formula is **satisfiable** if there exists a structure that satisfies it.

Structures, satisfiability, validity

- A **satisfiable** formula is given by:
 - a **domain** D ,
 - an **interpretation** I of the non-logical symbols that
 - maps each **constant symbol** to a domain element,
 - maps each **function symbol** to a function of the same arity, and
 - maps each **predicate symbol** to a predicate of the same arity,
 - an **assignment** of a domain element to each free (unquantified) variable.
- A formula is **satisfiable** if there exists a structure that satisfies it.
- A formula is **valid** if it is satisfied by all structures.

Semantics

Semantics of terms and formulae under a structure (D, I) :

Semantics of terms and formulae under a structure (D, I) :

constants: $\llbracket c \rrbracket_{(D, I)} = I(c)$

variables: $\llbracket x \rrbracket_{(D, I)} = I(x)$

functions: $\llbracket f(t_1, \dots, t_n) \rrbracket_{(D, I)} = I(f)(\llbracket t_1 \rrbracket_{(D, I)}, \dots, \llbracket t_n \rrbracket_{(D, I)})$

predicates: $\llbracket p(t_1, \dots, t_n) \rrbracket_{(D, I)} = I(p)(\llbracket t_1 \rrbracket_{(D, I)}, \dots, \llbracket t_n \rrbracket_{(D, I)})$

logical structure:

$$\llbracket \neg \varphi \rrbracket_{(D, I)} = \begin{cases} \text{true} & \text{if } \llbracket \varphi \rrbracket_{(D, I)} = \text{false} \\ \text{false} & \text{if } \llbracket \varphi \rrbracket_{(D, I)} = \text{true} \end{cases}$$

$$\llbracket \varphi \wedge \psi \rrbracket_{(D, I)} = \begin{cases} \text{true} & \text{if } \llbracket \varphi \rrbracket_{(D, I)} = \text{true and } \llbracket \psi \rrbracket_{(D, I)} = \text{true} \\ \text{false} & \text{if } \llbracket \varphi \rrbracket_{(D, I)} = \text{false or } \llbracket \psi \rrbracket_{(D, I)} = \text{false} \end{cases}$$

$$\llbracket \exists x. \varphi \rrbracket_{(D, I)} = \begin{cases} \text{true} & \text{if there exists } v \in D \text{ such that } \llbracket \varphi \rrbracket_{(D, I[x \mapsto v])} = \text{true} \\ \text{false} & \text{if for all } v \in D \text{ we have } \llbracket \varphi \rrbracket_{(D, I[x \mapsto v])} = \text{false} \end{cases}$$

Example

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula

Example

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula
- **Q:** Is φ satisfiable?

Example

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula
- **Q:** Is φ satisfiable?
- **A:** Yes. Consider the structure S :
 - Domain: \mathbb{N}_0
 - Interpretation:
 - 0 and 1 are mapped to 0 and 1 in \mathbb{N}_0
 - $=$ means equality
 - $+$ means addition

S satisfies φ . S is said to be a **model** of φ .

Example (cont.)

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula

Example (cont.)

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula
- **Q:** Is φ valid?

Example (cont.)

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula
- **Q:** Is φ valid?
- **A:** No. Consider the structure S' :

- Domain: \mathbb{N}_0
- Interpretation:
 - 0 and 1 are mapped to 0 and 1 in \mathbb{N}_0
 - $=$ means equality
 - $+$ means multiplication

S' does not satisfy φ .

Theories, T -satisfiability and T -validity

- A Σ -theory T is defined by a set of Σ -sentences.

- A Σ -theory T is defined by a set of Σ -sentences.
- The number of sentences that are necessary for defining a theory may be large or **infinite**.
- Instead, it is common to define a theory through a set of **axioms**.
- The **theory is defined by these axioms** and everything that can be inferred from them by a sound inference system.

- A Σ -theory T is defined by a set of Σ -sentences.
- The number of sentences that are necessary for defining a theory may be large or **infinite**.
- Instead, it is common to define a theory through a set of **axioms**.
- The **theory is defined by these axioms** and everything that can be inferred from them by a sound inference system.
- A Σ -formula φ is **T -satisfiable** if there exists a structure that satisfies both the sentences of T and φ .
- A Σ -formula φ is **T -valid** if all structures that satisfy the sentences defining T also satisfy φ .

Examples

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ // = must be reflexive
 - 2 $\forall x. \forall y. x + y = y + x$ // + must be commutative

Examples

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ // = must be reflexive
 - 2 $\forall x. \forall y. x + y = y + x$ // + must be commutative
- Q: Is φ T -satisfiable?

Examples

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ // = must be reflexive
 - 2 $\forall x. \forall y. x + y = y + x$ // + must be commutative
- **Q:** Is φ T -satisfiable?
- **A:** Yes, S is a model.

Examples

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ // = must be reflexive
 - 2 $\forall x. \forall y. x + y = y + x$ // + must be commutative
- Q: Is φ T -satisfiable?
- A: Yes, S is a model.
- Q: Is φ T -valid?

Examples

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ // = must be reflexive
 - 2 $\forall x. \forall y. x + y = y + x$ // + must be commutative
- **Q:** Is φ T -satisfiable?
- **A:** Yes, S is a model.
- **Q:** Is φ T -valid?
- **A:** No. S' satisfies the sentences in T but not φ .

Examples

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ // = must be reflexive
 - 2 $\forall x. \forall y. x + y = y + x$ // + must be commutative
 - 3 $\forall x. 0 + x = x$

Examples

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ // = must be reflexive
 - 2 $\forall x. \forall y. x + y = y + x$ // + must be commutative
 - 3 $\forall x. 0 + x = x$
- Q: Is φ T -satisfiable?

Examples

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ // = must be reflexive
 - 2 $\forall x. \forall y. x + y = y + x$ // + must be commutative
 - 3 $\forall x. 0 + x = x$
- **Q:** Is φ T -satisfiable?
- **A:** Yes, S is a model.

Examples

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ // = must be reflexive
 - 2 $\forall x. \forall y. x + y = y + x$ // + must be commutative
 - 3 $\forall x. 0 + x = x$
- Q: Is φ T -satisfiable?
- A: Yes, S is a model.
- Q: Is φ T -valid?

Examples

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. x + 0 = 1$ a Σ -formula.
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ // = must be reflexive
 - 2 $\forall x. \forall y. x + y = y + x$ // + must be commutative
 - 3 $\forall x. 0 + x = x$
- Q: Is φ T -satisfiable?
- A: Yes, S is a model.
- Q: Is φ T -valid?
- A: Yes. (S' does not satisfy the third axiom.)

Example

- $\Sigma = \{=\}$
- $\varphi = (x = y \wedge y \neq z) \rightarrow x \neq z$ a Σ -formula
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ (reflexivity)
 - 2 $\forall x. \forall y. x = y \rightarrow y = x$ (symmetry)
 - 3 $\forall x. \forall y. \forall z. x = y \wedge y = z \rightarrow x = z$ (transitivity)

Example

- $\Sigma = \{=\}$
- $\varphi = (x = y \wedge y \neq z) \rightarrow x \neq z$ a Σ -formula
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ (reflexivity)
 - 2 $\forall x. \forall y. x = y \rightarrow y = x$ (symmetry)
 - 3 $\forall x. \forall y. \forall z. x = y \wedge y = z \rightarrow x = z$ (transitivity)
- Q: Is φ T -satisfiable?

Example

- $\Sigma = \{=\}$
- $\varphi = (x = y \wedge y \neq z) \rightarrow x \neq z$ a Σ -formula
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ (reflexivity)
 - 2 $\forall x. \forall y. x = y \rightarrow y = x$ (symmetry)
 - 3 $\forall x. \forall y. \forall z. x = y \wedge y = z \rightarrow x = z$ (transitivity)
- Q: Is φ T -satisfiable?
- A: Yes.

Example

- $\Sigma = \{=\}$
- $\varphi = (x = y \wedge y \neq z) \rightarrow x \neq z$ a Σ -formula
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ (reflexivity)
 - 2 $\forall x. \forall y. x = y \rightarrow y = x$ (symmetry)
 - 3 $\forall x. \forall y. \forall z. x = y \wedge y = z \rightarrow x = z$ (transitivity)
- Q: Is φ T -satisfiable?
- A: Yes.
- Q: Is φ T -valid?

Example

- $\Sigma = \{=\}$
- $\varphi = (x = y \wedge y \neq z) \rightarrow x \neq z$ a Σ -formula
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. x = x$ (reflexivity)
 - 2 $\forall x. \forall y. x = y \rightarrow y = x$ (symmetry)
 - 3 $\forall x. \forall y. \forall z. x = y \wedge y = z \rightarrow x = z$ (transitivity)
- Q: Is φ T -satisfiable?
- A: Yes.
- Q: Is φ T -valid?
- A: Yes. Every structure that satisfies T also satisfies φ .

Example

- $\Sigma = \{<\}$
- $\varphi : \forall x. \exists y. y < x$ a Σ -formula
- Consider the Σ -theory T defined by the axioms:
 - 1 $\forall x. \forall y. \forall z. x < y \wedge y < z \rightarrow x < z$ (transitivity)
 - 2 $\forall x. \forall y. x < y \rightarrow \neg(y < x)$ (anti-symmetry)

Example

- $\Sigma = \{<\}$
- $\varphi : \forall x. \exists y. y < x$ a Σ -formula
- Consider the Σ -theory T defined by the axioms:
 - 1 $\forall x. \forall y. \forall z. x < y \wedge y < z \rightarrow x < z$ (transitivity)
 - 2 $\forall x. \forall y. x < y \rightarrow \neg(y < x)$ (anti-symmetry)
- Q: Is φ T -satisfiable?

Example

- $\Sigma = \{<\}$
- $\varphi : \forall x. \exists y. y < x$ a Σ -formula
- Consider the Σ -theory T defined by the axioms:
 - 1 $\forall x. \forall y. \forall z. x < y \wedge y < z \rightarrow x < z$ (transitivity)
 - 2 $\forall x. \forall y. x < y \rightarrow \neg(y < x)$ (anti-symmetry)
- **Q:** Is φ T -satisfiable?
- **A:** Yes. We construct a model for it:
 - Domain: \mathbb{Z}
 - $<$ means “less than”

Example

- $\Sigma = \{<\}$
- $\varphi : \forall x. \exists y. y < x$ a Σ -formula
- Consider the Σ -theory T defined by the axioms:
 - 1 $\forall x. \forall y. \forall z. x < y \wedge y < z \rightarrow x < z$ (transitivity)
 - 2 $\forall x. \forall y. x < y \rightarrow \neg(y < x)$ (anti-symmetry)
- **Q:** Is φ T -satisfiable?
- **A:** Yes. We construct a model for it:
 - Domain: \mathbb{Z}
 - $<$ means “less than”
- **Q:** Is φ T -valid?

Example

- $\Sigma = \{<\}$
- $\varphi : \forall x. \exists y. y < x$ a Σ -formula
- Consider the Σ -theory T defined by the axioms:
 - 1 $\forall x. \forall y. \forall z. x < y \wedge y < z \rightarrow x < z$ (transitivity)
 - 2 $\forall x. \forall y. x < y \rightarrow \neg(y < x)$ (anti-symmetry)
- **Q:** Is φ T -satisfiable?
- **A:** Yes. We construct a model for it:
 - Domain: \mathbb{Z}
 - $<$ means “less than”
- **Q:** Is φ T -valid?
- **A:** No. We construct a structure to the contrary:
 - Domain: \mathbb{N}_0
 - $<$ means “less than”

- So far we only restricted the **non-logical** symbols by signatures and their interpretation by theories.
- Sometimes we want to restrict the **grammar** and the **logical symbols** that we can use as well.
- These are called **logic fragments**.
- Examples:
 - The **quantifier-free fragment** over $\Sigma = \{0, 1, =, +\}$
 - The **conjunctive fragment** over $\Sigma = \{0, 1, =, +\}$

Fragments

- Let T be a theory with $\Sigma = \{\}$ without axioms.

Fragments

- Let T be a theory with $\Sigma = \{\}$ without axioms.
- **Q:** What is the quantifier-free fragment of T ?

Fragments

- Let T be a theory with $\Sigma = \{\}$ without axioms.
- **Q:** What is the quantifier-free fragment of T ?
- **A:** Propositional logic

Example: $x_1 \rightarrow (x_2 \vee x_3)$

Thus, propositional logic is also a first-order theory.
(A very degenerate one.)

Fragments

- Let T be a theory with $\Sigma = \{\}$ without axioms.
- **Q:** What is the quantifier-free fragment of T ?
- **A:** Propositional logic

Example: $x_1 \rightarrow (x_2 \vee x_3)$

Thus, propositional logic is also a first-order theory.
(A very degenerate one.)

- **Q:** What is T ?

Fragments

- Let T be a theory with $\Sigma = \{\}$ without axioms.
- **Q:** What is the quantifier-free fragment of T ?
- **A:** Propositional logic

Example: $x_1 \rightarrow (x_2 \vee x_3)$

Thus, propositional logic is also a first-order theory.
(A very degenerate one.)

- **Q:** What is T ?
- **A:** Quantified Boolean formulae (QBF)

Example:

- $\forall x_1. \exists x_2. \forall x_3. x_1 \rightarrow (x_2 \vee x_3)$

Some famous theories

- Presburger arithmetic: $\Sigma = \{0, 1, +, =\}$ over integers
- Peano arithmetic: $\Sigma = \{0, 1, +, *, =\}$ over integers
- Linear real algebra: $\Sigma = \{0, 1, +, =\}$ over reals
- Real algebra: $\Sigma = \{0, 1, +, *, =\}$ over reals
- Theory of arrays
- Theory of pointers
- ...

The algorithmic point of view...

- It is also common to present theories NOT through the axioms that define them.
- The **interpretation** of symbols is **fixed** to their common use.
 - Thus + is plus, ...
- The fragment is defined via grammar rules rather than restrictions on the generic first-order grammar.

The algorithmic point of view...

- Example: Equality logic
- Grammar:

formula ::= atom | formula \wedge formula | \neg formula

*atom ::= Boolean-variable |
variable = variable |
variable = constant |
constant = constant*

- Interpretation: $=$ is equality.

Expressiveness of a theory

- Each formula defines a **language**:

The set of satisfying assignments (models) are the words accepted by this language.

- Consider the fragment '2-CNF':

$$\begin{aligned} \text{formula} & ::= (\text{literal} \vee \text{literal}) \mid \text{formula} \wedge \text{formula} \\ \text{literal} & ::= \text{Boolean-variable} \mid \neg \text{Boolean-variable} \end{aligned}$$

- Example formula:

$$(x_1 \vee \neg x_2) \wedge (\neg x_3 \vee x_2)$$

Expressiveness of a theory

- Now consider the propositional logic formula $\varphi : (x_1 \vee x_2 \vee x_3)$
- **Q:** Can we express this language with 2-CNF?

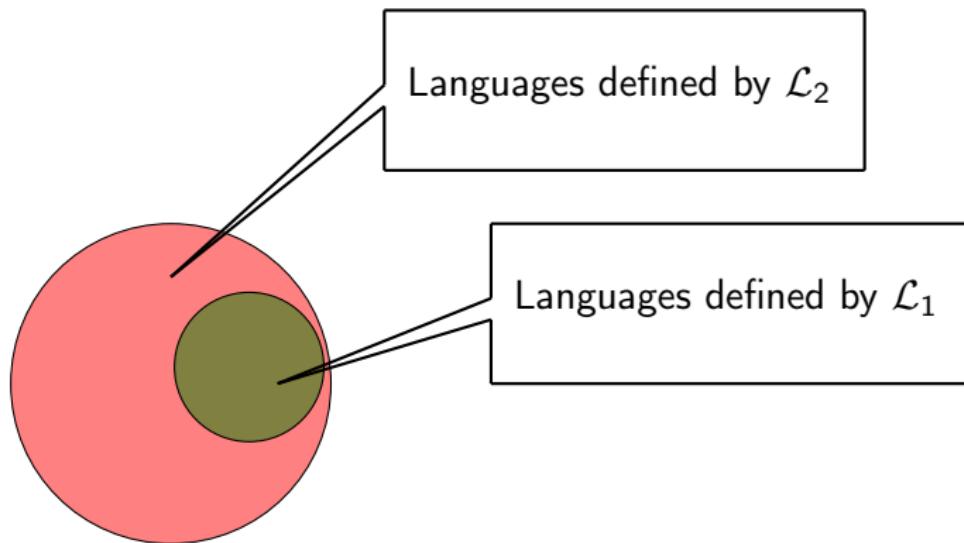
Expressiveness of a theory

- Now consider the propositional logic formula $\varphi : (x_1 \vee x_2 \vee x_3)$
- **Q:** Can we express this language with 2-CNF?
- **A:** No.
- Proof:

Expressiveness of a theory

- Now consider the propositional logic formula $\varphi : (x_1 \vee x_2 \vee x_3)$
- **Q:** Can we express this language with 2-CNF?
- **A:** No.
- Proof:
 - The language accepted by φ has 7 words: all assignments other than $x_1 = x_2 = x_3 = 0$ (*false*).
 - A 2-CNF clause removes 2 assignments, which leaves us with 6 accepted words.
E.g., $(x_1 \vee x_2)$ removes the assignments $x_1 = x_2 = x_3 = 0$ and $x_1 = x_2 = 0, x_3 = 1$.
 - Additional clauses only remove more assignments.

Examples



\mathcal{L}_2 is more expressive than \mathcal{L}_1 . Notation: $\mathcal{L}_1 \prec \mathcal{L}_2$.

- Claim: 2-CNF \prec propositional logic.
- Generally there is only a **partial order** between theories.

The Tradeoff

- So we see that theories can have different **expressive power**.
- **Q:** Why would we want to restrict ourselves to a theory or a fragment?
Why not take some 'maximal theory'?

The Tradeoff

- So we see that theories can have different **expressive power**.
- **Q:** Why would we want to restrict ourselves to a theory or a fragment?
Why not take some 'maximal theory'?
- **A:** Adding axioms to the theory may make it harder to decide or even undecidable.

Example: Hilbert axiom system (\mathcal{H})

- Let \mathcal{H} be (M.P) + the following axiom schemas:

$$\overline{A \rightarrow (B \rightarrow A)} \quad (H1)$$

$$\overline{((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))} \quad (H2)$$

$$\overline{(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)} \quad (H3)$$

- \mathcal{H} is sound and complete for propositional logic.
- This means that with \mathcal{H} we can prove any valid propositional formula, and only such formulae. The proof is finite.

Example

- But there exist first order theories defined by axioms which are not sufficient for proving all T -valid formulae.

Example: First Order Peano Arithmetic

- $\Sigma = \{0, 1, +, *, =\}$
- Domain: Natural numbers
- Axioms (“semantics”):
 - 1 $\forall x. (x \neq x + 1)$
 - 2 $\forall x. \forall y. (x \neq y) \rightarrow (x + 1 \neq y + 1)$
 - 3 Induction
 - 4 $\forall x. x + 0 = x$
 - 5 $\forall x. \forall y : (x + y) + 1 = x + (y + 1)$
 - 6 $\forall x. x * 0 = 0$
 - 7 $\forall x. \forall y. x * (y + 1) = x * y + x$

UNDECIDABLE!

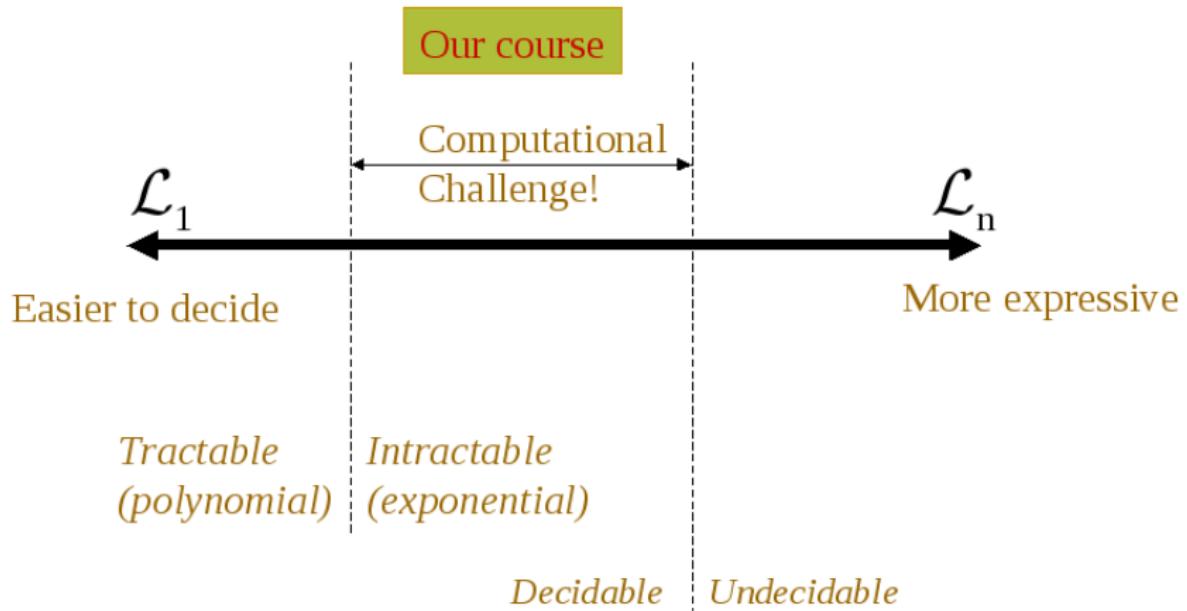
Reduction: Peano Arithmetic to Presburger Arithmetic

- $\Sigma = \{0, 1, +, \times, =\}$
- Domain: Natural numbers
- Axioms (“semantics”):

- 1 $\forall x. (\neq x + 1)$
- 2 $\forall x. \forall y. (x \neq y) \rightarrow (x + 1 \neq y + 1)$
- 3 Induction
- 4 $\forall x. x + 0 = x$
- 5 $\forall x. \forall y. (x + y) + 1 = x + (y + 1)$
- 6 ~~$\forall x. x * 0 = 0$~~
- 7 $\forall x. \forall y. x * (y + 1) = x * y + x$

DECIDABLE!

Tradeoff: expressiveness/computational hardness



When is a specific theory useful?

- Expressible enough to state something interesting.
- Decidable (or semi-decidable) and more efficiently solvable than richer theories.
- More expressive, or more natural for expressing some models in comparison to 'leaner' theories.

- **Q1:** Let \mathcal{L}_1 and \mathcal{L}_2 be two theories whose satisfiability problem is **decidable** and in the **same complexity class**. Is the satisfiability problem of an \mathcal{L}_1 formula **reducible** to a satisfiability problem of an \mathcal{L}_2 formula?

- **Q1:** Let \mathcal{L}_1 and \mathcal{L}_2 be two theories whose satisfiability problem is **decidable** and in the **same complexity class**. Is the satisfiability problem of an \mathcal{L}_1 formula **reducible** to a satisfiability problem of an \mathcal{L}_2 formula?
- **Q2:** Let \mathcal{L}_1 and \mathcal{L}_2 be two theories whose satisfiability problems are **reducible** to each other. Are \mathcal{L}_1 and \mathcal{L}_2 in the **same complexity class**?