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Syntax of propositional logic

Before we deal with satisfiability of propositional logic formulae, we must
answer two questions:

What is a propositional logic formula?
→ Syntax of propositional logic
What is the meaning of propositional logic formulae?
→ Semantics of propositional logic
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Syntax of propositional logic

An atomic proposition is a sentence that can be either true or false.

Propositions:
x is greater than y
Noam wrote this letter
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Syntax of propositional logic

The symbols of the language:
Constants: ⊥ (false), > (true)
Propositional symbols (Prop): a, b, c , . . .
Operators:

Unary:
¬ not

Binary:
∧ and
∨ or
→ implies
↔ equivalent to⊕

xor (different than)

Parentheses: (, )
Question: What is the minimal number of such symbols?
Answer: 1 (NAND)
For convenience, we take 2.
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Formulae

Abstract grammar of well-formed propositional formulae:

ϕ := a | (¬ϕ) | (ϕ ∧ ϕ)

with a ∈ Prop.
Syntactic sugar:

⊥ := (a ∧ ¬a)
> := (a ∨ ¬a)

( ϕ1 ∨ ϕ2 ) := ¬((¬ϕ1) ∧ (¬ϕ2))
( ϕ1 → ϕ2 ) := ((¬ϕ1) ∨ ϕ2)
( ϕ1 ↔ ϕ2 ) := ((ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1))
( ϕ1

⊕
ϕ2 ) := (ϕ1 ↔ (¬ϕ2))
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Formulae

Examples of well-formed formulae:
(¬a)
(¬(¬a))
(a ∧ (b ∧ c))
(a→ (b → c))

Correct expressions of propositional logic are full of unnecessary
parenthesis.
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Formulae

Abbreviations:

We write a op b op c op . . .

in place of (a op (b op(c op . . .)))

Thus, we write a ∧ b ∧ c , a→ b → c , . . .

in place of (a ∧ (b ∧ c)), (a→ (b → c)), . . .
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Formulae

We omit parenthesis whenever we may restore them through operator
precedence

binds stronger

¬ ∧ ∨ → ↔

Thus, we write:
¬¬a for (¬(¬a)),
¬a ∧ b for ((¬a) ∧ b)
a ∧ b → c for ((a ∧ b)→ c)
. . .
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Semantics of propositional logic

Truth tables define the semantics (=meaning) of the operators
Convention: 0= false, 1= true

p q ¬p p ∧ q p ∨ q p → q p ↔ q p
⊕

q
0 0 1 0 0 1 1 0
0 1 1 0 1 1 0 1
1 0 0 0 1 0 0 1
1 1 0 1 1 1 1 0

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 13 / 82



Question

Question: How many binary operators can we define that have
different semantics?
Answer: 16
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Assignments

A truth-value assignment α is a mapping from variables to truth
values:
α : Prop→ {0, 1}
Let Ass denote the set of all assignments.
Example: Prop = {a, b}, α(a) = 0, α(b) = 1
Equivalently, we can see α as an element of 2Prop

(i.e., α ∈ 2Prop with 2Prop the set of subsets of Prop).
Meaning: α is the set of those variables that are assigned to true.
Example: Prop = {a, b}, α = {b}
An assignment can also be seen as being of type α ∈ {0, 1}Prop, if we
have an order on the propositions.
Example: Prop = {a, b}, α = {01}
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Satisfaction relation (|=): Intuition

An assignment can either satisfy or not satisfy a given formula.

α |= ϕ means
α satisfies ϕ or
ϕ holds for α or
α is a model of ϕ

We will first see an example.
Then we will define these notions formally.
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Example

Let ϕ be defined as (a ∨ (b → c)).
Let α : {a, b, c} → {0, 1} be an assignment with
α(a) = 0, α(b) = 0, and α(c) = 1.

Question: Does α satisfy ϕ?
In symbols: Does it hold that α |= ϕ?

Answer: (0 ∨ (0→ 1)) = (0 ∨ 1) = 1
Hence, α |= ϕ.

Let us now formalize an evaluation process.
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The satisfaction relation |=: Formalization

|= is a relation: |= ⊆ Ass × Formula
Examples:

(α,a ∨ b) ∈ |= or α |= a ∨ b iff α(a) = 1 or α(b) = 1
(α,a ∧ b) ∈ |= or α |= a ∧ b iff α(a) = 1 and α(b) = 1
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The satisfaction relation (|=): Formalization

|= is defined recursively:
α |= p iff α(p) = true
α |= ¬ϕ iff α 6 |= ϕ
α |= ϕ1 ∧ ϕ2 iff α |= ϕ1 and α |= ϕ2
α |= ϕ1 ∨ ϕ2 iff α |= ϕ1 or α |= ϕ2
α |= ϕ1 → ϕ2 iff α |= ϕ1 implies α |= ϕ2
α |= ϕ1 ↔ ϕ2 iff α |= ϕ1 iff α |= ϕ2
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From definition to an evaluation algorithm

Truth evaluation problem:
Given ϕ ∈ Formula and α : AP→ {0, 1}, does α |= ϕ?

Eval(ϕ, α) {
i f ϕ ≡ a return α(a) ;
i f ϕ ≡ (¬ϕ1) return ¬Eval(ϕ1, α) ;
i f ϕ ≡ (ϕ1 op ϕ2)

return Eval(ϕ1, α) op Eval(ϕ2, α) ;
}

Eval uses polynomial time and space.
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It doesn’t give us more than what we already know...

Recall our example
Let ϕ = (a ∨ (b → c))
Let α = {a→ 0, b → 0, c → 1}

Eval(ϕ, α) = Eval(a, α) ∨ Eval(b → c , α) =
0 ∨ (Eval(b, α)→ Eval(c , α)) =
0 ∨ (0→ 1) =
0 ∨ 1 =
1

Hence, α |= ϕ.
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We can now extend the truth table to formulae

p q (p → (q → p)) (p ∧ ¬p)

0 0 1 0
0 1 1 0
1 0 1 0
1 1 1 0
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Set of assignments

Intuition: a formula specifies a set of truth assignments.
Remember: Ass denotes the set of all assignments.
Function models : Formula→ 2Ass

(a formula → set of satisfying assignments)
Recursive definition:

models(a) = {α | α(a) = 1}, a ∈ Prop
models(¬ϕ1) = Ass \ models(ϕ1)
models(ϕ1 ∧ ϕ2) = models(ϕ1) ∩models(ϕ2)
models(ϕ1 ∨ ϕ2) = models(ϕ1) ∪models(ϕ2)
models(ϕ1 → ϕ2) = (Ass \ models(ϕ1)) ∪models(ϕ2)
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Example

models(a ∨ b) = {α ∈ Ass | α(a) = 1 or α(b) = 1}

This is compatible with the recursive definition:

models(a ∨ b) = models(a) ∪models(b) =

{α ∈ Ass | α(a) = 1} ∪ {α ∈ Ass | α(b) = 1}
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Theorem

Let ϕ ∈ Formula and α ∈ Ass, then the following statements are
equivalent:

1. α |= ϕ
2. α ∈ models(ϕ)
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Only the projected assignment matters...

AP(ϕ) - the atomic propositions in ϕ.
Clearly AP(ϕ) ⊆ Prop.
Let α1, α2 ∈ Ass and ϕ ∈ Formula.
Lemma: if α1|AP(ϕ) = α2|AP(ϕ) , then

Projection

α1 |= ϕ iff α2 |= ϕ

Corollary: α |= ϕ iff α|AP(ϕ) |= ϕ

We will assume, for simplicity, that Prop = AP(ϕ).
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Extension of |= to sets of assignments

Let ϕ ∈ Formula.
Let T be a set of assignments, i.e., T ⊆ 2Ass

Definition: |= ⊆ 2Ass× Formula with

T |= ϕ iff T ⊆ models(ϕ)
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Extension of |= to formulae

|= ⊆ 2Formula × 2Formula

Definition. Let ϕ1, ϕ2 be propositional formulae.
ϕ1 |= ϕ2

iff models(ϕ1) ⊆ models(ϕ2), or equivalently
iff for all α ∈ Ass

if α |= ϕ1 then α |= ϕ2

Examples:
x1 ∧ x2 |= x1 ∨ x2
x1 ∧ x2 |= x2 ∨ x3
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Short summary for propositional logic

Syntax: ϕ := prop | (¬ϕ) | (ϕ ∧ ϕ)

Semantics:

Assignments:
α : Prop→ {0, 1}
α ∈ 2Prop

α ∈ {0, 1}Prop

Satisfiability relation:

|= ⊆ Ass× Formula , (e.g., α |=ϕ )
|= ⊆ 2Ass × Formula , (e.g., T |=ϕ )
|= ⊆ Formula× Formula , (e.g., ϕ1|=ϕ2 )
models : Formula→ 2Ass, (e.g., models(ϕ))
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Semantic classification of formulae

A formula ϕ is called valid if models(ϕ) = Ass.
(Also called a tautology).

A formula ϕ is called satisfiable if models(ϕ) 6= ∅.

A formula ϕ is called unsatisfiable if models(ϕ) = ∅.
(Also called a contradiction).

satisfiable unsatisfiable

valid
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Validity and satisfiability

p q (p → (q → q)) (p ∧ ¬p) p ∨ ¬q
0 0 1 0 1
0 1 1 0 0
1 0 1 0 1
1 1 1 0 1
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Characteristics of formulae

Lemma:
A formula ϕ is valid iff ¬ϕ is unsatisfiable
ϕ is satisfiable iff ¬ϕ is not valid

Is ϕ valid? Satisfiability
checker

yes

no
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Look what we can do now...

We can write:

|= ϕ when ϕ is valid

6|= ϕ when ϕ is not valid

6|= ¬ϕ when ϕ is satisfiable

|= ¬ϕ when ϕ is unsatisfiable
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Examples

(x1 ∧ x2)→ (x1 ∨ x2)

(x1 ∨ x2)→ x1
(x1 ∧ x2) ∧ ¬x1

is valid
is satisfiable
is unsatisfiable
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Time for equivalences

Here are some valid formulae:
|= a ∧ 1↔ a
|= a ∧ 0↔ 0
|= ¬¬a↔ a // The double-negation rule
|= a ∧ (b ∨ c)↔ (a ∧ b) ∨ (a ∧ c)

Some more (De Morgan rules):
|= ¬(a ∧ b)↔ (¬a ∨ ¬b)
|= ¬(a ∨ b)↔ (¬a ∧ ¬b)
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The decision problem of formulae

The decision problem:

Given a propositional formula ϕ, is ϕ satisfiable?

An algorithm that always terminates with a correct answer to this
problem is called a decision procedure for propositional logic.
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Before we solve this problem...

Suppose we can solve the satisfiability problem... how can this help us?

There are numerous problems in the industry that are solved via the
satisfiability problem of propositional logic

Logistics
Planning
Electronic Design Automation industry
Cryptography
. . .
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Example 1: Placement of wedding guests

Three chairs in a row: 1, 2, 3
We need to place Aunt, Sister and Father.
Constraints:

Aunt doesn’t want to sit near Father
Aunt doesn’t want to sit in the left chair
Sister doesn’t want to sit to the right of Father

Question: Can we satisfy these constraints?
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Example 1 (continued)

Denote: Aunt = 1, Sister = 2, Father = 3
Introduce a propositional variable for each pair (person, place).
xij = “person i is sited in place j , for 1 ≤ i , j ≤ 3”
Constraints:

Aunt doesn’t want to sit near Father:
((x1,1 ∨ x1,3)→ ¬x3,2) ∧ (x1,2 → (¬x3,1 ∧ ¬x3,3))
Aunt doesn’t want to sit in the left chair
¬x1,1
Sister doesn’t want to sit to the right of Father
x3,1 → ¬x2,2 ∧ x3,2 → ¬x2,3
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Example 1 (continued)

More constraints:
Each person is placed:
(x1,1 ∨ x1,2 ∨ x1,3) ∧ (x2,1 ∨ x2,2 ∨ x2,3) ∧ (x3,1 ∨ x3,2 ∨ x3,3)

Or, more concisely:
3∧

i=1

3∨
j=1

xi ,j

No person is placed in more than one place:

3∧
i=1

2∧
j=1

3∧
k=j+l

(¬xi ,j ∨ ¬xi ,k)

Overall 9 variables, 26 conjoined constraints.
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Example 2: Assignment of frequencies

n radio stations
For each assign one of k transmission frequencies, k < n.
E – set of pairs of stations, that are too close to have the same
frequency.

Question: Can we assign to each station a frequency, such that no
statin pairs from E have the same frequency?
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Example 2 (continued)

xi ,j : station i is assigned frequency j , for 1 ≤ i ≤ n, 1 ≤ j ≤ k .
Every station is assigned at least one frequency:

n∧
i=1

k∨
j=1

xi,j

Every station is assigned not more than one frequency:

n∧
i=1

k−1∧
j=1

(xi,j →
∧

j<t≤k

¬xi,t)

Close stations are not assigned the same frequency:
For each (i , j) ∈ E ,

k∧
t=1

(xi,t → ¬xj,t)
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Two classes of algorithms for validity

Question: Is ϕ satisfiable? (Is ¬ϕ valid?)
Complexity: NP-Complete (Cook’s theorem)
Two classes of algorithms for finding out:

Enumeration of possible solutions (Truth tables etc.)
Deduction

More generally (beyond propositional logic):
Enumeration is possible only in some logics.
Deduction cannot necessarily be fully automated.
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The satisfiability problem: Enumeration the first

Given a formula ϕ, is ϕ satisfiable?

Boolean SAT(ϕ){
result:= f a l s e ;
fo r a l l α ∈ Ass
result = result ∨ Eval(ϕ, α) ;

return result ;
}
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The satisfiability problem: Enumeration the second

Given a formula ϕ, is ϕ satisfiable?
Use substitution to eliminate all variables one by one:

ϕ iff ϕ[0/a] ∨ ϕ[1/a]

There must be a better way to do that in practice.
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Definitions

Definition: A literal is either an atom or a negation of an atom.
Let ϕ = ¬(a ∨ ¬b). Then:
Atoms: AP(ϕ) = {a, b}
Literals: lit(ϕ) = {a,¬b}
Equivalent formulae can have different literals
ϕ′ = ¬a ∧ b
Now lit(ϕ′) = {¬a, b}
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Definitions

Definition: a term is a conjunction of literals
Example: (a ∧ ¬b ∧ c)

Definition: a clause is a disjunction of literals
Example: (a ∨ ¬b ∨ c)
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Negation Normal Form (NNF)

Definition: A formula is in Negation Normal Form (NNF) iff
(1) it contains only ¬, ∧ and ∨ as connectives and
(2) only atoms are negated.

Examples:
ϕ1 = ¬(a ∨ ¬b) is not in NNF
ϕ2 = ¬a ∧ b is in NNF
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Converting to NNF

Every formula can be converted to NNF in linear time:
Eliminate all connectives other than ∧, ∨, ¬
Use De Morgan and double-negation rules to push negations to the
right

Example: ϕ = ¬(a→ ¬b)

Eliminate ’→ ’ : ϕ = ¬(¬a ∨ ¬b)
Push negation using De Morgan: ϕ = (¬¬a ∧ ¬¬b)
Use double-negation rule: ϕ = (a ∧ b)
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Disjunctive Normal Form (DNF)

Definition: A formula is said to be in Disjunctive Normal Form (DNF)
iff it is a disjunction of terms.

In other words, it is a formula of the form∨
i

(
∧
j

li,j)

where li,j is the j-th literal in the i-th term.

Example:

ϕ = (a ∧ ¬b ∧ c) ∨ (¬a ∧ d) ∨ (b) is in DNF

DNF is a special case of NNF
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Converting to DNF

Every formula can be converted to DNF in exponential time and
space:

1 Convert to NNF
2 Distribute disjunctions following the rule:
|= a ∧ (b ∨ c)↔ ((a ∧ b) ∨ (a ∧ c))

Example:

ϕ = (a ∨ b) ∧ (¬c ∨ d)
= ((a ∨ b) ∧ (¬c)) ∨ ((a ∨ b) ∧ d)
= (a ∧ ¬c) ∨ (b ∧ ¬c) ∨ (a ∧ d) ∨ (b ∧ d)

Question: How many clauses would the DNF have had if we started
from a conjunction of n binary clauses (i.e., clauses with 2 literals)?
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Satisfiability of DNF

Is the following DNF formula satisfiable?
(a1 ∧ a2 ∧ ¬a1) ∨ (a2 ∧ a1) ∨ (a2 ∧ ¬a3 ∧ a3)

Question: What is the complexity of the satisfiability check of DNF
formulae?
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Conjunctive Normal Form (CNF)

Definition: A formula is said to be in Conjunctive Normal Form (CNF)
iff it is a conjunction of clauses.
In other words, it is a formula of the form∧

i

(
∨
j

li ,j)

where li ,j is the j-th literal in the i-th clause.

Example:

ϕ = (a ∨ ¬b ∨ c) ∧ (¬a ∨ d) ∧ (b) is in CNF

CNF is a special case of NNF
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Converting to CNF

Every formula can be converted to CNF:
in exponential time and space with the same set of atoms, or
in linear time and space if new variables are added.

For the latter—the so-called Tseitin’s encoding—the original and the
converted formulae are equi-satisfiable, but not equivalent.

Question: Can there be any such linear transformation into DNF?
Answer: No. Linear DNF transformation and linear DNF solution
would violate the NP-completeness of the problem.
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Converting to CNF: The exponential way

CNF(ϕ){
case

ϕ is a literal: return ϕ
ϕ is ϕ1 ∧ ϕ2: return CNF(ϕ1) ∧ CNF(ϕ2)
ϕ is ϕ1 ∨ ϕ2: return Dist(CNF(ϕ1),CNF(ϕ2))

}

Dist(ϕ1,ϕ2) {
case

ϕ1 is ϕ11 ∧ ϕ12: return Dist(ϕ11,ϕ2) ∧ Dist(ϕ12,ϕ2)
ϕ2 is ϕ21 ∧ ϕ22: return Dist(ϕ1,ϕ21) ∧ Dist(ϕ1,ϕ22)
else: return ϕ1 ∨ ϕ2

}
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Converting to CNF: The exponential way

Consider the formula
ϕ = (a1 ∧ b1) ∨ (a2 ∧ b2)

CNF(ϕ) = (a1 ∨ a2) ∧ (a1 ∨ b2) ∧ (b1 ∨ a2) ∧ (b1 ∨ b2)

Now consider: ϕn = (a1 ∧ b1) ∨ (a2 ∧ b2) ∨ . . . ∨ (an ∧ bn)

Question: How many clauses does CNF(ϕ) return?
Answer: 2n
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Converting to CNF: Tseitin’s encoding

Consider the formula
ϕ = (a→ (b ∧ c))

The Parse Tree:

→ h1

a ∧ h2

b c

Associate a new auxiliary variable with each gate.
Add constraints that define these new variables.
Finally, enforce the root node.
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Converting to CNF: Tseitin’s encoding

Need to satisfy:
(h1 ↔ (a → h2))∧
(h2 ↔ (b ∧ c))∧
(h1)

→ h1

a ∧ h2

b c

Each gate encoding has a CNF representation with 3 or 4 clauses.
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Converting to CNF: Tseitin’s encoding

Need to satisfy:
(h1 ↔ (a→ h2)) ∧ (h2 ↔ (b ∧ c)) ∧ (h1)

First: (h1 ∨ a) ∧ (h1 ∨ ¬h2) ∧ (¬h1 ∨ ¬a ∨ h2)

Second: (¬h2 ∨ b) ∧ (¬h2 ∨ c) ∧ (h2 ∨ ¬b ∨ ¬c)
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Converting to CNF: Tseitin’s encoding

Let’s go back to
ϕn = (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xn ∧ yn)

With Tseitin’s encoding we need:
n auxiliary variables a1, . . . , an.
Each adds 3 constraints.
Top clause: (a1 ∨ · · · ∨ an)

Hence, we have
3n + 1 clauses, instead of 2n.
3n variables rather than 2n.
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What now?

Time to solve the decision problem for propositional logic.
The only algorithm we saw so far was building truth tables.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 64 / 82



Two classes of algorithms for validity

Question: Is ϕ valid?
Equivalently: is ¬ϕ satisfiable?

Two classes of algorithm for finding out:
1 Enumeration of possible solutions (Truth tables etc.)
2 Deduction

In general (beyond propositional logic):
Enumeration is possible only in some theories.
Deduction typically cannot be fully automated.
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The satisfiability problem: Enumeration

Given a formula ϕ, is ϕ satisfiable?

Boolean SAT(ϕ ) {
result := false ;
fo r a l l α ∈ Ass

result = result ∨ Eval(ϕ, α) ;
return result ;

}

NP-Complete (Cook’s theorem)
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Deduction requires axioms and inference rules

Inference rules:
Antecedents
Consequents

(rule-name)

Meaning: If all antecedents hold then at least one of the consequents
can be derived.
Examples:

a→ b b → c
a→ c

(Trans)

a→ b a
b

(M.P.)
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Axioms

Axioms are inference rules with no antecedents, e.g.,

a→ (b → a)
(H1)

We can turn an inference rule into an axiom if we have ’→’ in the
logic.
So the difference between them is not sharp.
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Proofs

A proof uses a given set of axioms and inference rules.
This is called the proof system.
Let H be a proof system.
Γ `H ϕ means: There is a proof of ϕ in system H whose premises are
included in Γ

`H is called the provability relation.
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Example

Let H be the proof system comprised of the rules Trans and M.P. that
we saw earlier:

a→ b b → c
a→ c

(Trans)

a→ b a
b

(M.P.)

Does the following relation hold?

a→ b, b → c , c → d , d → e, a `H e
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Deductive proof: Example

a→ b, b → c , c → d , d → e, a `H e

1. a→ b premise
2. b → c premise
3. a→ c 1, 2, Trans
4. c → d premise
5. d → e premise
6. c → e 4, 5, Trans
7. a→ e 3, 6, Trans
8. a premise
9. e 7, 8, M.P.
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Proof graph (DAG)

e
M.P.

a→ e
trans

a→ c
trans

a→ b b → c

c → e
trans

c → d d → e

a
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Correctness and Completeness

` is a relation defined by syntactic transformations of the underlying
proof system.
For a given proof system H,

Correctness: Does ` conclude “correct” conclusions from premises?
Completeness: Can we conclude all true statements with H?

Correct with respect to what?
With respect to the semantic definition of the logic. In the case of
propositional logic truth tables give us this.
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Soundness and completeness

Let H be a proof system

Soundness of H : if `H ϕ then |= ϕ
Completeness of H : if |= ϕ then `H ϕ

How to prove soundness and completeness?
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Example: Hilbert axiom system (H)

Let H be (M.P.) together with the following axiom schemes:

a→ (b → a)
(H1)

((a→ (b → c))→ ((a→ b)→ (a→ c)))
(H2)

(¬b → ¬a)→ (a→ b)
(H3)

H is sound and complete
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Soundness and completeness

To prove soundness of H, prove the soundness of its axioms and
inference rules (easy with truth-tables).
For example:

a b a→ (b → a)

0 0 1
0 1 1
1 0 1
1 1 1

Completeness: harder, but possible.
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The resolution inference system

The resolution inference rule for CNF:

(l ∨ l1 ∨ l2 ∨ ... ∨ ln) (¬l ∨ l ′1 ∨ ... ∨ l ′m)

(l1 ∨ ... ∨ ln ∨ l ′1 ∨ ... ∨ l ′m)
Resolution

Example:
(a ∨ b) (¬a ∨ c)

(b ∨ c)

We first see some example proofs, before proving soundness and
completeness.
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Proof by resolution

Let ϕ = (a1 ∨ a3) ∧ (¬a1 ∨ a2 ∨ a5) ∧ (¬a1 ∨ a4) ∧ (¬a1 ∨ ¬a4)

We’ll try to prove ϕ → (a3)

(a3)

(a1 ∨ a3) (¬a1)

(¬a1 ∨ a4) (¬a1 ∨ ¬a4)
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Resolution

Resolution is a sound and complete inference system for CNF.
If the input formula is unsatisfiable, there exists a proof of the empty
clause.
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Example

Let ϕ = (a1 ∨ a3) ∧ (¬a1 ∨ a2) ∧ (¬a1 ∨ a4) ∧ (¬a1 ∨ ¬a4) ∧ (¬a3) .

()

a3

(¬a1)

(¬a1 ∨ a4) (¬a1 ∨ ¬a4)

(a1 ∨ a3)

¬a3
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Soundness and completeness of resolution

Soundness is straightforward. Just prove by truth table that

|= ((ϕ1 ∨ a) ∧ (ϕ2 ∨ ¬a))→ (ϕ1 ∨ ϕ2).

Completeness is a bit more involved.
Basic idea: Use resolution for variable elimination .

(a ∨ ϕ1) ∧ . . . ∧ (a ∨ ϕn)∧
(¬a ∨ ψ1) ∧ . . . (¬a ∨ ψm)∧

R
⇔

(ϕ1 ∨ ψ1) ∧ . . . ∧ (ϕ1 ∨ ψm)∧
. . .

(ϕn ∨ ψ1) ∧ . . . (ϕn ∨ ψm)∧
R

where ϕi (i = 1, . . . , n), ψj (j = 1, . . . ,m), and R contain neither a
nor ¬a.
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