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Syntax of propositional logic

Before we deal with satisfiability of propositional logic formulae, we must
answer two questions:
m What is a propositional logic formula?
— Syntax of propositional logic
m What is the meaning of propositional logic formulae?
— Semantics of propositional logic
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Syntax of propositional logic

m An atomic proposition is a sentence that can be either true or false.

m Propositions:

m X is greater thany
m Noam wrote this letter
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Syntax of propositional logic

m The symbols of the language:
m Constants: L (false), T (true)
m Propositional symbols (Prop): a,b,c,...
m Operators:

Unary:

- not

Binary:

A and

\% or

— implies

> equivalent to

&b xor (different than)

m Parentheses: (, )
m Question: What is the minimal number of such symbols?
m Answer: 1 (NAND)
m For convenience, we take 2.
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Formulae

m Abstract grammar of well-formed propositional formulae:

o = al (mp) | (pAy)

with a € Prop.

m Syntactic sugar:

1 = (aA—a)
T = (aV —a)
(w1 vV w2 )i=2((m1) A(mp2))
(1 = w2 )= ((—¢1)Ve2)
(p1 < w2 )= (1= p2) Ap2 = ¢1))
(o1 D w2 ):=1(p1¢ (mp2))
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Formulae

m Examples of well-formed formulae:
= (—a)
(=(=a))
(an(bAc))
(a—(b—0))
m Correct expressions of propositional logic are full of unnecessary
parenthesis.
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Formulae

m Abbreviations:

We write aopbopcop...

in place of (a op (b op(c op...)))

Thus, we write aAbAc, a—b—og,...

in place of (an(bAc)), (a—(b—0)),...
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Formulae

m We omit parenthesis whenever we may restore them through operator
precedence

binds stronger

- AV = &

m Thus, we write:
—a for  (=(—a)),
—aAb for ((—a) A b)
aNb—c for ((aAb)—c)
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Semantics of propositional logic

m Truth tables define the semantics (=meaning) of the operators

m Convention: 0= false, 1= true

plall-pP|lPAg|lpValp—=qg|lpsrq|pDy
olo[1] o 0 1 1 0
o[1 1] o 1 1 0 1
1jo o o 1 0 0 1
110 1 1 1 1 0
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Question

m Question: How many binary operators can we define that have
different semantics?

m Answer: 16
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m A truth-value assignment « is a mapping from variables to truth
values:
a : Prop — {0,1}

m Let Ass denote the set of all assignments.
Example: Prop = {a, b},a(a) =0,a(b) =1

m Equivalently, we can see «r as an element of 2P¥°P
(i.e., o € 2P°P with 2P*°P the set of subsets of Prop).
Meaning: « is the set of those variables that are assigned to true.
Example: Prop = {a, b},a = {b}

m An assignment can also be seen as being of type a € {0, 1}77°P, if we
have an order on the propositions.
Example: Prop = {a, b},a = {01}
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Satisfaction relation (|=): Intuition

m An assignment can either satisfy or not satisfy a given formula.

B o = ¢ means
m « satisfies ¢ or
m ¢ holds for a or
m o is a model of ¢

m We will first see an example.

m Then we will define these notions formally.
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m Let ¢ be defined as (aVV (b — ¢)).

m Let o: {a,b,c} — {0,1} be an assignment with
a(a) =0, a(b) =0, and a(c) = 1.

m Question: Does « satisfy 7
In symbols: Does it hold that a = ¢7

m Answer: (OV(0—1)=(0Vv1)=1
Hence, a = .

m Let us now formalize an evaluation process.
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The satisfaction relation |=: Formalization

m |=is a relation: = C Ass x Formula

m Examples:

(vjavb) e= or alaVvb
(vaNb) €= or alEanb
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The satisfaction relation (|=): Formalization

m |= is defined recursively:

a Ep iff a(p) = true

a E=-p iff o J=¢

a EpiNgy iffa Epranda | o2
a EpiVery iffa Epiora E o

a Ep1 = iffa Eprimpliesa E @2
a Eere e iffa Epriffa B e
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From definition to an evaluation algorithm

m Truth evaluation problem:
Given ¢ € Formula and a : AP — {0, 1}, does a |= ¢?

if o=
if o= (-p1) return —Eval(¢1,a);
if o=

return Eval(pi,a) op Eval(p2, a);

m Eval uses polynomial time and space.
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It doesn't give us more than what we already know...

m Recall our example
mletp=(aVv(b—c))
mleta={a—0,b—0,c—1}

m Eval(p,a) = Eval(a,a) V Eval(b — c,a) =
0V (Eval(b, o) — Eval(c,)) =
ov(0—1)=
ovl=

[y

m Hence, a = ¢.
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We can now extend the truth table to formulae

plal(p—(a—p)|(pPA-p)
00 1 0
01 1 0
1]0 1 0
1]1 1 0
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Set of assignments

Intuition: a formula specifies a set of truth assignments.

Remember: Ass denotes the set of all assignments.

Function models : Formula — 274s°

(a formula — set of satisfying assignments)
Recursive definition:
m models(a) = {« | a(a) =1}, a € Prop

m models(—p1) = Ass \ models(i1)

m models(p1 A 2) = models(p1) N models(i>)

m models(p1 V 2) = models(p1) U models(i-)

m models(yp; — ¢2) = (Ass \ models(¢1)) U models(pz)

Prof. Dr. Erika Abraham - Satisfiability CheckingPropositional Logic



m models(aV b) = {a € Ass | a(a) =1 or a(b) = 1}
m This is compatible with the recursive definition:

models(a V b) = models(a) U models(b) =
{a € Ass | a(a) =1} U{a € Ass | a(b) =1}
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m Let ¢ € Formula and « € Ass, then the following statements are
equivalent:

l.a E o
2. a € models(yp)
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Only the projected assignment matters...

m AP(¢p) - the atomic propositions in ¢.
m Clearly AP(p) C Prop.
m Let a3,ap € Assand ¢ € Formula.

m Lemma: if a1|AP(<p) = 042|Ap(@) , then

\ - .

a1 Eeiffa Eo

Corollary: a = ¢ iff alap(y) F ¢
m We will assume, for simplicity, that Prop = AP(y).
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Extension of |= to sets of assignments

m Let ¢ € Formula.
m Let T be a set of assignments, i.e., T C 245

m Definition: = C 24%x Formula with

T E ¢ iff T C models(y)
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Extension of = to formulae

- ): C 2Formu|a % 2Formu|a

m Definition. Let (1, w2 be propositional formulae.

p1 | 2
iff models(y1) C models(y2), or equivalently
iff for all o € Ass

if « =1 then a = 2
Examples:
xiAx2Ex1 V x
x1Ax Ex2 V x3
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Short summary for propositional logic

m Syntax: ¢ := prop | (—¢) | (¢ A p)
m Semantics:

m Assignments:
a : Prop — {0,1}
a € 2Freop
a € {0, 1}Prop

m Satisfiability relation:

= C Ass x Formula . (e )
= C 245 x Formula , (e g, T Ep )
= C Formula x Formula , (e.g., p1=p2 )

models : Formula — 24%°,  (e.g., models(y))
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Semantic classification of formulae

m A formula ¢ is called valid if models(¢) = Ass.
(Also called a tautology).

m A formula ¢ is called satisfiable if models(y) # 0.

m A formula ¢ is called unsatisfiable if models(¢) = 0.

(Also called a contradiction).

satisfiable unsatisfiable
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Validity and satisfiability

pla|(p—=(a—4q) | (PA-pP)| P Vg
00 1 0 1
01 1 0 0
10 1 0 1
1)1 1 0 1
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Characteristics of formulae

Lemma:

m A formula ¢ is valid iff =y is unsatisfiable

m ( is satisfiable iff = is not valid

Is ¢ valid? checker

Satisfiability

no

/
\

yes
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Look what we can do now...

m We can write:

E » when ¢ is valid

= © when ¢ is not valid

m [~ —p when ¢ is satisfiable

= —¢ when ¢ is unsatisfiable
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B (x1 Ax2) = (x1V x2) is valid
B (x1Vx)—xg is satisfiable
B (x1 Axp) A—xg is unsatisfiable
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Time for equivalences

m Here are some valid formulae:

Eanlea

EFan0«0

= ——a < a // The double-negation rule
Ean(bvec)« (anb)Vv(anc)

m Some more (De Morgan rules):
m=-(aAb) < (-aV-b)
m=-(aVvb) < (-an-b)

Prof. Dr. Erika Abraham - Satisfiability CheckingPropositional Logic



The decision problem of formulae

m The decision problem:
Given a propositional formula ¢, is ¢ satisfiable?

m An algorithm that always terminates with a correct answer to this
problem is called a decision procedure for propositional logic.

Prof. Dr. Erika Abraham - Satisfiability CheckingPropositional Logic




Propositional logic - Outline

Syntax of propositional logic
Semantics of propositional logic
Satisfiability and validity
Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Prof. Dr. Erika Abraham - Satisfiability CheckingPropositional Logic



Before we solve this problem...

m Suppose we can solve the satisfiability problem... how can this help us?

m There are numerous problems in the industry that are solved via the
satisfiability problem of propositional logic
m Logistics
Planning
Electronic Design Automation industry
Cryptography
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Example 1: Placement of wedding guests

m Three chairs in a row: 1,2,3

m We need to place Aunt, Sister and Father.
m Constraints:

m Aunt doesn't want to sit near Father
m Aunt doesn't want to sit in the left chair
m Sister doesn't want to sit to the right of Father

m Question: Can we satisfy these constraints?
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Example 1 (continued)

m Denote: Aunt = 1, Sister = 2, Father = 3

m Introduce a propositional variable for each pair (person, place).
m x;; = “person i is sited in place j, for 1 </, j <3"

m Constraints:

m Aunt doesn't want to sit near Father:
(a1 Vx3) = x32) A (2 = (mxs1 A —x33))
m Aunt doesn't want to sit in the left chair
-X1,1
m Sister doesn’t want to sit to the right of Father
X31 — "X22 A X32 — TX23
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Example 1 (continued)

m More constraints:
m Each person is placed:
(x1,1 Vx12Vx13) A(x2,1 VX2 Vx23) A(X31V X320V x33)
m Or, more concisely:
3 3
AV
i=1j=1

No person is placed in more than one place:

3 2 3
AVAWAN TG

i=1j=1k=j+I

Overall 9 variables, 26 conjoined constraints.
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Example 2: Assignment of frequencies

m n radio stations
m For each assign one of k transmission frequencies, k < n.

m £ — set of pairs of stations, that are too close to have the same
frequency.

m Question: Can we assign to each station a frequency, such that no
statin pairs from E have the same frequency?
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Example 2 (continued)

m X station i/ is assigned frequency j, for 1 < i< n, 1 <) < k.
m Every station is assigned at least one frequency:

n k
AV i
i=1j=1
m Every station is assigned not more than one frequency:
n k—1
A NG A =0
i=1 j=1 j<t<k

m Close stations are not assigned the same frequency:
For each (i,j) € E,

k
/\(Xi,t = X,¢)

t=1
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Two classes of algorithms for validity

Question: s ¢ satisfiable? (Is = valid?)

Complexity: NP-Complete (Cook's theorem)
m Two classes of algorithms for finding out:

m Enumeration of possible solutions (Truth tables etc.)
m Deduction

More generally (beyond propositional logic):

m Enumeration is possible only in some logics.
m Deduction cannot necessarily be fully automated.
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The satisfiability problem: Enumeration the first

m Given a formula ¢, is ¢ satisfiable?

Boolean SAT(¢){
result:=false ;
for all a€ Ass
result = result V Eval(y, a) ;
return result;
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The satisfiability problem: Enumeration the second

m Given a formula ¢, is ¢ satisfiable?

m Use substitution to eliminate all variables one by one:
¢ iff ¢[0/a] v pll/a]

m There must be a better way to do that in practice.
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Definition: A literal is either an atom or a negation of an atom.
Let ¢ = —=(a VvV —b). Then:

Atoms: AP(y) = {a, b}

Literals: lit(p) = {a, ~b}

Equivalent formulae can have different literals

o =-aAb

Now lit(¢") = {—a, b}
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m Definition: a term is a conjunction of literals
m Example: (aA—-bAc)

m Definition: a clause is a disjunction of literals
m Example: (aV-bVc)
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Negation Normal Form (NNF)

Definition: A formula is in Negation Normal Form (NNF) iff
(1) it contains only =, A and V as connectives and
(2) only atoms are negated.

Examples:
v1 = —(a Vv —b) is not in NNF
w2 =-aAbisin NNF
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Converting to NNF

m Every formula can be converted to NNF in linear time:
m Eliminate all connectives other than A, Vv, =
m Use De Morgan and double-negation rules to push negations to the
right

m Example: ¢ = —(a — —b)
m Eliminate '— ' : ¢ = =(-a Vv —b)
m Push negation using De Morgan: ¢ = (=—a A ——b)
m Use double-negation rule: ¢ = (a A b)
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Disjunctive Normal Form (DNF)

m Definition: A formula is said to be in Disjunctive Normal Form (DNF)
iff it is a disjunction of terms.

m In other words, it is a formula of the form

\/(A li ;)

i

where [; j is the j-th literal in the i-th term.

m Example:
o= (aAN-bAc)V(-and)V(b) isin DNF

m DNF is a special case of NNF
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Converting to DNF

m Every formula can be converted to DNF in exponential time and
space:
Convert to NNF
Distribute disjunctions following the rule:
Ean(bVc)< ((anb)Vv(anc))

m Example:
¢ =(aVb)A(-cVd)
=((avb)A(—c))V((aVvb)Ad)
=(aN—c)V(bA—=c)V(and)V (bAd)

m Question: How many clauses would the DNF have had if we started
from a conjunction of n binary clauses (i.e., clauses with 2 literals)?
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Satisfiability of DNF

m Is the following DNF formula satisfiable?
(al A ax A\ —\al) vV (32 A al) V (32 A —az A 33)

m Question: What is the complexity of the satisfiability check of DNF
formulae?
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Conjunctive Normal Form (CNF)

m Definition: A formula is said to be in Conjunctive Normal Form (CNF)
iff it is a conjunction of clauses.

In other words, it is a formula of the form

/\(\_/ lij)

i

where [; j is the j-th literal in the i-th clause.

m Example:
p=(aVv-bVc)A(-aVvd)A(b) isin CNF

m CNF is a special case of NNF
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Converting to CNF

Every formula can be converted to CNF:

m in exponential time and space with the same set of atoms, or
m in linear time and space if new variables are added.

For the latter—the so-called Tseitin's encoding—the original and the
converted formulae are equi-satisfiable, but not equivalent.

Question: Can there be any such linear transformation into DNF?

Answer: No. Linear DNF transformation and linear DNF solution
would violate the NP-completeness of the problem.
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Converting to CNF: The exponential way

CNF(p){
case
@ is a literal: return ¢
@ is 1 A pa: return CNF(¢1) A CNF(¢2)
@ is 1V pa: return Dist(CNF(p1),CNF(¢2))

Dist(¢1,2) {
case
(1 is Y11 A @127 return DiSt(gOll,gDQ) A\ DiSt((pu,(pQ)

@2 is 21 A @a2: return Dist(p1,21) A Dist(p1,022)
else: return 1 V @2
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Converting to CNF: The exponential way

Consider the formula
Y= (31 /\bl)\/(az/\ b2)
CNF((p) = (31 Vv 32) A (31 V b2) AN (b1 vV 32) A (bl \Y bz)

m Now consider: ¢, = (a1 A b1) V(a2 Ab2) V...V (an A bp)
m Question: How many clauses does CNF(¢p) return?
m Answer: 2"
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Converting to CNF: Tseitin's encoding

m Consider the formula The Parse Tree:

p=(a—(bAc)) h1

ORNOL
OBNG

m Associate a new auxiliary variable with each gate.
m Add constraints that define these new variables.

m Finally, enforce the root node.
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Converting to CNF: Tseitin's encoding

m Need to satisfy: e hy
(hl < (a — /72))/\

(h2 — (b/\ C))/\
(h) e 0 h
OBNO

m Each gate encoding has a CNF representation with 3 or 4 clauses.
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Converting to CNF: Tseitin's encoding

m Need to satisfy:
(h1 > (a — hg)) VAN (h2 > (b A C)) VAN (hl)

m First: (hy VvV a) A (h1V —h2) A (=h1V—aV hy)
m Second: (—hy V b) A (=haV c) A (haV=bV —c)
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Converting to CNF: Tseitin's encoding

m Let's go back to
on=(aAy1) V(2 Ay2) V-V (xy Ayn)

m With Tseitin's encoding we need:
m n auxiliary variables ay, ..., a,.
m Each adds 3 constraints.
m Top clause: (a1 V-V a,)

m Hence, we have
m 3n+1 clauses, instead of 2".
m 3n variables rather than 2n.

Prof. Dr. Erika Abraham - Satisfiability CheckingPropositional Logic



What now?

m Time to solve the decision problem for propositional logic.
m The only algorithm we saw so far was building truth tables.
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Two classes of algorithms for validity

m Question: Is ¢ valid?
m Equivalently: is - satisfiable?

m Two classes of algorithm for finding out:

1 Enumeration of possible solutions (Truth tables etc.)
2 Deduction

m In general (beyond propositional logic):
m Enumeration is possible only in some theories.
m Deduction typically cannot be fully automated.
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The satisfiability problem: Enumeration

m Given a formula ¢, is  satisfiable?

Boolean SAT(¢) {
result := false;
for all a€ Ass
result = result v Eval(p, a);
return result;

}

m NP-Complete (Cook's theorem)
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Deduction requires axioms and inference rules

m Inference rules:

Antecedents
_— (rule-name)
Consequents

Meaning: If all antecedents hold then at least one of the consequents
can be derived.

m Examples:
b b
az i (Trans)
a—c
a—b a
— (M.P.)
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Axioms

m Axioms are inference rules with no antecedents, e.g.,

a—(b—a) (H1)

m We can turn an inference rule into an axiom if we have '—' in the
logic.

m So the difference between them is not sharp.
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A proof uses a given set of axioms and inference rules.
This is called the proof system.
Let H be a proof system.

I F+4 ¢ means: There is a proof of ¢ in system H whose premises are
included in T

4, is called the provability relation.
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m Let H be the proof system comprised of the rules Trans and M.P. that

we saw earlier:
a—b b—c

T
S c (Trans)
a—b a (M.P)
5 .P.

m Does the following relation hold?

a—b b—c,c—d d—e a Fy e
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Deductive proof: Example

a—b b—c,c—d, d—e a Fy e

1. a— b premise
2. b—c premise
3. a—c 1,2, Trans
4, ¢ —d premise
5. d — e premise
6. ¢c—e 4,5 Trans
7. a—e 3,6, Trans
8. a premise
9. e 7, 8, M.P.
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Proof graph (DAG)

a—b b—c c—d d—e

\\Qran§// \\gran§//

a—cC c— €

\\\\\Xtransx/////

a—e€ a

\M.P/
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Correctness and Completeness

m I is a relation defined by syntactic transformations of the underlying
proof system.
m For a given proof system H,
m Correctness: Does | conclude “correct” conclusions from premises?
m Completeness: Can we conclude all true statements with H?
m Correct with respect to what?

m With respect to the semantic definition of the logic. In the case of
propositional logic truth tables give us this.
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Soundness and completeness

m Let H be a proof system

Soundness of H : if Fy ¢ then E o
Completeness of H: if | ¢ then Fy o

m How to prove soundness and completeness?
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Example: Hilbert axiom system (H)

m Let H be (M.P.) together with the following axiom schemes:

a—(b—a) (H1)

Y CEDE D EICED) Ik

(H3)

(mb— —a) —» (a— b)

m H is sound and complete
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Soundness and completeness

m To prove soundness of H, prove the soundness of its axioms and
inference rules (easy with truth-tables).
For example:

a|b|la—(b—a)
0101
0j1|1
11011
1111

m Completeness: harder, but possible.
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The resolution inference system

m The resolution inference rule for CNF:

(IVhVhV..VI) (=IVIv.VvI)

Resoluti
(hV .V, VI .V esolution

m Example:
(avb) (—aVe)

(bVc)

m We first see some example proofs, before proving soundness and
completeness.
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Proof by resolution

mletp=(arVaz)A(-a1VaVas)A(-arVas) A(—arV—as)
m We'll try to prove ¢ — (a3)

(—\31 V 34) (—\81 V —|a4)
N ~

(31 V 33) (—|31)

as
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Resolution

m Resolution is a sound and complete inference system for CNF.

m If the input formula is unsatisfiable, there exists a proof of the empty
clause.
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Let o = (a1 V a3) A (—a1 V a2) A (a1 V ag) A (—ar V —ag) A (—as3) .

(a1 V ag) (a1 V —ayg)

N e
(—a1) (a1 Vv a3)

>~
\/
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Soundness and completeness of resolution

m Soundness is straightforward. Just prove by truth table that

F ((p1Va)A(p2V=a)) = (¢1Vp2).

m Completeness is a bit more involved.
Basic idea: Use resolution for variable elimination .
(aVer)A...A(aVen)A
(maV )AL (maVm)A
R
-~

(pr V1) Ao A (o1 Vdm)A

(en VU1) Ao i(@n Vbm)A
R
where ; (i=1,...,n), ¢ (j=1,...,m), and R contain neither a
nor —a.
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