
Satisfiability Checking
Propositional Logic

Prof. Dr. Erika Ábrahám

Theory of Hybrid Systems
Informatik 2

WS 10/11

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 1 / 82

Propositional logic

The slides are partly taken from:

www.decision-procedures.org/slides/

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 2 / 82

Propositional logic - Outline

Syntax of propositional logic
Semantics of propositional logic
Satisfiability and validity
Modeling with propositional logic
Normal forms
Deductive proofs and resolution

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 3 / 82

Propositional logic - Outline

Syntax of propositional logic
Semantics of propositional logic
Satisfiability and validity
Modeling with propositional logic
Normal forms
Deductive proofs and resolution

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 4 / 82

Syntax of propositional logic

Before we deal with satisfiability of propositional logic formulae, we must
answer two questions:

What is a propositional logic formula?
→ Syntax of propositional logic
What is the meaning of propositional logic formulae?
→ Semantics of propositional logic

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 5 / 82

Syntax of propositional logic

An atomic proposition is a sentence that can be either true or false.

Propositions:
x is greater than y
Noam wrote this letter

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 6 / 82

Syntax of propositional logic

The symbols of the language:
Constants: ⊥ (false), > (true)
Propositional symbols (Prop): a, b, c , . . .
Operators:

Unary:
¬ not

Binary:
∧ and
∨ or
→ implies
↔ equivalent to⊕

xor (different than)

Parentheses: (,)
Question: What is the minimal number of such symbols?
Answer: 1 (NAND)
For convenience, we take 2.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 7 / 82

Formulae

Abstract grammar of well-formed propositional formulae:

ϕ := a | (¬ϕ) | (ϕ ∧ ϕ)

with a ∈ Prop.
Syntactic sugar:

⊥ := (a ∧ ¬a)
> := (a ∨ ¬a)

(ϕ1 ∨ ϕ2) := ¬((¬ϕ1) ∧ (¬ϕ2))
(ϕ1 → ϕ2) := ((¬ϕ1) ∨ ϕ2)
(ϕ1 ↔ ϕ2) := ((ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1))
(ϕ1

⊕
ϕ2) := (ϕ1 ↔ (¬ϕ2))

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 8 / 82

Formulae

Examples of well-formed formulae:
(¬a)
(¬(¬a))
(a ∧ (b ∧ c))
(a→ (b → c))

Correct expressions of propositional logic are full of unnecessary
parenthesis.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 9 / 82

Formulae

Abbreviations:

We write a op b op c op . . .

in place of (a op (b op(c op . . .)))

Thus, we write a ∧ b ∧ c , a→ b → c , . . .

in place of (a ∧ (b ∧ c)), (a→ (b → c)), . . .

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 10 / 82

Formulae

We omit parenthesis whenever we may restore them through operator
precedence

binds stronger

¬ ∧ ∨ → ↔

Thus, we write:
¬¬a for (¬(¬a)),
¬a ∧ b for ((¬a) ∧ b)
a ∧ b → c for ((a ∧ b)→ c)
. . .

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 11 / 82

Propositional logic - Outline

Syntax of propositional logic
Semantics of propositional logic
Satisfiability and validity
Modeling with propositional logic
Normal forms
Deductive proofs and resolution

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 12 / 82

Semantics of propositional logic

Truth tables define the semantics (=meaning) of the operators
Convention: 0= false, 1= true

p q ¬p p ∧ q p ∨ q p → q p ↔ q p
⊕

q
0 0 1 0 0 1 1 0
0 1 1 0 1 1 0 1
1 0 0 0 1 0 0 1
1 1 0 1 1 1 1 0

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 13 / 82

Question

Question: How many binary operators can we define that have
different semantics?
Answer: 16

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 14 / 82

Assignments

A truth-value assignment α is a mapping from variables to truth
values:
α : Prop→ {0, 1}
Let Ass denote the set of all assignments.
Example: Prop = {a, b}, α(a) = 0, α(b) = 1
Equivalently, we can see α as an element of 2Prop

(i.e., α ∈ 2Prop with 2Prop the set of subsets of Prop).
Meaning: α is the set of those variables that are assigned to true.
Example: Prop = {a, b}, α = {b}
An assignment can also be seen as being of type α ∈ {0, 1}Prop, if we
have an order on the propositions.
Example: Prop = {a, b}, α = {01}

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 15 / 82

Satisfaction relation (|=): Intuition

An assignment can either satisfy or not satisfy a given formula.

α |= ϕ means
α satisfies ϕ or
ϕ holds for α or
α is a model of ϕ

We will first see an example.
Then we will define these notions formally.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 16 / 82

Example

Let ϕ be defined as (a ∨ (b → c)).
Let α : {a, b, c} → {0, 1} be an assignment with
α(a) = 0, α(b) = 0, and α(c) = 1.

Question: Does α satisfy ϕ?
In symbols: Does it hold that α |= ϕ?

Answer: (0 ∨ (0→ 1)) = (0 ∨ 1) = 1
Hence, α |= ϕ.

Let us now formalize an evaluation process.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 17 / 82

The satisfaction relation |=: Formalization

|= is a relation: |= ⊆ Ass × Formula
Examples:

(α,a ∨ b) ∈ |= or α |= a ∨ b iff α(a) = 1 or α(b) = 1
(α,a ∧ b) ∈ |= or α |= a ∧ b iff α(a) = 1 and α(b) = 1

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 18 / 82

The satisfaction relation (|=): Formalization

|= is defined recursively:
α |= p iff α(p) = true
α |= ¬ϕ iff α 6 |= ϕ
α |= ϕ1 ∧ ϕ2 iff α |= ϕ1 and α |= ϕ2
α |= ϕ1 ∨ ϕ2 iff α |= ϕ1 or α |= ϕ2
α |= ϕ1 → ϕ2 iff α |= ϕ1 implies α |= ϕ2
α |= ϕ1 ↔ ϕ2 iff α |= ϕ1 iff α |= ϕ2

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 19 / 82

From definition to an evaluation algorithm

Truth evaluation problem:
Given ϕ ∈ Formula and α : AP→ {0, 1}, does α |= ϕ?

Eval(ϕ, α) {
i f ϕ ≡ a return α(a) ;
i f ϕ ≡ (¬ϕ1) return ¬Eval(ϕ1, α) ;
i f ϕ ≡ (ϕ1 op ϕ2)

return Eval(ϕ1, α) op Eval(ϕ2, α) ;
}

Eval uses polynomial time and space.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 20 / 82

It doesn’t give us more than what we already know...

Recall our example
Let ϕ = (a ∨ (b → c))
Let α = {a→ 0, b → 0, c → 1}

Eval(ϕ, α) = Eval(a, α) ∨ Eval(b → c , α) =
0 ∨ (Eval(b, α)→ Eval(c , α)) =
0 ∨ (0→ 1) =
0 ∨ 1 =
1

Hence, α |= ϕ.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 21 / 82

We can now extend the truth table to formulae

p q (p → (q → p)) (p ∧ ¬p)

0 0 1 0
0 1 1 0
1 0 1 0
1 1 1 0

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 22 / 82

Set of assignments

Intuition: a formula specifies a set of truth assignments.
Remember: Ass denotes the set of all assignments.
Function models : Formula→ 2Ass

(a formula → set of satisfying assignments)
Recursive definition:

models(a) = {α | α(a) = 1}, a ∈ Prop
models(¬ϕ1) = Ass \ models(ϕ1)
models(ϕ1 ∧ ϕ2) = models(ϕ1) ∩models(ϕ2)
models(ϕ1 ∨ ϕ2) = models(ϕ1) ∪models(ϕ2)
models(ϕ1 → ϕ2) = (Ass \ models(ϕ1)) ∪models(ϕ2)

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 23 / 82

Example

models(a ∨ b) = {α ∈ Ass | α(a) = 1 or α(b) = 1}

This is compatible with the recursive definition:

models(a ∨ b) = models(a) ∪models(b) =

{α ∈ Ass | α(a) = 1} ∪ {α ∈ Ass | α(b) = 1}

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 24 / 82

Theorem

Let ϕ ∈ Formula and α ∈ Ass, then the following statements are
equivalent:

1. α |= ϕ
2. α ∈ models(ϕ)

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 25 / 82

Only the projected assignment matters...

AP(ϕ) - the atomic propositions in ϕ.
Clearly AP(ϕ) ⊆ Prop.
Let α1, α2 ∈ Ass and ϕ ∈ Formula.
Lemma: if α1|AP(ϕ) = α2|AP(ϕ) , then

Projection

α1 |= ϕ iff α2 |= ϕ

Corollary: α |= ϕ iff α|AP(ϕ) |= ϕ

We will assume, for simplicity, that Prop = AP(ϕ).

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 26 / 82

Extension of |= to sets of assignments

Let ϕ ∈ Formula.
Let T be a set of assignments, i.e., T ⊆ 2Ass

Definition: |= ⊆ 2Ass× Formula with

T |= ϕ iff T ⊆ models(ϕ)

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 27 / 82

Extension of |= to formulae

|= ⊆ 2Formula × 2Formula

Definition. Let ϕ1, ϕ2 be propositional formulae.
ϕ1 |= ϕ2

iff models(ϕ1) ⊆ models(ϕ2), or equivalently
iff for all α ∈ Ass

if α |= ϕ1 then α |= ϕ2

Examples:
x1 ∧ x2 |= x1 ∨ x2
x1 ∧ x2 |= x2 ∨ x3

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 28 / 82

Short summary for propositional logic

Syntax: ϕ := prop | (¬ϕ) | (ϕ ∧ ϕ)

Semantics:

Assignments:
α : Prop→ {0, 1}
α ∈ 2Prop

α ∈ {0, 1}Prop

Satisfiability relation:

|= ⊆ Ass× Formula , (e.g., α |=ϕ)
|= ⊆ 2Ass × Formula , (e.g., T |=ϕ)
|= ⊆ Formula× Formula , (e.g., ϕ1|=ϕ2)
models : Formula→ 2Ass, (e.g., models(ϕ))

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 29 / 82

Propositional logic - Outline

Syntax of propositional logic
Semantics of propositional logic
Satisfiability and validity
Modeling with propositional logic
Normal forms
Deductive proofs and resolution

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 30 / 82

Semantic classification of formulae

A formula ϕ is called valid if models(ϕ) = Ass.
(Also called a tautology).

A formula ϕ is called satisfiable if models(ϕ) 6= ∅.

A formula ϕ is called unsatisfiable if models(ϕ) = ∅.
(Also called a contradiction).

satisfiable unsatisfiable

valid

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 31 / 82

Validity and satisfiability

p q (p → (q → q)) (p ∧ ¬p) p ∨ ¬q
0 0 1 0 1
0 1 1 0 0
1 0 1 0 1
1 1 1 0 1

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 32 / 82

Characteristics of formulae

Lemma:
A formula ϕ is valid iff ¬ϕ is unsatisfiable
ϕ is satisfiable iff ¬ϕ is not valid

Is ϕ valid? Satisfiability
checker

yes

no

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 33 / 82

Look what we can do now...

We can write:

|= ϕ when ϕ is valid

6|= ϕ when ϕ is not valid

6|= ¬ϕ when ϕ is satisfiable

|= ¬ϕ when ϕ is unsatisfiable

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 34 / 82

Examples

(x1 ∧ x2)→ (x1 ∨ x2)

(x1 ∨ x2)→ x1
(x1 ∧ x2) ∧ ¬x1

is valid
is satisfiable
is unsatisfiable

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 35 / 82

Time for equivalences

Here are some valid formulae:
|= a ∧ 1↔ a
|= a ∧ 0↔ 0
|= ¬¬a↔ a // The double-negation rule
|= a ∧ (b ∨ c)↔ (a ∧ b) ∨ (a ∧ c)

Some more (De Morgan rules):
|= ¬(a ∧ b)↔ (¬a ∨ ¬b)
|= ¬(a ∨ b)↔ (¬a ∧ ¬b)

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 36 / 82

The decision problem of formulae

The decision problem:

Given a propositional formula ϕ, is ϕ satisfiable?

An algorithm that always terminates with a correct answer to this
problem is called a decision procedure for propositional logic.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 37 / 82

Propositional logic - Outline

Syntax of propositional logic
Semantics of propositional logic
Satisfiability and validity
Modeling with propositional logic
Normal forms
Deductive proofs and resolution

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 38 / 82

Before we solve this problem...

Suppose we can solve the satisfiability problem... how can this help us?

There are numerous problems in the industry that are solved via the
satisfiability problem of propositional logic

Logistics
Planning
Electronic Design Automation industry
Cryptography
. . .

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 39 / 82

Example 1: Placement of wedding guests

Three chairs in a row: 1, 2, 3
We need to place Aunt, Sister and Father.
Constraints:

Aunt doesn’t want to sit near Father
Aunt doesn’t want to sit in the left chair
Sister doesn’t want to sit to the right of Father

Question: Can we satisfy these constraints?

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 40 / 82

Example 1 (continued)

Denote: Aunt = 1, Sister = 2, Father = 3
Introduce a propositional variable for each pair (person, place).
xij = “person i is sited in place j , for 1 ≤ i , j ≤ 3”
Constraints:

Aunt doesn’t want to sit near Father:
((x1,1 ∨ x1,3)→ ¬x3,2) ∧ (x1,2 → (¬x3,1 ∧ ¬x3,3))
Aunt doesn’t want to sit in the left chair
¬x1,1
Sister doesn’t want to sit to the right of Father
x3,1 → ¬x2,2 ∧ x3,2 → ¬x2,3

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 41 / 82

Example 1 (continued)

More constraints:
Each person is placed:
(x1,1 ∨ x1,2 ∨ x1,3) ∧ (x2,1 ∨ x2,2 ∨ x2,3) ∧ (x3,1 ∨ x3,2 ∨ x3,3)

Or, more concisely:
3∧

i=1

3∨
j=1

xi ,j

No person is placed in more than one place:

3∧
i=1

2∧
j=1

3∧
k=j+l

(¬xi ,j ∨ ¬xi ,k)

Overall 9 variables, 26 conjoined constraints.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 42 / 82

Example 2: Assignment of frequencies

n radio stations
For each assign one of k transmission frequencies, k < n.
E – set of pairs of stations, that are too close to have the same
frequency.

Question: Can we assign to each station a frequency, such that no
statin pairs from E have the same frequency?

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 43 / 82

Example 2 (continued)

xi ,j : station i is assigned frequency j , for 1 ≤ i ≤ n, 1 ≤ j ≤ k .
Every station is assigned at least one frequency:

n∧
i=1

k∨
j=1

xi,j

Every station is assigned not more than one frequency:

n∧
i=1

k−1∧
j=1

(xi,j →
∧

j<t≤k

¬xi,t)

Close stations are not assigned the same frequency:
For each (i , j) ∈ E ,

k∧
t=1

(xi,t → ¬xj,t)

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 44 / 82

Two classes of algorithms for validity

Question: Is ϕ satisfiable? (Is ¬ϕ valid?)
Complexity: NP-Complete (Cook’s theorem)
Two classes of algorithms for finding out:

Enumeration of possible solutions (Truth tables etc.)
Deduction

More generally (beyond propositional logic):
Enumeration is possible only in some logics.
Deduction cannot necessarily be fully automated.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 45 / 82

The satisfiability problem: Enumeration the first

Given a formula ϕ, is ϕ satisfiable?

Boolean SAT(ϕ){
result:= f a l s e ;
fo r a l l α ∈ Ass
result = result ∨ Eval(ϕ, α) ;

return result ;
}

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 46 / 82

The satisfiability problem: Enumeration the second

Given a formula ϕ, is ϕ satisfiable?
Use substitution to eliminate all variables one by one:

ϕ iff ϕ[0/a] ∨ ϕ[1/a]

There must be a better way to do that in practice.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 47 / 82

Propositional logic - Outline

Syntax of propositional logic
Semantics of propositional logic
Satisfiability and validity
Modeling with propositional logic
Normal forms
Deductive proofs and resolution

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 48 / 82

Definitions

Definition: A literal is either an atom or a negation of an atom.
Let ϕ = ¬(a ∨ ¬b). Then:
Atoms: AP(ϕ) = {a, b}
Literals: lit(ϕ) = {a,¬b}
Equivalent formulae can have different literals
ϕ′ = ¬a ∧ b
Now lit(ϕ′) = {¬a, b}

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 49 / 82

Definitions

Definition: a term is a conjunction of literals
Example: (a ∧ ¬b ∧ c)

Definition: a clause is a disjunction of literals
Example: (a ∨ ¬b ∨ c)

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 50 / 82

Negation Normal Form (NNF)

Definition: A formula is in Negation Normal Form (NNF) iff
(1) it contains only ¬, ∧ and ∨ as connectives and
(2) only atoms are negated.

Examples:
ϕ1 = ¬(a ∨ ¬b) is not in NNF
ϕ2 = ¬a ∧ b is in NNF

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 51 / 82

Converting to NNF

Every formula can be converted to NNF in linear time:
Eliminate all connectives other than ∧, ∨, ¬
Use De Morgan and double-negation rules to push negations to the
right

Example: ϕ = ¬(a→ ¬b)

Eliminate ’→ ’ : ϕ = ¬(¬a ∨ ¬b)
Push negation using De Morgan: ϕ = (¬¬a ∧ ¬¬b)
Use double-negation rule: ϕ = (a ∧ b)

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 52 / 82

Disjunctive Normal Form (DNF)

Definition: A formula is said to be in Disjunctive Normal Form (DNF)
iff it is a disjunction of terms.

In other words, it is a formula of the form∨
i

(
∧
j

li,j)

where li,j is the j-th literal in the i-th term.

Example:

ϕ = (a ∧ ¬b ∧ c) ∨ (¬a ∧ d) ∨ (b) is in DNF

DNF is a special case of NNF

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 53 / 82

Converting to DNF

Every formula can be converted to DNF in exponential time and
space:

1 Convert to NNF
2 Distribute disjunctions following the rule:
|= a ∧ (b ∨ c)↔ ((a ∧ b) ∨ (a ∧ c))

Example:

ϕ = (a ∨ b) ∧ (¬c ∨ d)
= ((a ∨ b) ∧ (¬c)) ∨ ((a ∨ b) ∧ d)
= (a ∧ ¬c) ∨ (b ∧ ¬c) ∨ (a ∧ d) ∨ (b ∧ d)

Question: How many clauses would the DNF have had if we started
from a conjunction of n binary clauses (i.e., clauses with 2 literals)?

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 54 / 82

Satisfiability of DNF

Is the following DNF formula satisfiable?
(a1 ∧ a2 ∧ ¬a1) ∨ (a2 ∧ a1) ∨ (a2 ∧ ¬a3 ∧ a3)

Question: What is the complexity of the satisfiability check of DNF
formulae?

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 55 / 82

Conjunctive Normal Form (CNF)

Definition: A formula is said to be in Conjunctive Normal Form (CNF)
iff it is a conjunction of clauses.
In other words, it is a formula of the form∧

i

(
∨
j

li ,j)

where li ,j is the j-th literal in the i-th clause.

Example:

ϕ = (a ∨ ¬b ∨ c) ∧ (¬a ∨ d) ∧ (b) is in CNF

CNF is a special case of NNF

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 56 / 82

Converting to CNF

Every formula can be converted to CNF:
in exponential time and space with the same set of atoms, or
in linear time and space if new variables are added.

For the latter—the so-called Tseitin’s encoding—the original and the
converted formulae are equi-satisfiable, but not equivalent.

Question: Can there be any such linear transformation into DNF?
Answer: No. Linear DNF transformation and linear DNF solution
would violate the NP-completeness of the problem.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 57 / 82

Converting to CNF: The exponential way

CNF(ϕ){
case

ϕ is a literal: return ϕ
ϕ is ϕ1 ∧ ϕ2: return CNF(ϕ1) ∧ CNF(ϕ2)
ϕ is ϕ1 ∨ ϕ2: return Dist(CNF(ϕ1),CNF(ϕ2))

}

Dist(ϕ1,ϕ2) {
case

ϕ1 is ϕ11 ∧ ϕ12: return Dist(ϕ11,ϕ2) ∧ Dist(ϕ12,ϕ2)
ϕ2 is ϕ21 ∧ ϕ22: return Dist(ϕ1,ϕ21) ∧ Dist(ϕ1,ϕ22)
else: return ϕ1 ∨ ϕ2

}

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 58 / 82

Converting to CNF: The exponential way

Consider the formula
ϕ = (a1 ∧ b1) ∨ (a2 ∧ b2)

CNF(ϕ) = (a1 ∨ a2) ∧ (a1 ∨ b2) ∧ (b1 ∨ a2) ∧ (b1 ∨ b2)

Now consider: ϕn = (a1 ∧ b1) ∨ (a2 ∧ b2) ∨ . . . ∨ (an ∧ bn)

Question: How many clauses does CNF(ϕ) return?
Answer: 2n

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 59 / 82

Converting to CNF: Tseitin’s encoding

Consider the formula
ϕ = (a→ (b ∧ c))

The Parse Tree:

→ h1

a ∧ h2

b c

Associate a new auxiliary variable with each gate.
Add constraints that define these new variables.
Finally, enforce the root node.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 60 / 82

Converting to CNF: Tseitin’s encoding

Need to satisfy:
(h1 ↔ (a → h2))∧
(h2 ↔ (b ∧ c))∧
(h1)

→ h1

a ∧ h2

b c

Each gate encoding has a CNF representation with 3 or 4 clauses.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 61 / 82

Converting to CNF: Tseitin’s encoding

Need to satisfy:
(h1 ↔ (a→ h2)) ∧ (h2 ↔ (b ∧ c)) ∧ (h1)

First: (h1 ∨ a) ∧ (h1 ∨ ¬h2) ∧ (¬h1 ∨ ¬a ∨ h2)

Second: (¬h2 ∨ b) ∧ (¬h2 ∨ c) ∧ (h2 ∨ ¬b ∨ ¬c)

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 62 / 82

Converting to CNF: Tseitin’s encoding

Let’s go back to
ϕn = (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xn ∧ yn)

With Tseitin’s encoding we need:
n auxiliary variables a1, . . . , an.
Each adds 3 constraints.
Top clause: (a1 ∨ · · · ∨ an)

Hence, we have
3n + 1 clauses, instead of 2n.
3n variables rather than 2n.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 63 / 82

What now?

Time to solve the decision problem for propositional logic.
The only algorithm we saw so far was building truth tables.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 64 / 82

Two classes of algorithms for validity

Question: Is ϕ valid?
Equivalently: is ¬ϕ satisfiable?

Two classes of algorithm for finding out:
1 Enumeration of possible solutions (Truth tables etc.)
2 Deduction

In general (beyond propositional logic):
Enumeration is possible only in some theories.
Deduction typically cannot be fully automated.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 65 / 82

The satisfiability problem: Enumeration

Given a formula ϕ, is ϕ satisfiable?

Boolean SAT(ϕ) {
result := false ;
fo r a l l α ∈ Ass

result = result ∨ Eval(ϕ, α) ;
return result ;

}

NP-Complete (Cook’s theorem)

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 66 / 82

Propositional logic - Outline

Syntax of propositional logic
Semantics of propositional logic
Satisfiability and validity
Modeling with propositional logic
Normal forms
Deductive proofs and resolution

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 67 / 82

Deduction requires axioms and inference rules

Inference rules:
Antecedents
Consequents

(rule-name)

Meaning: If all antecedents hold then at least one of the consequents
can be derived.
Examples:

a→ b b → c
a→ c

(Trans)

a→ b a
b

(M.P.)

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 68 / 82

Axioms

Axioms are inference rules with no antecedents, e.g.,

a→ (b → a)
(H1)

We can turn an inference rule into an axiom if we have ’→’ in the
logic.
So the difference between them is not sharp.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 69 / 82

Proofs

A proof uses a given set of axioms and inference rules.
This is called the proof system.
Let H be a proof system.
Γ `H ϕ means: There is a proof of ϕ in system H whose premises are
included in Γ

`H is called the provability relation.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 70 / 82

Example

Let H be the proof system comprised of the rules Trans and M.P. that
we saw earlier:

a→ b b → c
a→ c

(Trans)

a→ b a
b

(M.P.)

Does the following relation hold?

a→ b, b → c , c → d , d → e, a `H e

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 71 / 82

Deductive proof: Example

a→ b, b → c , c → d , d → e, a `H e

1. a→ b premise
2. b → c premise
3. a→ c 1, 2, Trans
4. c → d premise
5. d → e premise
6. c → e 4, 5, Trans
7. a→ e 3, 6, Trans
8. a premise
9. e 7, 8, M.P.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 72 / 82

Proof graph (DAG)

e
M.P.

a→ e
trans

a→ c
trans

a→ b b → c

c → e
trans

c → d d → e

a

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 73 / 82

Correctness and Completeness

` is a relation defined by syntactic transformations of the underlying
proof system.
For a given proof system H,

Correctness: Does ` conclude “correct” conclusions from premises?
Completeness: Can we conclude all true statements with H?

Correct with respect to what?
With respect to the semantic definition of the logic. In the case of
propositional logic truth tables give us this.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 74 / 82

Soundness and completeness

Let H be a proof system

Soundness of H : if `H ϕ then |= ϕ
Completeness of H : if |= ϕ then `H ϕ

How to prove soundness and completeness?

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 75 / 82

Example: Hilbert axiom system (H)

Let H be (M.P.) together with the following axiom schemes:

a→ (b → a)
(H1)

((a→ (b → c))→ ((a→ b)→ (a→ c)))
(H2)

(¬b → ¬a)→ (a→ b)
(H3)

H is sound and complete

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 76 / 82

Soundness and completeness

To prove soundness of H, prove the soundness of its axioms and
inference rules (easy with truth-tables).
For example:

a b a→ (b → a)

0 0 1
0 1 1
1 0 1
1 1 1

Completeness: harder, but possible.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 77 / 82

The resolution inference system

The resolution inference rule for CNF:

(l ∨ l1 ∨ l2 ∨ ... ∨ ln) (¬l ∨ l ′1 ∨ ... ∨ l ′m)

(l1 ∨ ... ∨ ln ∨ l ′1 ∨ ... ∨ l ′m)
Resolution

Example:
(a ∨ b) (¬a ∨ c)

(b ∨ c)

We first see some example proofs, before proving soundness and
completeness.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 78 / 82

Proof by resolution

Let ϕ = (a1 ∨ a3) ∧ (¬a1 ∨ a2 ∨ a5) ∧ (¬a1 ∨ a4) ∧ (¬a1 ∨ ¬a4)

We’ll try to prove ϕ → (a3)

(a3)

(a1 ∨ a3) (¬a1)

(¬a1 ∨ a4) (¬a1 ∨ ¬a4)

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 79 / 82

Resolution

Resolution is a sound and complete inference system for CNF.
If the input formula is unsatisfiable, there exists a proof of the empty
clause.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 80 / 82

Example

Let ϕ = (a1 ∨ a3) ∧ (¬a1 ∨ a2) ∧ (¬a1 ∨ a4) ∧ (¬a1 ∨ ¬a4) ∧ (¬a3) .

()

a3

(¬a1)

(¬a1 ∨ a4) (¬a1 ∨ ¬a4)

(a1 ∨ a3)

¬a3

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 81 / 82

Soundness and completeness of resolution

Soundness is straightforward. Just prove by truth table that

|= ((ϕ1 ∨ a) ∧ (ϕ2 ∨ ¬a))→ (ϕ1 ∨ ϕ2).

Completeness is a bit more involved.
Basic idea: Use resolution for variable elimination .

(a ∨ ϕ1) ∧ . . . ∧ (a ∨ ϕn)∧
(¬a ∨ ψ1) ∧ . . . (¬a ∨ ψm)∧

R
⇔

(ϕ1 ∨ ψ1) ∧ . . . ∧ (ϕ1 ∨ ψm)∧
. . .

(ϕn ∨ ψ1) ∧ . . . (ϕn ∨ ψm)∧
R

where ϕi (i = 1, . . . , n), ψj (j = 1, . . . ,m), and R contain neither a
nor ¬a.

Prof. Dr. Erika Ábrahám - Satisfiability CheckingPropositional Logic 82 / 82

	Propositional logic

