
Satisfiability Checking
SAT-Solving

Prof. Dr. Erika Ábrahám

Theory of Hybrid Systems
Informatik 2

WS 10/11

Prof. Dr. Erika Ábrahám - Satisfiability Checking 1 / 40

A basic SAT algorithm

Assume the CNF formula
φ : (x ∨ y ∨ z) ∧ (¬x ∨ y) ∧ (¬y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)

φ

(y) ∧ (¬y ∨ z) ∧ (¬y ∨ ¬z)

(z) ∧ (¬z)

() ()

()

(y ∨ z) ∧ (¬y ∨ z)

(y), (¬y)

() ()

x ¬x

z ¬zy ¬y

z ¬z y ¬yXX

X X X X

Decide()

BCP()

Resolve_Conflict()

Prof. Dr. Erika Ábrahám - Satisfiability Checking 2 / 40

A basic SAT algorithm

while (true)
{

if (!decide()) return SAT;
while (!BCP())

if (!resolve_conflict()) return UNSAT;
}

Choose the next variable
and value.
Return false if all variables
are assigned.

Boolean Constraint Prop-
agation. Return false if
reached a conflict.

Conflict resolution and
backtracking. Return false
if impossible.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 3 / 40

SAT-solving: Components

Decision
Boolean Constraint Propagation (BCP)
Conflict resolution and backtracking

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 40

SAT-solving: Components

Decision
Boolean Constraint Propagation (BCP)
Conflict resolution and backtracking

Prof. Dr. Erika Ábrahám - Satisfiability Checking 5 / 40

Decision heuristics - DLIS

DLIS (Dynamic Largest Individual Sum) – choose the assignment that
increases the most the number of satisfied clauses

For a given variable x:
Cxp – # unresolved clauses in which x appears positively
Cxn - # unresolved clauses in which x appears negatively
Let x be the literal for which Cxp is maximal
Let y be the literal for which Cyn is maximal
If Cxp > Cyn choose x and assign it TRUE
Otherwise choose y and assign it FALSE

Requires O(#literals) queries for each decision.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 6 / 40

Decision heuristics - DLIS

Jersolow-Wang method

Compute for every clause c and every literal l:

J(l) :
∑

l∈c,c∈φ
2−|c|

Choose a literal l that maximizes J(l).
This gives an exponentially higher weight to literals in shorter clauses

Prof. Dr. Erika Ábrahám - Satisfiability Checking 7 / 40

Pause... ||

We will see other (more advanced) decision heuristics soon.

These heuristics are integrated with a mechanism called learning of
conflict clauses, which we will learn soon.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 8 / 40

SAT-solving: Components

Decision
Boolean Constraint Propagation (BCP)
Conflict resolution and backtracking

Prof. Dr. Erika Ábrahám - Satisfiability Checking 9 / 40

Status of clause

A clause can be
satisfied: at least one literal is satisfied
unsatisfied: all literals are assigned but none are statisfied
unit: all but one literals are assigned but none are satisfied
unresolved: all other cases

Example: c = (x1 ∨ x2 ∨ x3)
x1 x2 x3 c

1 0 satisfied
0 0 0 unsatisfied
0 0 unit

0 unresolved

BCP: Unit clauses are used to imply consequences of decisions.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 10 / 40

Implication graph

Organize the search in the form of an implication graph

Each node corresponds to a variable assignment

Definition: Decision Level (DL) is the depth of the node in the decision
tree.

Notation: x = v@d
x is assigned to v ∈ {0, 1} at the decision level d

Prof. Dr. Erika Ábrahám - Satisfiability Checking 11 / 40

Formalisation: Implication graph

Definition
An implication graph is a labeled directed acyclic graph G(V,E), where

V represents the literals of the current partial assignment.
Each node is labeled with the literal that it represents and the decision
level at which it entered the partial assignment.
E with E = {(vi, vj)|vi, vj ∈ V, vi 6= vj ,¬vi ∈ Antecedent(vj)}
denotes the set of directed edges where each edge (vi, vj) is labeled
with Antecedent(vj).
G can also contain a single conflict node labeled with κ and incoming
edges {(v, κ)|¬v ∈ c} labeled with c for some conflicting clause c.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 12 / 40

Implication graph: Example

Current truth assignment:

{x7 = 0@1, x8 = 0@2, x9 = 0@3}

Current decision assignment: {x1 = 1@4}
x8 = 0@2

x2 = 1@4 x5 = 1@4

x1 = 1@4 x4 = 1@4 κ

x3 = 1@4 x6 = 1@4

x7 = 0@1 x9 = 0@3

conflict

c4

c1 c6
c4c3

c2
c3

c2

c5

c5

c6

c1 = (¬x1 ∨ x2)
c2 = (¬x1 ∨ x3 ∨ x7)
c3 = (¬x2 ∨ ¬x3 ∨ x4)
c4 = (¬x4 ∨ x5 ∨ x8)
c5 = (¬x4 ∨ x6 ∨ x9)
c6 = (¬x5 ∨ ¬x6)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 13 / 40

Watches

For BCP, it would be a large effort to check for each propagation the
value of each literal in each clause.
One could keep for each literal a list of clauses in which it occurs.
It is even enough to watch two literals in each clause such that either
one of them is true or both are unassigned.
If a literal l gets true, we check each clause in which ¬l is a watch
literal (which is now false).

If the other watch is true, the clause is satisfied.
Else, if we find a new watch position, we are done.
Else, if the other watch is unassigned, the clause is unit.
Else, if the other watch is false, the clause is conflicting.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 14 / 40

SAT-solving: Components

Decision
Boolean Constraint Propagation (BCP)
Conflict resolution and backtracking

Basic backtracking
Non-chronological backtracking
Conflict-driven backtracking

Prof. Dr. Erika Ábrahám - Satisfiability Checking 15 / 40

Basic backtracking search in action

x1

x2

{(x1, 0), (x2, 0), (x3, 1)}{(x1, 1), (x2, 0), (x3, 1), (x4, 0)}

x1 = 0@1

x2 = 0@2

⇒ x3 = 1@2

x1 = 1@1

⇒ x4 = 0@1

⇒ x2 = 0@1

⇒ x3 = 1@1

c1 = (x2 ∨ x3)
c2 = (¬x1 ∨ ¬x4)
c3 = (¬x2 ∨ x4)

No backtrack in this example!

Prof. Dr. Erika Ábrahám - Satisfiability Checking 16 / 40

Basic backtracking search in action

x1

x2

{(x1, 0), (x2, 0), (x3, 1)}conflict

x1 = 0@1

x2 = 0@2

⇒ x3 = 1@2

x1 = 1@1

⇒ x4 = 0@1

⇒ x2 = 0@1

⇒ x3 = 1@1

c1 = (x2 ∨ x3)
c2 = (¬x1 ∨ ¬x4)
c3 = (¬x2 ∨ x4)
c4 = (¬x1 ∨ x2 ∨ ¬x3)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 17 / 40

SAT-solving: Components

Decision
Boolean Constraint Propagation (BCP)
Conflict resolution and backtracking

Basic backtracking
Non-chronological backtracking
Conflict-driven backtracking

Prof. Dr. Erika Ábrahám - Satisfiability Checking 18 / 40

Non-chronological backtracking

Current truth assignment:

{x7 = 0@1, x8 = 0@2, x9 = 0@3}

Current decision assignment: {x1 = 1@4}
x8 = 0@2

x2 = 1@4 x5 = 1@4

x1 = 1@4 x4 = 1@4 κ

x3 = 1@4 x6 = 1@4

x7 = 0@1 x9 = 0@3

conflict

c4

c1 c6
c4c3

c2
c3

c2

c5

c5

c6

c1 = (¬x1 ∨ x2)
c2 = (¬x1 ∨ x3 ∨ x7)
c3 = (¬x2 ∨ ¬x3 ∨ x4)
c4 = (¬x4 ∨ x5 ∨ x8)
c5 = (¬x4 ∨ x6 ∨ x9)
c6 = (¬x5 ∨ ¬x6)

We learn the conflict clause c7 : (¬x1 ∨ x7 ∨ x8 ∨ x9)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 19 / 40

Non-chronological backtracking

What to do now?
Undo decision level 4.
Propagate in the new clause c7 at decision level 3.
It leads to a new assignment at decision level 3.
Propagate the newly assigned literals.

So the rule is:
Backtrack to the largest decision level in the conflict clause,
propagate in the learned clause, and
propagate all new assignments.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 20 / 40

SAT-solving: Components

Decision
Boolean Constraint Propagation (BCP)
Conflict resolution and backtracking

Basic backtracking
Non-chronological backtracking
Conflict-driven backtracking

Prof. Dr. Erika Ábrahám - Satisfiability Checking 21 / 40

More conflict clauses

Def: A conflict clause is any clause implied by the formula.
Let L be a set of literals labeling nodes that form a cut in the
implication graph, seperating the conflict node from the roots.
Claim: ∨l∈L¬l is a conflict clause.

x8 = 0@2

x2 = 1@4 x5 = 1@4

x1 = 1@4 x4 = 1@4 κ

x3 = 1@4 x6 = 1@4

x7 = 0@1 x9 = 0@3

conflict

c4

c1 c6
c4c3

c2
c3

c2

c5

c5

c6

1

2

3

1.(x8 ∨ ¬x1 ∨ x7 ∨ x9)

2.(x8 ∨ ¬x4 ∨ x9)

3.(x8 ∨ ¬x2 ∨ ¬x3 ∨ x9)

...

...

Prof. Dr. Erika Ábrahám - Satisfiability Checking 22 / 40

Conflict clauses

How many clauses should we add?
If not all, then which ones?

Shorter ones?
Check their influence on the backtracking level?
The most "influential"?

Prof. Dr. Erika Ábrahám - Satisfiability Checking 23 / 40

Conflict clauses

Def: An asserting clause is a conflict clause with a single literal from
the current decision level.
Backtracking (to the right level) makes it a unit clause.
Asserting clauses are those that force an immediate change in the
search path.
Modern solvers only consider asserting clauses.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 24 / 40

Unique Implication Points (UIP’s)

Definition: A Unique Implication Point (UIP) is an internal node in
the implication graph such that all paths from the last decision to the
conflict node go through it.
The first UIP is the UIP closest to the conflict.

UIP UIP
κ

conflict

c4

c1 c6
c4c3

c2
c3

c2

c5

c5

c6

Prof. Dr. Erika Ábrahám - Satisfiability Checking 25 / 40

Conflict-driven backtracking

So the rule is: backtrack to the second highest decision level dl, but
do not erase it.
This way the literal with the currently highest decision level will be
implied at decision level dl.
Question: What if the conflict clause has a single literal?

For example, from (x ∨ ¬y) ∧ (x ∨ y) and decision x = 0, we learn the
conflict clause (x).

Prof. Dr. Erika Ábrahám - Satisfiability Checking 26 / 40

Progress of a SAT solver

work invested in refuting x = 1

Decision
Level

Time

Refutation of x = 1

Decision

Conflict

x = 1

C1

C2

C3

C4

C5

C

Prof. Dr. Erika Ábrahám - Satisfiability Checking 27 / 40

Conflict clauses and resolution

The binary resolution is a sound (and complete) inference rule:

(β ∨ a1 ∨ ... ∨ an) (¬β ∨ b1 ∨ ... ∨ bm)
(a1 ∨ ... ∨ an ∨ b1 ∨ ... ∨ bm)

(Binary Resolution)

Example:

(x1 ∨ x2) (¬x1 ∨ x3 ∨ x4)
(x2 ∨ x3 ∨ x4)

What is the relation of resolution and conflict clauses?

Prof. Dr. Erika Ábrahám - Satisfiability Checking 28 / 40

Conflict clauses and resolution

Consider the following example:

x2 = 0@2

x5 = 1@5

x4 = 1@5
x7 = 0@5

x6 = 1@5

x10 = 0@3 κ

c1

c3
c1

c2
c4

c3

c4
c2

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)
...

...

Conflict clause: c5 : (x2 ∨ ¬x4 ∨ x10)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 29 / 40

Conflict clauses and resolution

Conflict clause: c5 : (x2 ∨ ¬x4 ∨ x10)

x2 = 0@2

x5 = 1@5

x4 = 1@5
x7 = 0@5

x6 = 1@5

x10 = 0@3 κ

c1

c3
c1

c2
c4

c3

c4
c2

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)
...

...

Assigment order: x4, x5, x6, x7
T1 = Res(c4, c3, x7) = (¬x5 ∨ ¬x6)
T2 = Res(T1,c2, x6) = (¬x4 ∨ ¬x5 ∨ x10)
T3 = Res(T2,c1, x5) = (x2 ∨ ¬x4 ∨ x10)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 30 / 40

Finding the conflict clause

p rocedu r e a n a l y z e_ c o n f l i c t () {
i f (c u r r e n t_d e c i s i o n_ l e v e l = 0) return f a l s e ;
c l := c u r r e n t_ c o n f l i c t i n g_ c l a u s e ;
while (not s top_cr i t e r i on_met (c l)) do {

l i t := l a s t_ a s s i g n e d_ l i t e r a l (c l) ;
v a r := v a r i a b l e_ o f_ l i t e r a l (l i t) ;
ante := an t e c eden t (va r) ;
c l := r e s o l v e (c l , ante , va r) ;

}
add_clause_to_database (c l) ;
return true ;

}

Applied to our example:

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3
(¬x5 ∨ ¬x6) ¬x6 x6 c2
(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)
Prof. Dr. Erika Ábrahám - Satisfiability Checking 31 / 40

Unsatisfiable core

Definition
An unsatisfiable core of an unsatisfiable CNF formula is an unsatisfiable
subset of the original set of clauses.

The set of all original clauses is an unsatisfiable core.
The set of those original clauses that were used for resolution in
conflict analysis during SAT-solving (inclusively the last conflict at
decision level 0) gives us an unsatisfiable core which is in general much
smaller.
However, this unsatifiable core is still not always minimal (i.e., we can
remove clauses from it still having an unsatisfiable core).

Prof. Dr. Erika Ábrahám - Satisfiability Checking 32 / 40

The resolution graph

A resolution graph gives us more information to get a minimal unsatisfiable
core.

Empty Clause
Involved Clauses

Original Clause

Learned Clause

Prof. Dr. Erika Ábrahám - Satisfiability Checking 33 / 40

Resolution graph: Example

Empty Clause

Inferred Clauseslearning

Original Clauses

Unsatisfiable Core

L:

()

(x1)

(x1 x6)

(x1 x3 x6) (¬x3) (x4)

(x1 x3 ¬x2) (x2 x6) (¬x3 ¬x4) (¬x3 x4) (¬x6) (¬x1) (x3)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 34 / 40

Termination

Theorem
It is never the case that the solver enters decision level dl again with the
same partial assignment.

Proof.
Define a partial order on partial assignments: α < β iff either α is an
extension of β or α has more assignments at the smallest decision level at
that α and β do not agree.
BCP decreases the order, conflict-driven backtracking also. Since the order
always decreases during the search, the theorem holds.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 35 / 40

SAT-solving: Components

Back to decision heuristics...

Decision
Boolean Constraint Propagation (BCP)
Conflict resolution and backtracking

Basic backtracking
Non-chronological backtracking
Conflict-driven backtracking

Prof. Dr. Erika Ábrahám - Satisfiability Checking 36 / 40

Decision heuristics - VSIDS

VSIDS(Variable State Independent Decaying Sum)
Gives priority to variables involved in recent conflicts.
“Involved” can have different definitions. We take those variables that
occur in clauses used for conflict resolution.

1 Each variable in each polarity has a counter initialized to 0.
2 We define an increment value (e.g., 1).
3 When a conflict occurs, we increase the counter of each variable, that

occurs in at least one clause used for conflict resolution, by the
increment value.
Afterwards we increase the increment value (e.g., by 1).

4 For decisions, the unassigned variable with the highest counter is
chosen.

5 Periodically, all the counters and the increment value are divided by a
constant.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 37 / 40

Decision heuristics - VSIDS (cont’d)

Chaff holds a list of unassigned variables sorted by the counter value.

Updates are needed only when adding conflict causes.

Thus - decision is made in constant time.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 38 / 40

Decision heuristics

VSIDS is a ’quasi-static’ strategy:
static because it doesn’t depend on current assignment
dynamic because it gradually changes. Variables that appear in recent
conflicts have higher priority.
This strategy is a conflict-driven decision strategy.

"...employing this strategy dramatically (i.e., an order of magnitude)
improved performance..."

Prof. Dr. Erika Ábrahám - Satisfiability Checking 39 / 40

The SAT competitions

taken from http://baldur.iti.uka.de/sat-race-2008/analysis.html
Prof. Dr. Erika Ábrahám - Satisfiability Checking 40 / 40

