

Satisfiability Checking

SAT-Solving

Prof. Dr. Erika Ábrahám

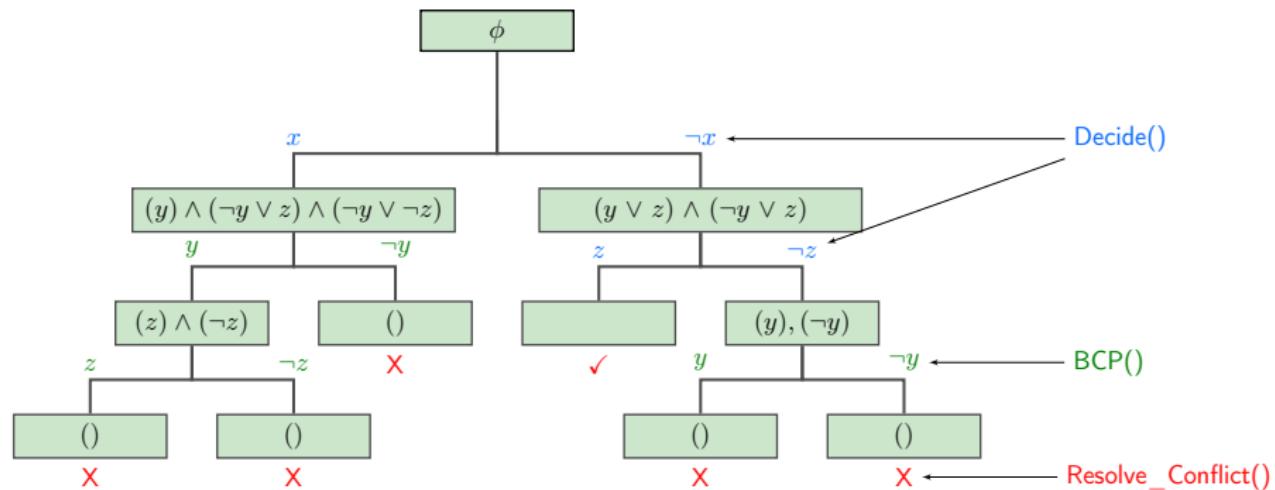
Theory of Hybrid Systems
Informatik 2

WS 10/11

A basic SAT algorithm

Assume the CNF formula

$$\phi : (x \vee y \vee z) \wedge (\neg x \vee y) \wedge (\neg y \vee z) \wedge (\neg x \vee \neg y \vee \neg z)$$



A basic SAT algorithm

```
while (true)
{
    if (!decide()) return SAT;
    while (!BCP())
        if (!resolve_conflict()) return UNSAT;
}
```

Choose the next variable
and value.
Return false if all variables
are assigned.

Boolean Constraint Propagation. Return false if
reached a conflict.

Conflict resolution and
backtracking. Return false
if impossible.

- Decision
- Boolean Constraint Propagation (BCP)
- Conflict resolution and backtracking

- Decision
- Boolean Constraint Propagation (BCP)
- Conflict resolution and backtracking

DLIS (Dynamic Largest Individual Sum) – choose the assignment that increases the most the number of satisfied clauses

- For a given variable x :
 - C_{xp} – # unresolved clauses in which x appears positively
 - C_{xn} – # unresolved clauses in which x appears negatively
 - Let x be the literal for which C_{xp} is maximal
 - Let y be the literal for which C_{yn} is maximal
 - If $C_{xp} > C_{yn}$ choose x and assign it TRUE
 - Otherwise choose y and assign it FALSE
- Requires $\mathcal{O}(\# \text{literals})$ queries for each decision.

Jersolow-Wang method

Compute for every clause c and every literal l :

$$J(l) : \sum_{l \in c, c \in \phi} 2^{-|c|}$$

- Choose a literal l that maximizes $J(l)$.
- This gives an exponentially higher weight to literals in shorter clauses

- We will see other (more advanced) decision heuristics soon.
- These heuristics are integrated with a mechanism called **learning of conflict clauses**, which we will learn soon.

- Decision
- Boolean Constraint Propagation (BCP)
- Conflict resolution and backtracking

- A clause can be

satisfied: at least one literal is satisfied

unsatisfied: all literals are assigned but none are satisfied

unit: all but one literals are assigned but none are satisfied

unresolved: all other cases

- Example: $c = (x_1 \vee x_2 \vee x_3)$

x_1	x_2	x_3	c
1	0		satisfied
0	0	0	unsatisfied
0	0		unit
	0		unresolved

BCP: Unit clauses are used to imply consequences of decisions.

- Organize the search in the form of an **implication graph**
 - Each node corresponds to a **variable assignment**
 - Definition: **Decision Level (DL)** is the depth of the node in the decision tree.
 - Notation: $x = v@d$
 x is assigned to $v \in \{0, 1\}$ at the decision level d

Definition

An **implication graph** is a labeled directed acyclic graph $G(V, E)$, where

- V represents the literals of the current partial assignment.
Each node is labeled with the literal that it represents and the decision level at which it entered the partial assignment.
- E with $E = \{(v_i, v_j) | v_i, v_j \in V, v_i \neq v_j, \neg v_i \in \text{Antecedent}(v_j)\}$
denotes the set of directed edges where each edge (v_i, v_j) is labeled with $\text{Antecedent}(v_j)$.
- G can also contain a single **conflict node** labeled with κ and incoming edges $\{(v, \kappa) | \neg v \in c\}$ labeled with c for some conflicting clause c .

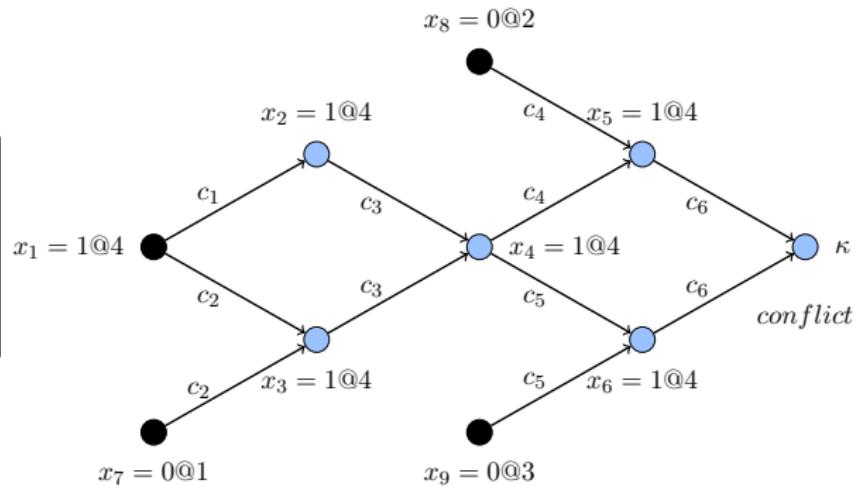
Implication graph: Example

Current truth assignment:

$$\{x_7 = 0@1, x_8 = 0@2, x_9 = 0@3\}$$

Current decision assignment: $\{x_1 = 1@4\}$

$c_1 = (\neg x_1 \vee x_2)$
 $c_2 = (\neg x_1 \vee x_3 \vee x_7)$
 $c_3 = (\neg x_2 \vee \neg x_3 \vee x_4)$
 $c_4 = (\neg x_4 \vee x_5 \vee x_8)$
 $c_5 = (\neg x_4 \vee x_6 \vee x_9)$
 $c_6 = (\neg x_5 \vee \neg x_6)$



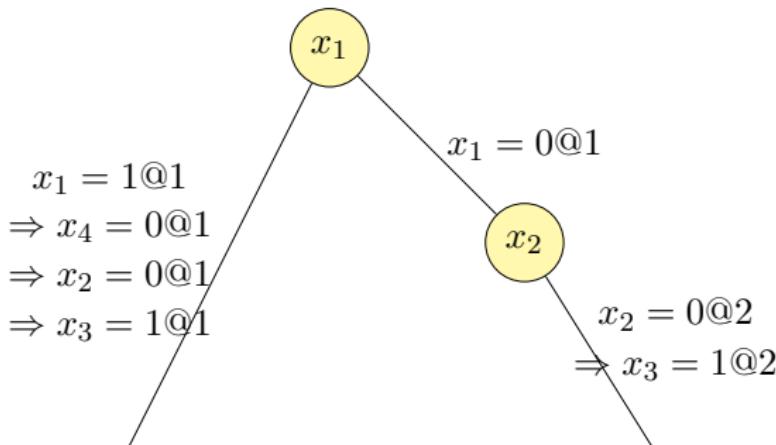
- For BCP, it would be a large effort to check for each propagation the value of each literal in each clause.
- One could keep for each literal a list of clauses in which it occurs.
- It is even enough to **watch two literals** in each clause such that either one of them is true or both are unassigned.
If a literal l gets true, we check each clause in which $\neg l$ is a watch literal (which is now false).
 - If the other watch is true, the clause is satisfied.
 - Else, if we find a new watch position, we are done.
 - Else, if the other watch is unassigned, the clause is unit.
 - Else, if the other watch is false, the clause is conflicting.

- Decision
- Boolean Constraint Propagation (BCP)
- **Conflict resolution and backtracking**
 - Basic backtracking
 - Non-chronological backtracking
 - Conflict-driven backtracking

Basic backtracking search in action

$$\begin{aligned}c_1 &= (x_2 \vee x_3) \\c_2 &= (\neg x_1 \vee \neg x_4) \\c_3 &= (\neg x_2 \vee x_4)\end{aligned}$$

No backtrack in this example!

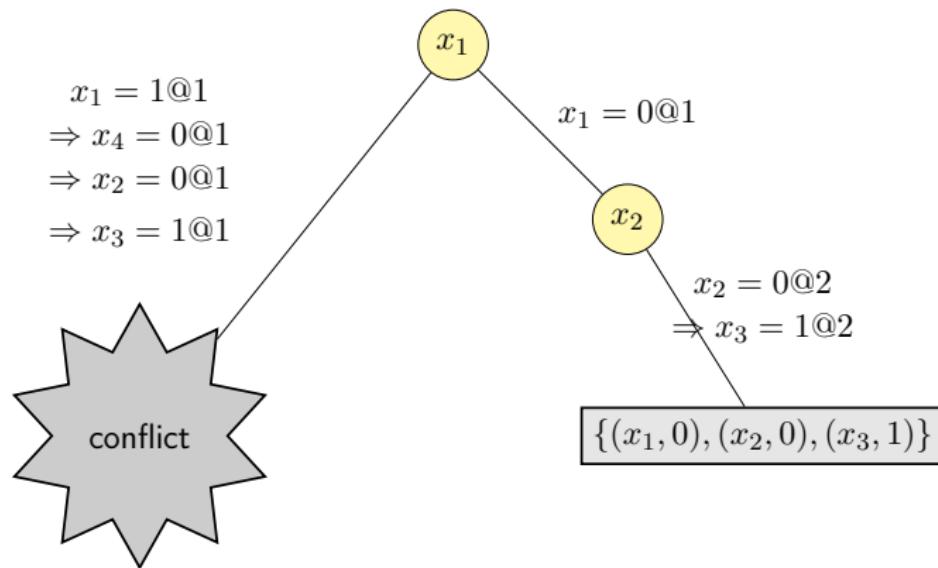


$\{(x_1, 1), (x_2, 0), (x_3, 1), (x_4, 0)\}$

$\{(x_1, 0), (x_2, 0), (x_3, 1)\}$

Basic backtracking search in action

$$\begin{aligned}c_1 &= (x_2 \vee x_3) \\c_2 &= (\neg x_1 \vee \neg x_4) \\c_3 &= (\neg x_2 \vee x_4) \\c_4 &= (\neg x_1 \vee x_2 \vee \neg x_3)\end{aligned}$$

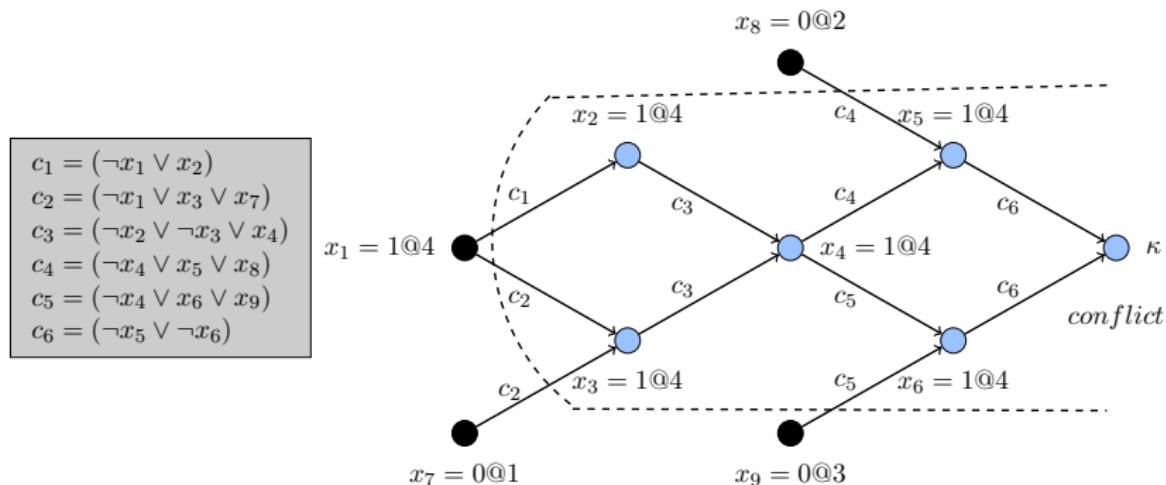


- Decision
- Boolean Constraint Propagation (BCP)
- **Conflict resolution and backtracking**
 - Basic backtracking
 - **Non-chronological backtracking**
 - Conflict-driven backtracking

Current truth assignment:

$$\{x_7 = 0@1, x_8 = 0@2, x_9 = 0@3\}$$

Current decision assignment: $\{x_1 = 1@4\}$



We learn the conflict clause $c_7 : (\neg x_1 \vee x_7 \vee x_8 \vee x_9)$

What to do now?

- Undo decision level 4.
- Propagate in the new clause c_7 at decision level 3.
- It leads to a new assignment at decision level 3.
- Propagate the newly assigned literals.

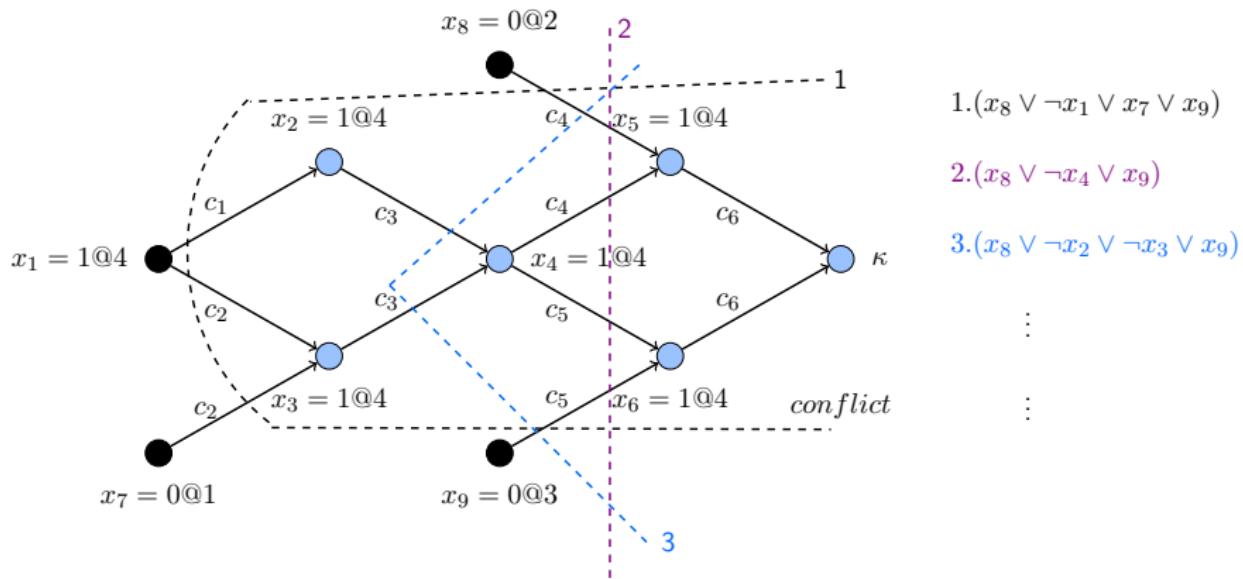
So the rule is:

- Backtrack to the largest decision level in the conflict clause,
- propagate in the learned clause, and
- propagate all new assignments.

- Decision
- Boolean Constraint Propagation (BCP)
- **Conflict resolution and backtracking**
 - Basic backtracking
 - Non-chronological backtracking
 - **Conflict-driven backtracking**

More conflict clauses

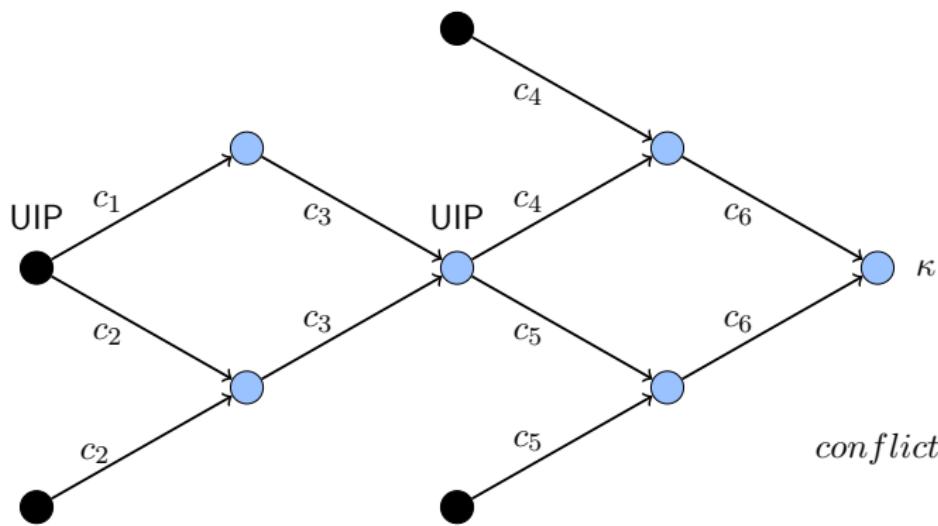
- Def: A **conflict clause** is any clause implied by the formula.
- Let L be a set of literals labeling nodes that form a cut in the implication graph, separating the conflict node from the roots.
- Claim:** $\vee_{l \in L} \neg l$ is a conflict clause.



- How many clauses should we add?
- If not all, then which ones?
 - Shorter ones?
 - Check their influence on the backtracking level?
 - The most "influential"?

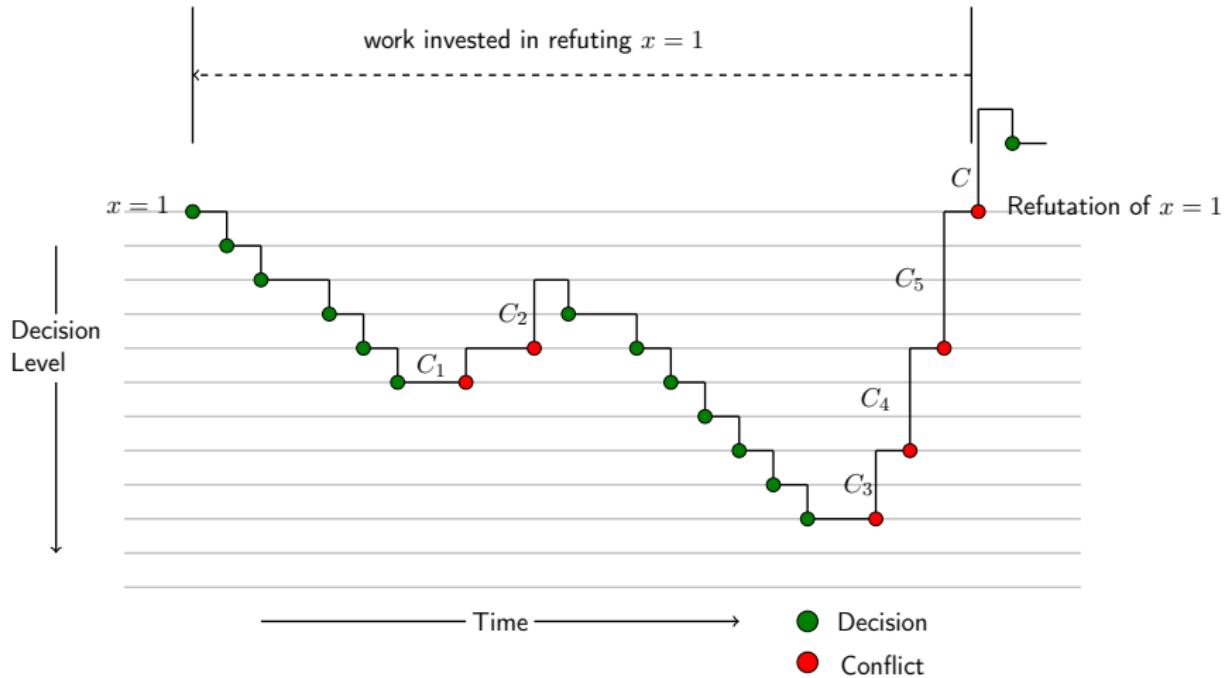
- Def: An **asserting clause** is a conflict clause with a single literal from the current decision level.
Backtracking (to the right level) makes it a **unit clause**.
- Asserting clauses are those that force an immediate change in the search path.
- Modern solvers only consider asserting clauses.

- Definition: A **Unique Implication Point (UIP)** is an internal node in the implication graph such that **all paths from the last decision to the conflict node go through it**.
- The **first UIP** is the UIP closest to the conflict.



- So the **rule** is: backtrack to the **second** highest decision level dl , but do not erase it.
- This way the literal with the currently highest decision level will be implied at decision level dl .
- **Question:** What if the conflict clause has a single literal?
 - For example, from $(x \vee \neg y) \wedge (x \vee y)$ and decision $x = 0$, we learn the conflict clause (x) .

Progress of a SAT solver



- The binary resolution is a sound (and complete) inference rule:

$$\frac{(\beta \vee a_1 \vee \dots \vee a_n) \quad (\neg\beta \vee b_1 \vee \dots \vee b_m)}{(a_1 \vee \dots \vee a_n \vee b_1 \vee \dots \vee b_m)} \text{ (Binary Resolution)}$$

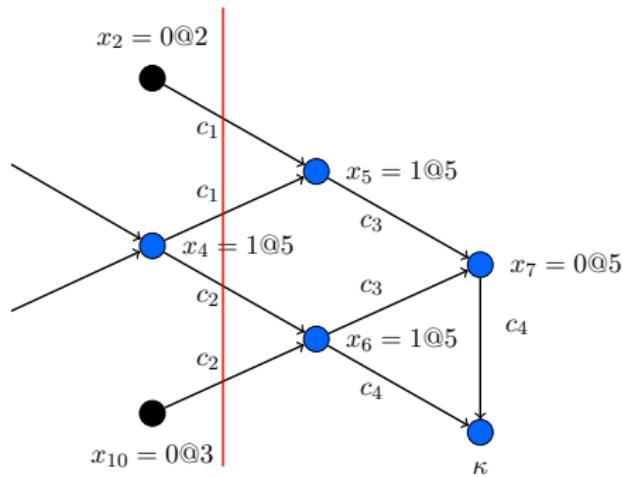
- Example:

$$\frac{(x_1 \vee x_2) \quad (\neg x_1 \vee x_3 \vee x_4)}{(x_2 \vee x_3 \vee x_4)}$$

What is the relation of resolution and conflict clauses?

- Consider the following example:

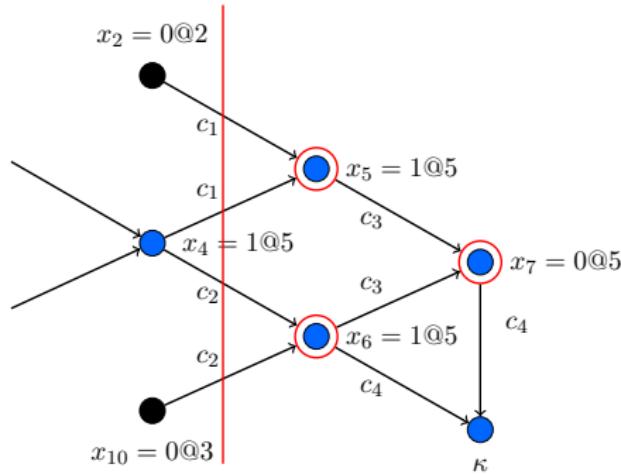
$$\begin{aligned}c_1 &= (\neg x_4 \vee x_2 \vee x_5) \\c_2 &= (\neg x_4 \vee x_{10} \vee x_6) \\c_3 &= (\neg x_5 \vee \neg x_6 \vee \neg x_7) \\c_4 &= (\neg x_6 \vee x_7) \\&\vdots \quad \vdots\end{aligned}$$



- Conflict clause: $c_5 : (x_2 \vee \neg x_4 \vee x_{10})$

- Conflict clause: $c_5 : (x_2 \vee \neg x_4 \vee x_{10})$

$$\begin{aligned}
 c_1 &= (\neg x_4 \vee x_2 \vee x_5) \\
 c_2 &= (\neg x_4 \vee x_{10} \vee x_6) \\
 c_3 &= (\neg x_5 \vee \neg x_6 \vee \neg x_7) \\
 c_4 &= (\neg x_6 \vee x_7) \\
 \vdots & \quad \vdots
 \end{aligned}$$



- Assignment order: x_4, x_5, x_6, x_7

- $T1 = \text{Res}(c_4, c_3, x_7) = (\neg x_5 \vee \neg x_6)$
 - $T2 = \text{Res}(T1, c_2, x_6) = (\neg x_4 \vee \neg x_5 \vee x_{10})$
 - $T3 = \text{Res}(T2, c_1, x_5) = (x_2 \vee \neg x_4 \vee x_{10})$

Finding the conflict clause

```
procedure analyze_conflict() {
    if (current_decision_level = 0) return false;
    cl := current_conflicting_clause;
    while (not stop_criterion_met(cl)) do {
        lit    := last_assigned_literal(cl);
        var    := variable_of_literal(lit);
        ante   := antecedent(var);
        cl     := resolve(cl, ante, var);
    }
    add_clause_to_database(cl);
    return true;
}
```

Applied to our example:

name	cl	lit	var	ante
c_4	$(\neg x_6 \vee x_7)$	x_7	x_7	c_3
	$(\neg x_5 \vee \neg x_6)$	$\neg x_6$	x_6	c_2
	$(\neg x_4 \vee x_{10} \vee \neg x_5)$	$\neg x_5$	x_5	c_1
c_5	$(\neg x_4 \vee x_2 \vee x_{10})$			

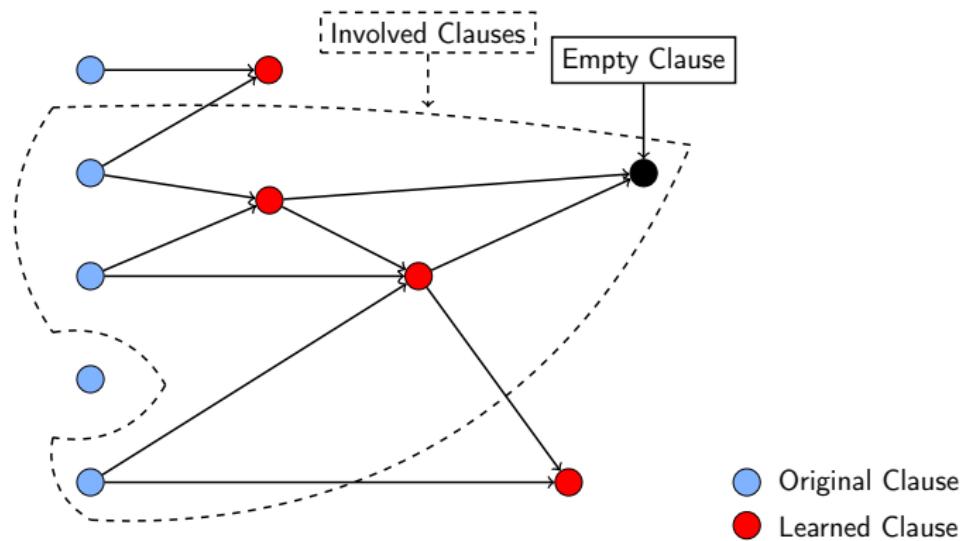
Definition

An **unsatisfiable core** of an unsatisfiable CNF formula is an unsatisfiable subset of the original set of clauses.

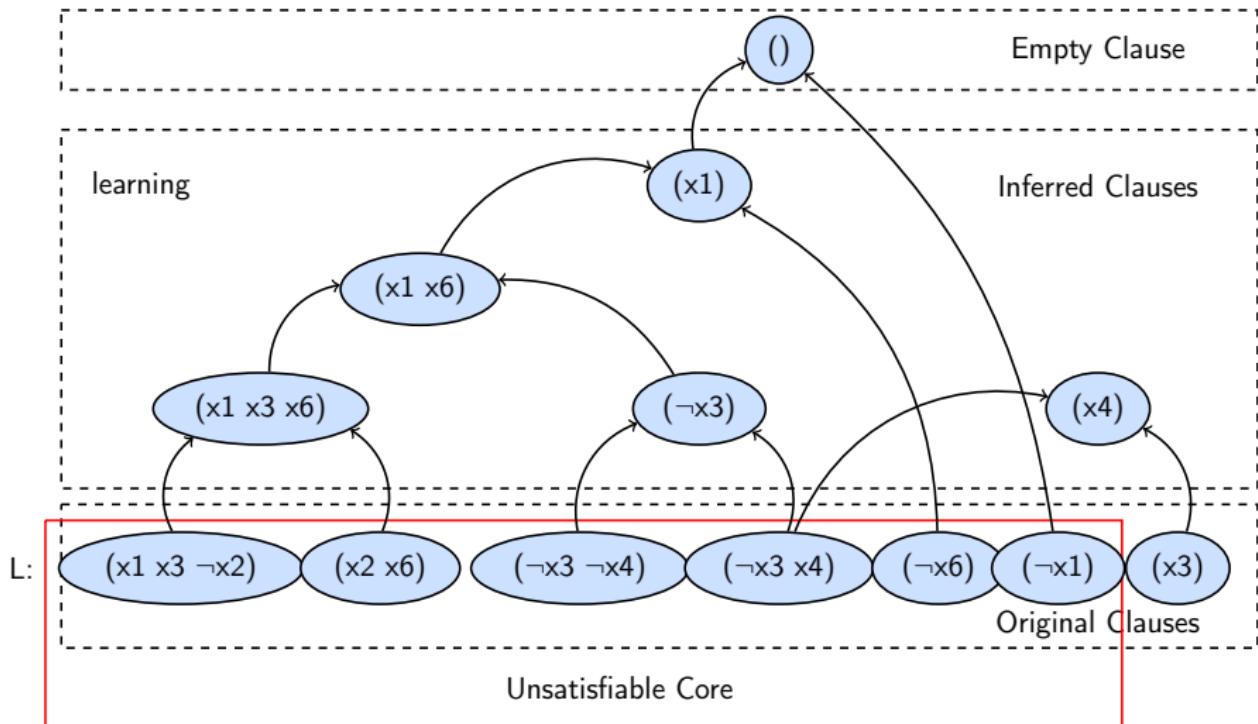
- The set of all original clauses is an unsatisfiable core.
- The set of those original clauses that were used for resolution in conflict analysis during SAT-solving (inclusively the last conflict at decision level 0) gives us an unsatisfiable core which is in general much smaller.
- However, this unsatisfiable core is still not always minimal (i.e., we can remove clauses from it still having an unsatisfiable core).

The resolution graph

A **resolution graph** gives us more information to get a minimal unsatisfiable core.



Resolution graph: Example



Theorem

It is never the case that the solver enters decision level dl again with the same partial assignment.

Proof.

Define a partial order on partial assignments: $\alpha < \beta$ iff either α is an extension of β or α has more assignments at the smallest decision level at that α and β do not agree.

BCP decreases the order, conflict-driven backtracking also. Since the order always decreases during the search, the theorem holds. □

Back to decision heuristics...

- **Decision**
- Boolean Constraint Propagation (BCP)
- Conflict resolution and backtracking
 - Basic backtracking
 - Non-chronological backtracking
 - Conflict-driven backtracking

- VSIDS(Variable State Independent Decaying Sum)
- Gives priority to variables involved in recent conflicts.
- “Involved” can have different definitions. We take those variables that occur in clauses used for conflict resolution.

- 1 Each variable in each polarity has a **counter** initialized to 0.
- 2 We define an **increment** value (e.g., 1).
- 3 When a **conflict** occurs, we increase the counter of each variable, that occurs in at least one clause used for conflict resolution, by the increment value.
Afterwards we increase the increment value (e.g., by 1).

- 4 For decisions, the unassigned variable with the **highest counter** is chosen.
- 5 Periodically, all the counters and the increment value are **divided** by a constant.

- Chaff holds a list of unassigned variables sorted by the counter value.
- Updates are needed only when adding conflict causes.
- Thus - decision is made in constant time.

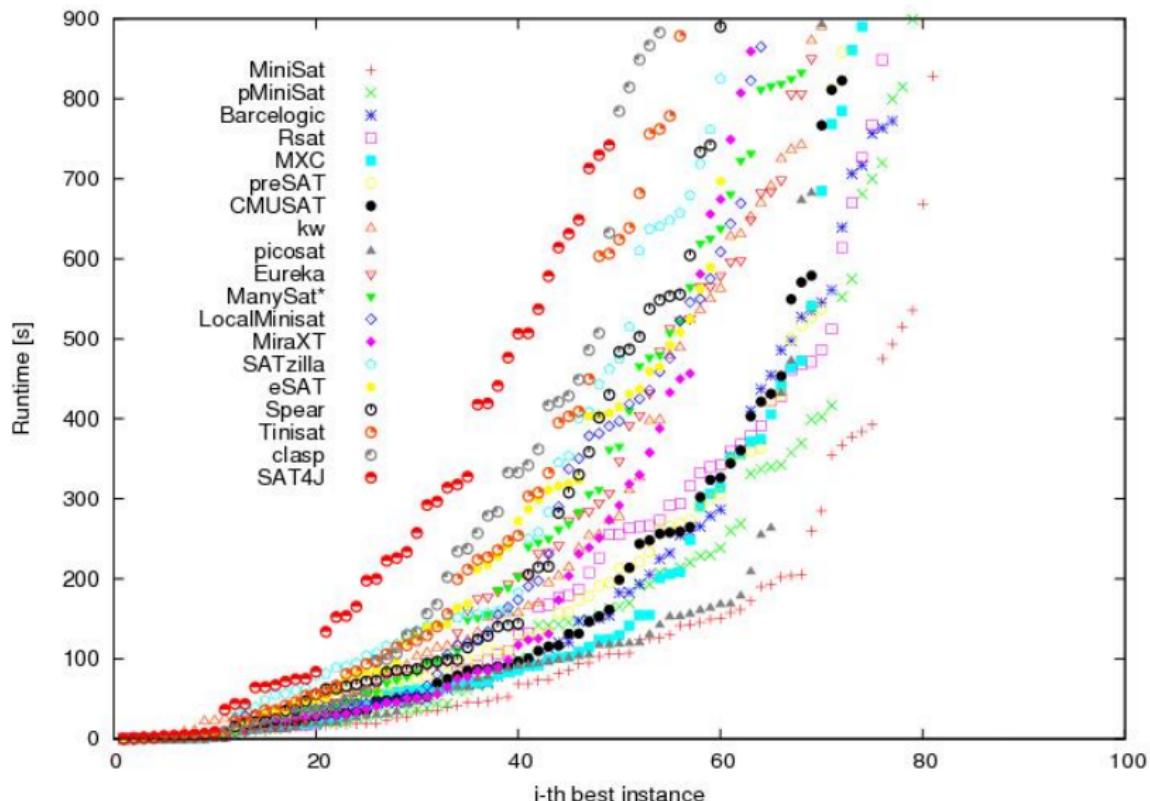
VSIDS is a 'quasi-static' strategy:

- **static** because it doesn't depend on current assignment
- **dynamic** because it gradually changes. Variables that appear in recent conflicts have higher priority.

This strategy is a **conflict-driven** decision strategy.

"...employing this strategy dramatically (i.e., an order of magnitude) improved performance..."

The SAT competitions



taken from <http://baldur.iti.uka.de/sat-race-2008/analysis.html>