

Satisfiability Checking

Equalities and Uninterpreted Functions

Prof. Dr. Erika Ábrahám

Theory of Hybrid Systems
Informatik 2

WS 10/11

Equality logic with uninterpreted functions

We extend the propositional logic with **equalities** and **uninterpreted functions**.

Syntax: variables x over an arbitrary domain D , constants c (from the same domain D), function symbols F for functions of the type $D^n \rightarrow D$.

<i>Terms:</i>	t	$:=$	c	$ $	x	$ $	$F(t, \dots, t)$
<i>Formulas:</i>	φ	$:=$	$t = t$	$ $	$(\varphi \wedge \varphi)$	$ $	$(\neg \varphi)$

Semantics: straightforward

Notation and assumptions:

- Formula with **equalities**: φ^E
- Formula with **equalities and uninterpreted functions**: φ^{UF}
- Same simplifications for **parentheses** as for propositional logic.
- Input formulas are in **NNF**.
- Input formulas are checked for **satisfiability**.

- Equality logic and propositional logic are both **NP-complete**.
- Thus they model the same decision problems.
- Why to study both?
 - Convenience of modeling
 - Efficiency
- Extensions: Different domains, Boolean variables

- Replacing functions by **uninterpreted functions** in a given formula is a common technique to make reasoning easier.
- It makes the formula **weaker**: $\models \varphi^{UF} \rightarrow \varphi$
- Ignore the semantics of the function, but:
- **Functional congruence**: Instances of the same function return the same value for equal arguments.

Theorem

There is an algorithm that generates for an input equality logic formula φ^E an equisatisfiable output formula $\varphi^{E'}$ without constants, in polynomial time.

Algorithm: Exercise

In the following we assume that the formulas do not contain constants.

Outline

- 1 Conjunction of equalities
- 2 Conjunction of equalities with uninterpreted functions
- 3 Arbitrary Boolean combination of equalities
 - Equality graphs
 - The Sparse Method
- 4 Arbitrary Boolean combination of equalities with UFs

Outline

- 1 Conjunction of equalities
- 2 Conjunction of equalities with uninterpreted functions
- 3 Arbitrary Boolean combination of equalities
 - Equality graphs
 - The Sparse Method
- 4 Arbitrary Boolean combination of equalities with UFs

First: Conjunction of equalities without UF

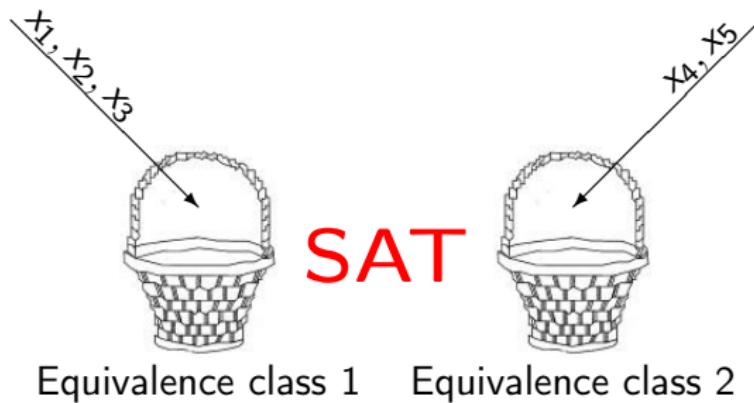
Input: A **conjunction** φ of equalities and disequalities **without UF**

Algorithm

- 1 Define an **equivalence class** for each variable in φ .
- 2 For each equality $x = y$ in φ : **merge** the equivalence classes of x and y .
- 3 For each disequality $x \neq y$ in φ :
if x is in the same class as y , return '**UNSAT**'.
- 4 Return '**SAT**'.

Example

$$\varphi^E : \quad x_1 = x_2 \wedge x_2 = x_3 \wedge x_4 = x_5 \wedge x_5 \neq x_1$$



Outline

- 1 Conjunction of equalities
- 2 Conjunction of equalities with uninterpreted functions
- 3 Arbitrary Boolean combination of equalities
 - Equality graphs
 - The Sparse Method
- 4 Arbitrary Boolean combination of equalities with UFs

Next: Add uninterpreted functions

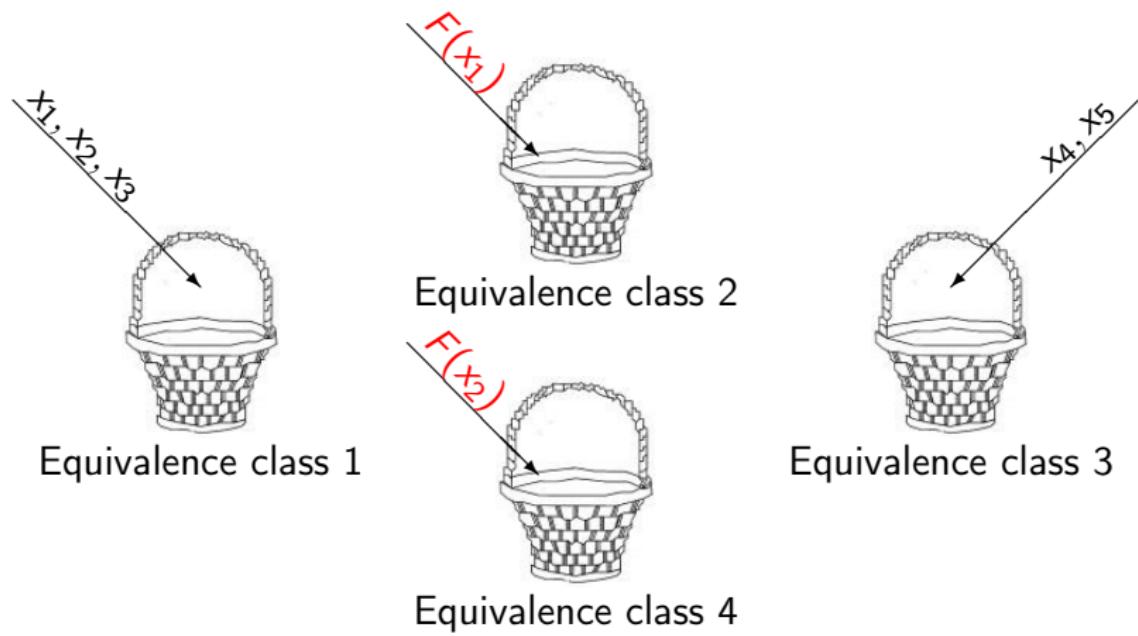
How do they relate?

- $x = y, F(x) = F(y)$: $\models (x = y) \rightarrow (F(x) = F(y))$
- $x = y, F(x) \neq F(y)$: conjunction unsatisfiable
- $x \neq y, F(x) = F(y)$: unrelated (conjunction satisfiable)
- $x \neq y, F(x) \neq F(y)$: $\models (F(x) \neq F(y)) \rightarrow (x \neq y)$

- $x = y, F(G(x)) = F(G(y))$: $\models (x = y) \rightarrow (F(G(x)) = F(G(y)))$

Next: Add uninterpreted functions

$$\varphi^E : \quad x_1 = x_2 \wedge x_2 = x_3 \wedge x_4 = x_5 \wedge x_5 \neq x_1 \wedge F(x_1) \neq F(x_2)$$

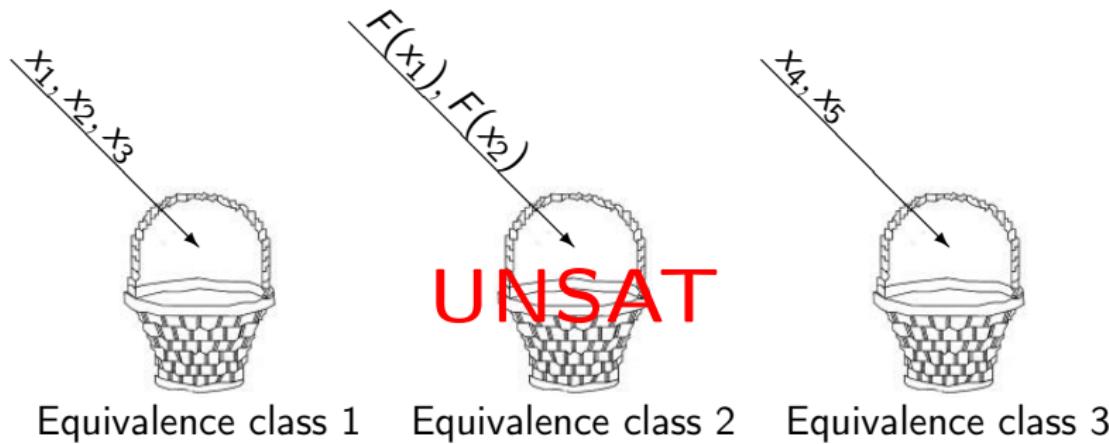


Next: Compute the *congruence closure*

$$\varphi^E : \quad x_1 = x_2 \wedge x_2 = x_3 \wedge x_4 = x_5 \wedge x_5 \neq x_1 \wedge F(x_1) \neq F(x_2)$$

Congruence closure:

If all the arguments of two function applications are in the same class,
merge the classes of the applications!



Input: A **conjunction** φ of equalities and disequalities with UFs of type $D \rightarrow D$

Algorithm

- 1 $\mathcal{C} := \{\{t\} \mid t \text{ occurs as subexpression in an (in)equation in } \varphi\};$
- 2 for each equality $t = t'$ in φ
 $\mathcal{C} := (\mathcal{C} \setminus \{[t], [t']\}) \cup \{[t] \cup [t']\};$
while exists $F(t), F(t')$ in φ with $[t] = [t']$ and $[F(t)] \neq [F(t')]$
 $\mathcal{C} := (\mathcal{C} \setminus \{[F(t)], [F(t')]\}) \cup \{[F(t)] \cup [F(t')]\};$
- 3 for each inequality $t \neq t'$ in φ
if $[t] = [t']$ return "**UNSAT**";
- 4 return "**SAT**";

Outline

- 1 Conjunction of equalities
- 2 Conjunction of equalities with uninterpreted functions
- 3 Arbitrary Boolean combination of equalities
 - Equality graphs
 - The Sparse Method
- 4 Arbitrary Boolean combination of equalities with UFs

Adding disjunctions

- One option: **syntactic case-splitting**, corresponds to transforming the formula to **DNF**.
- May result in exponential number of cases.
- Now we start looking at methods that split the **search space** instead. This is called **semantic splitting**.
- SAT is a very good engine for performing semantic splitting, due to its ability to guide the search, prune the search-space, and so on.

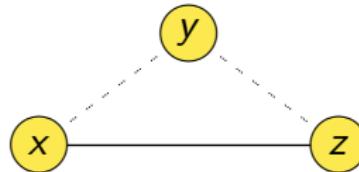
E-graphs

$$\varphi^E : x = y \wedge y = z \wedge z \neq x$$

- The **equality predicates**: $\{x = y, y = z, z \neq x\}$
- Break into two sets:

$$E_ = = \{x = y, y = z\}, \quad E_ \neq = \{z \neq x\}$$

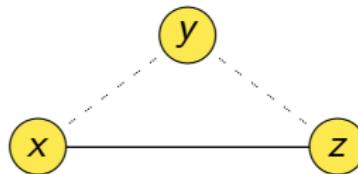
- The **equality graph** (E-graph) $G^E(\varphi^E) = \langle V, E_ =, E_ \neq \rangle$



The E-graph and Boolean structure in φ^E

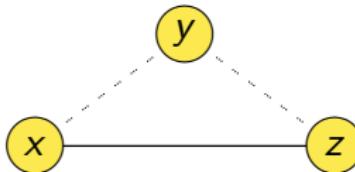
$$\begin{aligned}\varphi_1^E : \quad & x = y \wedge y = z \wedge z \neq x & \text{unsatisfiable} \\ \varphi_2^E : \quad & (x = y \wedge y = z) \vee z \neq x & \text{satisfiable!}\end{aligned}$$

Their E-graph is the same:



⇒ The graph $G^E(\varphi^E)$ represents an **abstraction** of φ^E .
It ignores the Boolean structure of φ^E .

Equality and disequality paths



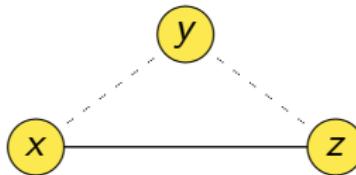
Definition (Equality Path)

A path that uses $E_=_$ edges is an *equality path*. We write $x =^* z$.

Definition (Disequality Path)

A path that uses edges from $E_=_$ and exactly one edge from $E_ \neq$ is a *disequality path*. We write $x \neq^* z$.

Contradictory cycles



Definition (Contradictory Cycle)

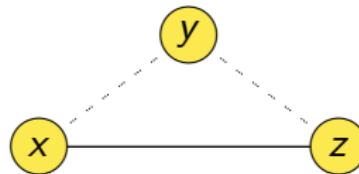
A cycle with one disequality edge is a *contradictory cycle*.

Theorem

For every two nodes x, y on a contradictory cycle the following holds:

- $x =^* y$
- $x \neq^* y$

Contradictory cycles



Definition

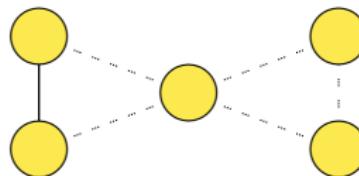
A subgraph of E is called *satisfiable* iff the conjunction of the predicates represented by its edges is satisfiable.

Theorem

A subgraph is unsatisfiable iff it contains a contradictory cycle.

Simple cycles

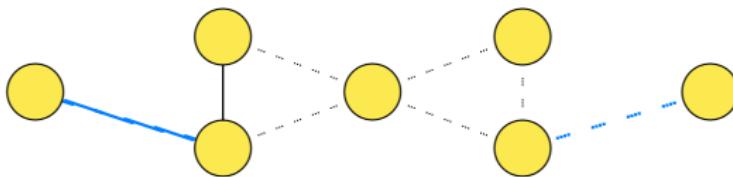
Question: What is a simple cycle?



Theorem

Every contradictory cycle is either simple, or contains a simple contradictory cycle.

Simplifying the E-graph

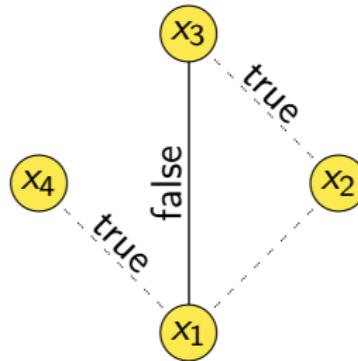


Let S be the set of edges that are **not part of any contradictory cycle**.

Theorem

Replacing all equations that correspond to solid edges in S with false, and all equations that correspond to dashed edges in S with true preserves satisfiability.

Simplifying the E-graph: Example

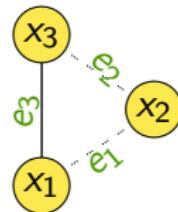


- $(x_1 = x_2 \vee x_1 = x_4) \wedge$
 $(x_1 \neq x_3 \vee x_2 = x_3)$
- ~~$(x_1 = x_2 \vee \text{true}) \wedge$~~
 $(x_1 \neq x_3 \vee x_2 = x_3)$
- $\neg \text{false} \vee \text{true}$
- \longrightarrow Satisfiable!

Goal: Transform equality logic to propositional logic

Step 1: **Encode all edges with Boolean variables**

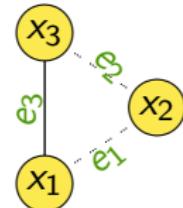
$$\begin{array}{lcl} \varphi^E & \iff & x_1 = x_2 \wedge x_2 = x_3 \wedge x_1 \neq x_3 \\ \varphi_{sk} & \iff & e_1 \wedge e_2 \wedge \neg e_3 \end{array}$$



- This is called the **propositional skeleton**
- This is an over-approximation
- Transitivity of equality is lost!
- → must add transitivity constraints!

Adding transitivity constraints

$$\begin{array}{ll} \varphi^E & \iff x_1 = x_2 \wedge x_2 = x_3 \wedge x_1 \neq x_3 \\ \varphi_{sk} & \iff e_1 \wedge e_2 \wedge \neg e_3 \end{array}$$



Step 2: For each cycle: add a transitivity constraint

$$\begin{aligned} \varphi_{trans} = & (e_1 \wedge e_2 \rightarrow e_3) \wedge \\ & (e_1 \wedge e_3 \rightarrow e_2) \wedge \\ & (e_3 \wedge e_2 \rightarrow e_1) \end{aligned}$$

Step 3: Check $\varphi_{sk} \wedge \varphi_{trans}$

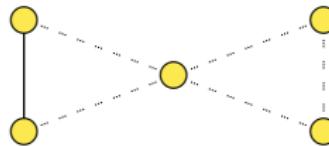
Question: Complexity?

Optimizations

There can be an *exponential number of cycles*, so let's try to improve this idea.

Theorem

*It is sufficient to constrain **simple cycles** only.*



Only two simple cycles here.

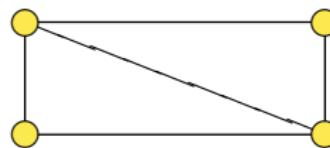
Question: Complexity?

Optimizations

Still, there may be an exponential number of simple cycles.

Theorem

*It is sufficient to constrain **chord-free simple cycles**.*

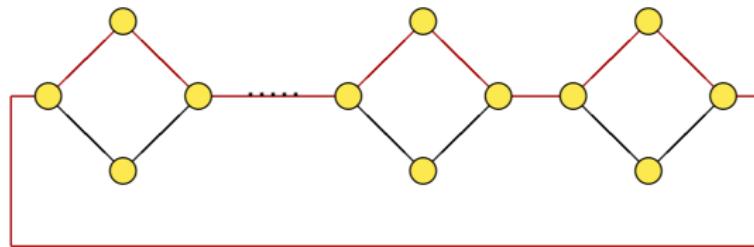


Question: How many simple cycles?

Question: How many chord-free simple cycles?

Question: Complexity?

Still, there may be an exponential number of chord-free simple cycles...



Solution: make graph '**chordal**' by adding edges!

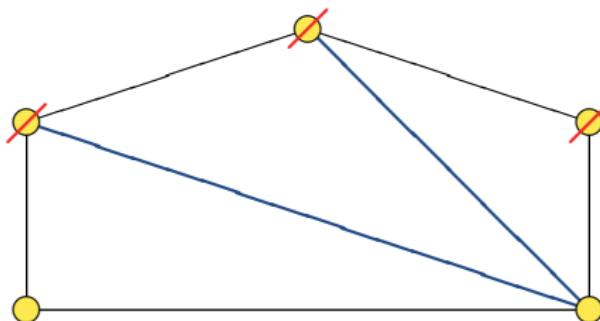
Making the E-graph chordal

Definition (Chordal graph)

A graph is *chordal* iff every cycle of length 4 or more has a chord.

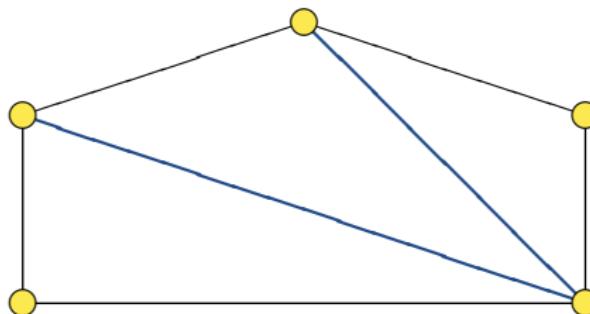
Question: How to **make a graph chordal**?

A: Eliminate vertices one at a time, and connect their neighbors.



Making the E-graph chordal

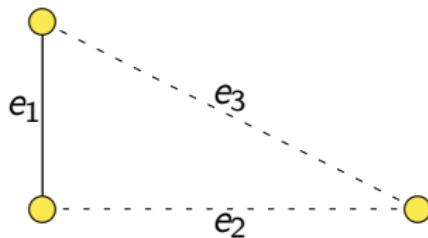
- Once the graph is chordal, we only need to **constrain the triangles**.



- Note that this procedure adds not more than a **polynomial number of edges**, and results in a **polynomial number of constraints**.

Exploiting the polarity

- So far we did not consider the **polarity** of the edges.
- Claim: in the following graph, $\varphi_{trans} = e_2 \wedge e_3 \rightarrow e_1$ is sufficient.



- This works because of the **monotonicity of NNF**.

Equality logic to propositional logic

- **Input:** Equality logic formula φ^E
- **Output:** satisfiability-equivalent propositional logic formula φ^E

Algorithm

- 1 Construct φ_{sk} by replacing each equality $t_i = t_j$ in φ^E by a fresh Boolean variable $e_{i,j}$.
- 2 Construct the E-graph $G^E(\varphi^E)$ for φ^E .
- 3 Make $G^E(\varphi^E)$ chordal.
- 4 $\varphi_{trans} = \text{true}$.
- 5 For each triangle $(e_{i,j}, e_{j,k}, e_{k,i})$ in $G^E(\varphi^E)$:

$$\begin{aligned}\varphi_{trans} := \varphi_{trans} \quad & \wedge (e_{i,j} \wedge e_{j,k}) \rightarrow e_{k,i} \\ & \wedge (e_{i,j} \wedge e_{i,k}) \rightarrow e_{j,k} \\ & \wedge (e_{i,k} \wedge e_{j,k}) \rightarrow e_{i,j}\end{aligned}$$

- 6 Return $\varphi_{sk} \wedge \varphi_{trans}$.

Outline

- 1 Conjunction of equalities
- 2 Conjunction of equalities with uninterpreted functions
- 3 Arbitrary Boolean combination of equalities
 - Equality graphs
 - The Sparse Method
- 4 Arbitrary Boolean combination of equalities with UFs

From uninterpreted functions to equality logic

We lead back the problems of equality logic **with** uninterpreted functions to those of equality logic **without** uninterpreted functions.

Two possible reductions:

- Ackermann's reduction
- Bryant's reduction

We look only at Ackermann.

Ackermann's reduction

Given an input formula φ^{UF} of equality logic with uninterpreted functions, transform the formula to a **satisfiability-equivalent** equality logic formula φ^E of the form

$$\varphi^E := \varphi_{flat} \wedge \varphi_{cong},$$

where φ_{flat} is a flattening of φ^{UF} , and φ_{cong} is a conjunction of constraints for functional congruence.

For **validity-equivalence** check

$$\varphi^E := \varphi_{cong} \rightarrow \varphi_{flat}.$$

Note: This is quite similar to leading back equality logic to propositional logic by

$$\varphi_{sk} \wedge \varphi_{trans}.$$

- **Input:** φ^{UF} with m instances of an uninterpreted function F .
- **Output:** satisfiability-equivalent φ^E without any occurrences of F .

Algorithm

- 1 Assign indices to the F -instances.
- 2 $\varphi_{flat} := \mathcal{T}(\varphi^{UF})$ where \mathcal{T} replaces each occurrence F_i of F by a fresh Boolean variable f_i .
- 3 $\varphi_{cong} := \bigwedge_{i=1}^{m-1} \bigwedge_{j=i+1}^m (\mathcal{T}(\text{arg}(F_i)) = \mathcal{T}(\text{arg}(F_j))) \rightarrow f_i = f_j$
- 4 Return $\varphi_{flat} \wedge \varphi_{cong}$.

Ackermann's reduction: Example

$$\varphi^{UF} := (x_1 \neq x_2) \vee (F(x_1) = F(x_2)) \vee (F(x_1) \neq F(x_3))$$

$$\varphi_{flat} := (x_1 \neq x_2) \vee (f_1 = f_2) \vee (f_1 \neq f_3)$$

$$\begin{aligned} FC^E := & ((x_1 = x_2) \rightarrow (f_1 = f_2)) \wedge \\ & ((x_1 = x_3) \rightarrow (f_1 = f_3)) \wedge \\ & ((x_2 = x_3) \rightarrow (f_2 = f_3)) \end{aligned}$$

$$\varphi^E := \varphi_{cong} \wedge \varphi_{flat}$$

Ackermann's reduction: Example

- ```
int power3 (int in){
 int out = in;
 for (int i=0; i<2; i++)
 out = out * in;
 return out;
}
```
- ```
int power3_b (int in){  
    return ((in * in) * in);  
}
```
- $\varphi_1 := out_0 = in \wedge out_1 = out_0 * in \wedge out_2 = out_1 * in$
- $\varphi_2 := out_b = (in * in) * in$
- $\varphi_3 := (\varphi_1 \wedge \varphi_2) \rightarrow (out_2 = out_b)$

Ackermann's reduction: Example

$$\varphi_3 := (out_0 = in \wedge out_1 = \textcolor{red}{out_0 * in} \wedge \\ out_2 = \textcolor{red}{out_1 * in} \wedge out_b = (\textcolor{red}{in * in}) * in) \rightarrow \\ (out_2 = out_b)$$

$$\varphi^{UF} := (out_0 = in \wedge out_1 = \textcolor{red}{G(out_0, in)} \wedge \\ out_2 = \textcolor{red}{G(out_1, in)} \wedge out_b = \textcolor{red}{G(G(in, in), in)}) \rightarrow \\ (out_2 = out_b)$$

Ackermann's reduction: Example

$$\begin{aligned}\varphi^{UF} &:= (out_0 = in \wedge out_1 = G(out_0, in) \wedge out_2 = G(out_1, in) \wedge \\ &\quad out_b = G(G(in, in), in)) \rightarrow (out_2 = out_b) \\ \varphi_{flat} &:= (out_0 = in \wedge out_1 = G_1 \wedge out_2 = G_2 \wedge \\ &\quad out_b = G_4) \rightarrow (out_2 = out_b) \text{ with} \\ \varphi_{cong} &:= \begin{array}{ll} ((out_0 = out_1 \wedge in = in) & \rightarrow G_1 = G_2) \wedge \\ ((out_0 = in \wedge in = in) & \rightarrow G_1 = G_3) \wedge \\ ((out_0 = G_3 \wedge in = in) & \rightarrow G_1 = G_4) \wedge \\ ((out_1 = in \wedge in = in) & \rightarrow G_2 = G_3) \wedge \\ ((out_1 = G_3 \wedge in = in) & \rightarrow G_2 = G_4) \wedge \\ ((in = G_3 \wedge in = in) & \rightarrow G_3 = G_4) \end{array}\end{aligned}$$