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Equality logic with uninterpreted functions

We extend the propositional logic with equalities and uninterpreted
functions.

Syntax: variables x over an arbitrary domain D, constants ¢ (from the
same domain D), function symbols F for functions of the type D" — D.

Terms: t = c | X | F(t,...,t)
Formulas: ¢ = t=t | (e A p) | (=)
Semantics: straightforward
Notation and assumptions:

Formula with equalities: ©f

Formula with equalities and uninterpreted functions: @YF

]
]
m Same simplifications for parentheses as for propositional logic.
m Input formulas are in NNF.

]

Input formulas are checked for satisfiability.
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m Equality logic and propositional logic are both NP-complete.
m Thus they model the same decision problems.
m Why to study both?

m Convenience of modeling
m Efficiency

m Extensions: Different domains, Boolean variables
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Replacing functions by uninterpreted functions in a given formula is a
common technique to make reasoning easier.

It makes the formula weaker: = oYF 5 o

Ignore the semantics of the function, but:

Functional congruence: Instances of the same function return the
same value for equal arguments.
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Removing constants

Theorem

There is an algorithm that generates for an input equality logic formula pF
an equisatisfiable output formula ¢F " without constants, in polynomial
time.

Algorithm: Exercise

In the following we assume that the formulas do not contain constants.
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Conjunction of equalities
Conjunction of equalities with uninterpreted functions

Arbitrary Boolean combination of equalities
m Equality graphs
m The Sparse Method

Arbitrary Boolean combination of equalities with UFs
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Outline

Conjunction of equalities
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First: Conjunction of equalities without UF

Input: A conjunction ¢ of equalities and disequalities without UF
Algorithm

Define an equivalence class for each variable in .

For each equality x = y in ¢: merge the equivalence classes of x and
y.

For each disequality x # y in ¢:
if x is in the same class as y, return "UNSAT'.

Return 'SAT'.
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cpE: X1 =xAXx2=x3AX4 =Xx5 \ X5 # X1
%, £
NE 4

Equivalence class 1  Equivalence class 2
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Outline

Conjunction of equalities with uninterpreted functions
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Next: Add uninterpreted functions

How do they relate?
m x=y, F(x) = Fy):
m x=y, F(x) # Fy):
m x #y, F(x) = F(y): unrelated (conjunction satisfiable)
m x 7y, F(x) # F(y): = (F(x) # F(y)) = (x # y)

= (x=y) = (F(x) = F(y))
conjunction unsatisfiable

y

m x =y, F(G(x)) = F(G(y)): = (x=y) = (F(GC(x)) = F(G(y)))
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Next: Add uninterpreted functions

oF - x1=Xx2Ax2=x3Axs =x5 Axs #x1 A\ F(x1) # F(x)

Equivalence class 2

; _ b o
Equivalence class 1 P Equivalence class 3

—%

FE )

Equivalence class 4
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Next: Compute the congruence closure

oF - x1=Xx2Ax2=x3Axs =x5 Axs #x1 A\ F(x1) # F(x)

Congruence closure:

If all the arguments of two function applications are in the same class,
merge the classes of the applications!

Equivalence class 1  Equivalence class 2  Equivalence class 3
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Input: A conjunction ¢ of equalities and disequalities with UFs of type
D—D

Algorithm

C := {{t} | t occurs as subexpression in an (in)equation in ¢};

for each equality t = t’ in ¢
C:= (C\{[L [T} vl u [}
while exists F(t), F(t') in ¢ with [t] = [¢/] and [F(t)] # [F(t")]
C:= (C\A{[FOLIF(N}) v {IF@IU [F(]};
for each inequality t # t' in
if [t] =[t'] return "UNSAT";
return "SAT":
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Arbitrary Boolean combination of equalities
m Equality graphs
m The Sparse Method
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Adding disjunctions

m One option: syntactic case-splitting,
corresponds to transforming the formula to DNF.

m May result in exponential number of cases.

m Now we start looking at methods that split the search space instead.
This is called semantic splitting.

m SAT is a very good engine for performing semantic splitting, due to its
ability to guide the search, prune the search-space, and so on.
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o ix=yAy=zrz#x

m The equality predicates: {x =y,y = z,z # x}

m Break into two sets:

E-={x=yy=2z}, Ei={z#x}

m The equality graph (E-graph) GE(oF) = (V, E_, Ex)

- ,,:
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The E-graph and Boolean structure in

E. x=yANy=zAz#x unsatisfiable

¥1 -
oE: (x=yAy=2z)Vz#x satisfiablel

Their E-graph is the same:

— The graph GE(oF) represents an abstraction of (F.
It ignores the Boolean structure of ¢F.
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Equality and disequality paths

Definition (Equality Path)

A path that uses E_ edges is an equality path. We write x =* z.

Definition (Disequality Path)

A path that uses edges from E_ and exactly one edge from E. is a
disequality path. We write x #* z.
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Contradictory cycles

- G

Definition (Contradictory Cycle)

A cycle with one disequality edge is a contradictory cycle.

For every two nodes x,y on a contradictory cycle the following holds:

Ex="y

mxEy
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Contradictory cycles

2 ,,:

A subgraph of E is called satisfiable iff the conjunction of the predicates
represented by its edges is satisfiable.

A subgraph is unsatisfiable iff it contains a contradictory cycle.
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Simple cycles

Question: What is a simple cycle?

Every contradictory cycle is either simple, or contains a simple
contradictory cycle.
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Simplifying the E-graph

O 0O
oL o 2

Let S be the set of edges that are not part of any contradictory cycle.

Theorem

Replacing all equations that correspond to solid edges in S with false, and
all equations that correspond to dashed edges in S with true preserves
satisfiability.
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Simplifying the E-graph: Example

®
false
©)

(Xl =X V X1 = X4) VAN
| |

(Xl #x3 V xp = X3)

14 PR \
- XT— X2 traC—y

(Xl 7& x3 V Xo = X3)

m —false V true

m — Satisfiable!
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Bryant & Velev 2000: The Sparse method

Goal: Transform equality logic to propositional logic

Step 1: Encode all edges with Boolean variables

2
QDE < x1=x2AXx2=x3A\X1 £ X3 o) @

0
Psk ec N e AN —e3

Ga)

m This is called the propositional skeleton
m This is an over-approximation
m Transitivity of equality is lost!

m — must add transitivity constraints!
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Adding transitivity constraints

O

E . . <,
%) = x1=xAXx2=x3A\X1 # X3 o @

Psk ee N e AN e @ -y

Step 2: For each cycle: add a transitivity constraint
Ptrans = (el Ne — 63)/\
(e1 N es — e)A
(esNex — er)

Step 3: Check wsk A @rrans

Question: Complexity?
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Optimizations

There can be an exponential number of cycles, so let's try to improve this
idea.

It is sufficient to constrain simple cycles only.

Only two simple cycles here.

Question: Complexity?
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Optimizations

Still, there may be an exponential number of simple cycles.

Theorem

It is sufficient to constrain chord-free simple cycles.

Question: How many simple cycles?
Question: How many chord-free simple cycles?

Question: Complexity?
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Optimizations

Still, there may be an exponential number of chord-free simple cycles...

Solution: make graph 'chordal’ by adding edges!
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Making the E-graph chordal

Definition (Chordal graph)

A graph is chordal iff every cycle of length 4 or more has a chord.

Question: How to make a graph chordal?
A: Eliminate vertices one at a time, and connect their neighbors.
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Making the E-graph chordal

m Once the graph is chordal, we only need to constrain the triangles.

m Note that this procedure adds not more than a polynomial number of
edges, and results in a polynomial number of constraints.
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Exploiting the polarity

m So far we did not consider the polarity of the edges.

m Claim: in the following graph, @ians = €2 A e3 — ey is sufficient.

€1 €3

m This works because of the monotonicity of NNF.
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Equality logic to propositional logic

m Input: Equality logic formula ¢f
m Output: satisfiability-equivalent propositional logic formula &

Algorithm

Construct pg by replacing each equality t; = ¢; in ©F by a fresh
Boolean variable e; ;.

Construct the E-graph GE(¢F) for ©F.

Make GE(F) chordal.

Ptrans = true.

For each triangle (i, € x, ex.;) in GE(pF):

Ptrans = Ptrans A (ei,j A ej,k) — €k,i
A (e,-J A\ e,-7k) — € k
A (e,-7k A eJ-’k) — &

@ Return @ A Otrans-
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Arbitrary Boolean combination of equalities with UFs
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From uninterpreted functions to equality logic

We lead back the problems of equality logic with uninterpreted functions to
those of equality logic without uninterpreted functions.

Two possible reductions:
m Ackermann’s reduction
m Bryant's reduction

We look only at Ackermann.
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Ackermann’s reduction

Given an input formula YF of equality logic with uninterpreted functions,
transform the formula to a satisfiability-equivalent equality logic formula
©F of the form

E
©~ = Pflat \ Pcongs

where . is a flattening of pYF, and ¢cong is a conjunction of constraints
for functional congruence.

For validity-equivalence check

E .
@Y~ = Pcong —7 Pflat-

Note: This is quite similar to leading back equality logic to propositional
logic by
Psk N\ Ptrans-

Prof. Dr. Erika Abraham - Satisfiability Checking



Ackermann’s reduction

m Input: YF with m instances of an uninterpreted function F.

m Output: satisfiability-equivalent oF without any occurrences of F.

Algorithm

Assign indices to the F-instances.

©iat .= T (0YF) where T replaces each occurrence F; of F by a fresh
Boolean variable f;.

peong = N1 Nia (T (are(F) = T (arg(F}))) = f; = f;
Return Pflat N Pcong-
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Ackermann’s reduction: Example

UF

Pflat
FCF

x1 7 x2) V (F(x1) = F(x)) vV (F(xa) # F(x3))
x1 #x)V(h="h)V(i#Hh)

(1=x) — (A="hH)A

(x1=x3) — (h=Hh)A

(e=x3) — (h=H))

Pcong N Pflat

(
(
(
(
(
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Ackermann’s reduction: Example

int power3 (int in){
int out = in;
for (int i=0; i<2; i++)
out = out * in;
return out;

}

int power3 b (int in){
return ((in * in) * in);

}

B (1 = outy = in A outy = outy * in \ outy = outy x in
m oy = out, = (inxin)*in

m o3 = (p1 /A p2) — (outy = outy)
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Ackermann’s reduction: Example

w3 = (outy = inA outy = outy * in A
outy = outy * in A\ outy = (in* in) * in) —
(Outg = outb)

©YF = (outy = in A outy = G(outy, in) A

outy = G(outy, in) A out, = G(G(in, in),in)) —
(out2 = outb)
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Ackermann’s reduction: Example

oUF = (outy = in A out; = G(outy, in) A outy = G(out, in) A
out, = G(G(in,in),in)) — (outy = outp)
Cflat = (Outo =inAout; = Gy Aouty = Gy A

out, = Gy4) — (outy = outp) with

Ycong = ((outg = outy Ain=in) — G = G)A
((outg = in A in = in) — G = G)A
((Outo =Gz ANin= in) — G = G4)/\
((outy = inNin=in — G = G)A
((out1 =Gz ANin= in) — G = G4)/\
((in= Gz N in=in) — Gz = Gy)
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