
Satisfiability Checking
Equalities and Uninterpreted Functions

Prof. Dr. Erika Ábrahám

Theory of Hybrid Systems
Informatik 2

WS 10/11

Prof. Dr. Erika Ábrahám - Satisfiability Checking 1 / 41

Equality logic with uninterpreted functions

We extend the propositional logic with equalities and uninterpreted
functions.

Syntax: variables x over an arbitrary domain D, constants c (from the
same domain D), function symbols F for functions of the type Dn → D.

Terms: t := c | x | F (t, . . . , t)
Formulas: ϕ := t = t | (ϕ ∧ ϕ) | (¬ϕ)

Semantics: straightforward

Notation and assumptions:

Formula with equalities: ϕE

Formula with equalities and uninterpreted functions: ϕUF

Same simplifications for parentheses as for propositional logic.
Input formulas are in NNF.
Input formulas are checked for satisfiability.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 2 / 41

Motivation

Equality logic and propositional logic are both NP-complete.
Thus they model the same decision problems.
Why to study both?

Convenience of modeling
Efficiency

Extensions: Different domains, Boolean variables

Prof. Dr. Erika Ábrahám - Satisfiability Checking 3 / 41

Motivation

Replacing functions by uninterpreted functions in a given formula is a
common technique to make reasoning easier.
It makes the formula weaker: |= ϕUF → ϕ

Ignore the semantics of the function, but:
Functional congruence: Instances of the same function return the
same value for equal arguments.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 4 / 41

Removing constants

Theorem
There is an algorithm that generates for an input equality logic formula ϕE

an equisatisfiable output formula ϕE ′ without constants, in polynomial
time.

Algorithm: Exercise

In the following we assume that the formulas do not contain constants.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 5 / 41

Outline

1 Conjunction of equalities

2 Conjunction of equalities with uninterpreted functions

3 Arbitrary Boolean combination of equalities
Equality graphs
The Sparse Method

4 Arbitrary Boolean combination of equalities with UFs

Prof. Dr. Erika Ábrahám - Satisfiability Checking 6 / 41

Outline

1 Conjunction of equalities

2 Conjunction of equalities with uninterpreted functions

3 Arbitrary Boolean combination of equalities
Equality graphs
The Sparse Method

4 Arbitrary Boolean combination of equalities with UFs

Prof. Dr. Erika Ábrahám - Satisfiability Checking 7 / 41

First: Conjunction of equalities without UF

Input: A conjunction ϕ of equalities and disequalities without UF

Algorithm

1 Define an equivalence class for each variable in ϕ.
2 For each equality x = y in ϕ: merge the equivalence classes of x and

y .
3 For each disequality x 6= y in ϕ:

if x is in the same class as y , return ’UNSAT’.
4 Return ’SAT’.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 8 / 41

Example

ϕE : x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 6= x1

Equivalence class 1 Equivalence class 2

@
@
@
@
@R

�
�

�
�
�	

x1 , x2 , x3 x 4
, x 5

SAT

Prof. Dr. Erika Ábrahám - Satisfiability Checking 9 / 41

Outline

1 Conjunction of equalities

2 Conjunction of equalities with uninterpreted functions

3 Arbitrary Boolean combination of equalities
Equality graphs
The Sparse Method

4 Arbitrary Boolean combination of equalities with UFs

Prof. Dr. Erika Ábrahám - Satisfiability Checking 10 / 41

Next: Add uninterpreted functions

How do they relate?
x = y , F (x) = F (y): |= (x = y)→ (F (x) = F (y))
x = y , F (x) 6= F (y): conjunction unsatisfiable
x 6= y , F (x) = F (y): unrelated (conjunction satisfiable)
x 6= y , F (x) 6= F (y): |= (F (x) 6= F (y))→ (x 6= y)

x = y , F (G (x)) = F (G (y)): |= (x = y)→ (F (G (x)) = F (G (y)))

Prof. Dr. Erika Ábrahám - Satisfiability Checking 11 / 41

Next: Add uninterpreted functions

ϕE : x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 6= x1 ∧ F (x1) 6= F (x2)

Equivalence class 1

Equivalence class 2

Equivalence class 3

Equivalence class 4

@
@
@
@
@R

�
�

�
�
�	

@
@
@
@R

@
@
@@R

x1 , x2 , x3 x 4
, x 5

F (x1)

F (x2)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 12 / 41

Next: Compute the congruence closure

ϕE : x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 6= x1 ∧ F (x1) 6= F (x2)

Congruence closure:

If all the arguments of two function applications are in the same class,
merge the classes of the applications!

Equivalence class 1 Equivalence class 2 Equivalence class 3

@
@
@
@
@R

@
@
@
@
@
@R

@
@
@
@
@R

x1 , x2 , x3

F (x1),F (x2)

x4 , x5

UNSAT

Prof. Dr. Erika Ábrahám - Satisfiability Checking 13 / 41

Input: A conjunction ϕ of equalities and disequalities with UFs of type
D → D

Algorithm

1 C := {{t} | t occurs as subexpression in an (in)equation in ϕ};
2 for each equality t = t ′ in ϕ

C := (C \ {[t], [t ′]}) ∪ {[t] ∪ [t ′]};
while exists F (t),F (t ′) in ϕ with [t] = [t ′] and [F (t)] 6= [F (t ′)]
C := (C \ {[F (t)], [F (t ′)]}) ∪ {[F (t)] ∪ [F (t ′)]};

3 for each inequality t 6= t ′ in ϕ

if [t] = [t ′] return "UNSAT";
4 return "SAT";

Prof. Dr. Erika Ábrahám - Satisfiability Checking 14 / 41

Outline

1 Conjunction of equalities

2 Conjunction of equalities with uninterpreted functions

3 Arbitrary Boolean combination of equalities
Equality graphs
The Sparse Method

4 Arbitrary Boolean combination of equalities with UFs

Prof. Dr. Erika Ábrahám - Satisfiability Checking 15 / 41

Adding disjunctions

One option: syntactic case-splitting,
corresponds to transforming the formula to DNF.
May result in exponential number of cases.
Now we start looking at methods that split the search space instead.
This is called semantic splitting.
SAT is a very good engine for performing semantic splitting, due to its
ability to guide the search, prune the search-space, and so on.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 16 / 41

E-graphs

ϕE : x = y ∧ y = z ∧ z 6= x

The equality predicates: {x = y , y = z , z 6= x}
Break into two sets:

E= = {x = y , y = z}, E 6= = {z 6= x}

The equality graph (E-graph) GE (ϕE) = 〈V ,E=,E 6=〉

~ny
~nx ~nz

Prof. Dr. Erika Ábrahám - Satisfiability Checking 17 / 41

The E-graph and Boolean structure in ϕE

ϕE
1 : x = y ∧ y = z ∧ z 6= x unsatisfiable

ϕE
2 : (x = y ∧ y = z) ∨ z 6= x satisfiable!

Their E-graph is the same:

~ny
~nx ~nz

=⇒ The graph GE (ϕE) represents an abstraction of ϕE .
It ignores the Boolean structure of ϕE .

Prof. Dr. Erika Ábrahám - Satisfiability Checking 18 / 41

Equality and disequality paths

~ny
~nx ~nz

Definition (Equality Path)

A path that uses E= edges is an equality path. We write x =∗ z .

Definition (Disequality Path)

A path that uses edges from E= and exactly one edge from E 6= is a
disequality path. We write x 6=∗ z .

Prof. Dr. Erika Ábrahám - Satisfiability Checking 19 / 41

Contradictory cycles

~ny
~nx ~nz

Definition (Contradictory Cycle)

A cycle with one disequality edge is a contradictory cycle.

Theorem
For every two nodes x , y on a contradictory cycle the following holds:

x =∗ y
x 6=∗ y

Prof. Dr. Erika Ábrahám - Satisfiability Checking 20 / 41

Contradictory cycles

~ny
~nx ~nz

Definition
A subgraph of E is called satisfiable iff the conjunction of the predicates
represented by its edges is satisfiable.

Theorem
A subgraph is unsatisfiable iff it contains a contradictory cycle.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 21 / 41

Simple cycles

Question: What is a simple cycle?

~n
~n

~n
~n~n

Theorem
Every contradictory cycle is either simple, or contains a simple
contradictory cycle.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 22 / 41

Simplifying the E-graph

PPPPPP

~n ~n
~n ~n ~n

~n ~n

Let S be the set of edges that are not part of any contradictory cycle.

Theorem
Replacing all equations that correspond to solid edges in S with false, and
all equations that correspond to dashed edges in S with true preserves
satisfiability.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 23 / 41

Simplifying the E-graph: Example

~nx4

~nx1

~nx3

~nx2
true

fa
ls
e

true

(x1 = x2 ∨ x1 = x4) ∧
(x1 6= x3 ∨ x2 = x3)

(x1 = x2 ∨ true) ∧
(x1 6= x3 ∨ x2 = x3)

¬false ∨ true
−→ Satisfiable!

Prof. Dr. Erika Ábrahám - Satisfiability Checking 24 / 41

Bryant & Velev 2000: The Sparse method

Goal: Transform equality logic to propositional logic

Step 1: Encode all edges with Boolean variables

ϕE ⇐⇒ x1 = x2 ∧ x2 = x3 ∧ x1 6= x3
ϕsk ⇐⇒ e1 ∧ e2 ∧ ¬e3 ~nx1

~nx2

~nx3

e 3

e2

e 1

This is called the propositional skeleton
This is an over-approximation
Transitivity of equality is lost!
→ must add transitivity constraints!

Prof. Dr. Erika Ábrahám - Satisfiability Checking 25 / 41

Adding transitivity constraints

ϕE ⇐⇒ x1 = x2 ∧ x2 = x3 ∧ x1 6= x3
ϕsk ⇐⇒ e1 ∧ e2 ∧ ¬e3 ~nx1

~nx2

~nx3

e 3

e2

e 1

Step 2: For each cycle: add a transitivity constraint

ϕtrans = (e1 ∧ e2 −→ e3)∧
(e1 ∧ e3 −→ e2)∧
(e3 ∧ e2 −→ e1)

Step 3: Check ϕsk ∧ ϕtrans

Question: Complexity?

Prof. Dr. Erika Ábrahám - Satisfiability Checking 26 / 41

Optimizations

There can be an exponential number of cycles, so let’s try to improve this
idea.

Theorem
It is sufficient to constrain simple cycles only.

vf
vf

vf
vfvf

Only two simple cycles here.

Question: Complexity?

Prof. Dr. Erika Ábrahám - Satisfiability Checking 27 / 41

Optimizations

Still, there may be an exponential number of simple cycles.

Theorem
It is sufficient to constrain chord-free simple cycles.

aaaaaaaaavf vf
vfvf

Question: How many simple cycles?
Question: How many chord-free simple cycles?

Question: Complexity?

Prof. Dr. Erika Ábrahám - Satisfiability Checking 28 / 41

Optimizations

Still, there may be an exponential number of chord-free simple cycles...

�
��@@

@
�
��@@

@
vf vf

vf vf �
��@@

@
�
��@@

@
vf vf

vf vf �
��@@

@
�
��@@

@
vf vf

vf vf

Solution: make graph ’chordal’ by adding edges!

Prof. Dr. Erika Ábrahám - Satisfiability Checking 29 / 41

Making the E-graph chordal

Definition (Chordal graph)

A graph is chordal iff every cycle of length 4 or more has a chord.

Question: How to make a graph chordal?
A: Eliminate vertices one at a time, and connect their neighbors.

@
@
@
@
@
@
@
@

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP��������

vf
vf vf

vfvf
�

�

�

Prof. Dr. Erika Ábrahám - Satisfiability Checking 30 / 41

Making the E-graph chordal

Once the graph is chordal, we only need to constrain the triangles.

@
@
@
@
@
@
@
@

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP��������

vf
vf vf

vfvf
Note that this procedure adds not more than a polynomial number of
edges, and results in a polynomial number of constraints.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 31 / 41

Exploiting the polarity

So far we did not consider the polarity of the edges.
Claim: in the following graph, ϕtrans = e2 ∧ e3 −→ e1 is sufficient.vf

vfvf
e1

e2

e3

This works because of the monotonicity of NNF.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 32 / 41

Equality logic to propositional logic

Input: Equality logic formula ϕE

Output: satisfiability-equivalent propositional logic formula ϕE

Algorithm

1 Construct ϕsk by replacing each equality ti = tj in ϕE by a fresh
Boolean variable ei ,j .

2 Construct the E-graph GE (ϕE) for ϕE .
3 Make GE (ϕE) chordal.
4 ϕtrans = true.
5 For each triangle (ei ,j , ej ,k , ek,i) in GE (ϕE):

ϕtrans := ϕtrans ∧ (ei ,j ∧ ej ,k)→ ek,i
∧ (ei ,j ∧ ei ,k)→ ej ,k
∧ (ei ,k ∧ ej ,k)→ ei ,j

6 Return ϕsk ∧ ϕtrans.
Prof. Dr. Erika Ábrahám - Satisfiability Checking 33 / 41

Outline

1 Conjunction of equalities

2 Conjunction of equalities with uninterpreted functions

3 Arbitrary Boolean combination of equalities
Equality graphs
The Sparse Method

4 Arbitrary Boolean combination of equalities with UFs

Prof. Dr. Erika Ábrahám - Satisfiability Checking 34 / 41

From uninterpreted functions to equality logic

We lead back the problems of equality logic with uninterpreted functions to
those of equality logic without uninterpreted functions.

Two possible reductions:
Ackermann’s reduction
Bryant’s reduction

We look only at Ackermann.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 35 / 41

Ackermann’s reduction

Given an input formula ϕUF of equality logic with uninterpreted functions,
transform the formula to a satisfiability-equivalent equality logic formula
ϕE of the form

ϕE := ϕflat ∧ ϕcong,

where ϕflat is a flattening of ϕUF, and ϕcong is a conjunction of constraints
for functional congruence.

For validity-equivalence check

ϕE := ϕcong → ϕflat.

Note: This is quite similar to leading back equality logic to propositional
logic by

ϕsk ∧ ϕtrans .

Prof. Dr. Erika Ábrahám - Satisfiability Checking 36 / 41

Ackermann’s reduction

Input: ϕUF with m instances of an uninterpreted function F .
Output: satisfiability-equivalent ϕE without any occurrences of F .

Algorithm

1 Assign indices to the F -instances.
2 ϕflat := T (ϕUF) where T replaces each occurrence Fi of F by a fresh

Boolean variable fi .
3 ϕcong :=

∧m−1
i=1

∧m
j=i+1(T (arg(Fi)) = T (arg(Fj)))→ fi = fj

4 Return ϕflat ∧ ϕcong.

Prof. Dr. Erika Ábrahám - Satisfiability Checking 37 / 41

Ackermann’s reduction: Example

ϕUF := (x1 6= x2) ∨ (F (x1) = F (x2)) ∨ (F (x1) 6= F (x3))

ϕflat := (x1 6= x2) ∨ (f1 = f2) ∨ (f1 6= f3)

FCE := ((x1 = x2) → (f1 = f2))∧
((x1 = x3) → (f1 = f3))∧
((x2 = x3) → (f2 = f3))

ϕE := ϕcong ∧ ϕflat

Prof. Dr. Erika Ábrahám - Satisfiability Checking 38 / 41

Ackermann’s reduction: Example

int power3 (int in){
int out = in;
for (int i=0; i<2; i++)

out = out * in;
return out;

}
int power3_b (int in){

return ((in * in) * in);
}

ϕ1 := out0 = in ∧ out1 = out0 ∗ in ∧ out2 = out1 ∗ in
ϕ2 := outb = (in ∗ in) ∗ in
ϕ3 := (ϕ1 ∧ ϕ2)→ (out2 = outb)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 39 / 41

Ackermann’s reduction: Example

ϕ3 := (out0 = in ∧ out1 = out0 ∗ in ∧
out2 = out1 ∗ in ∧ outb = (in ∗ in) ∗ in)→
(out2 = outb)

ϕUF := (out0 = in ∧ out1 = G (out0, in) ∧
out2 = G (out1, in) ∧ outb = G (G (in, in), in))→
(out2 = outb)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 40 / 41

Ackermann’s reduction: Example

ϕUF := (out0 = in ∧ out1 = G (out0, in) ∧ out2 = G (out1, in) ∧
outb = G (G (in, in), in))→ (out2 = outb)

ϕflat := (out0 = in ∧ out1 = G1 ∧ out2 = G2 ∧
outb = G4)→ (out2 = outb) with

ϕcong := ((out0 = out1 ∧ in = in) → G1 = G2)∧
((out0 = in ∧ in = in) → G1 = G3)∧
((out0 = G3 ∧ in = in) → G1 = G4)∧
((out1 = in ∧ in = in → G2 = G3)∧
((out1 = G3 ∧ in = in) → G2 = G4)∧
((in = G3 ∧ in = in) → G3 = G4)

Prof. Dr. Erika Ábrahám - Satisfiability Checking 41 / 41

	Conjunction of equalities
	Conjunction of equalities with uninterpreted functions
	Arbitrary Boolean combination of equalities
	Equality graphs
	The Sparse Method

	Arbitrary Boolean combination of equalities with UFs

