Satisfiability Checking

Equalities and Uninterpreted Functions

Prof. Dr. Erika Abraham

Theory of Hybrid Systems
Informatik 2

WS 10/11

Prof. Dr. Erika Abraham - Satisfiability Checking

Equality logic with uninterpreted functions

We extend the propositional logic with equalities and uninterpreted
functions.

Syntax: variables x over an arbitrary domain D, constants ¢ (from the
same domain D), function symbols F for functions of the type D" — D.

Terms: t = c | X | F(t,...,t)
Formulas: ¢ = t=t | (e A p) | (=)
Semantics: straightforward
Notation and assumptions:

Formula with equalities: ©f

Formula with equalities and uninterpreted functions: @YF

]
]
m Same simplifications for parentheses as for propositional logic.
m Input formulas are in NNF.

]

Input formulas are checked for satisfiability.

Prof. Dr. Erika Abraham - Satisfiability Checking

m Equality logic and propositional logic are both NP-complete.
m Thus they model the same decision problems.
m Why to study both?

m Convenience of modeling
m Efficiency

m Extensions: Different domains, Boolean variables

Prof. Dr. Erika Abraham - Satisfiability Checking

Replacing functions by uninterpreted functions in a given formula is a
common technique to make reasoning easier.

It makes the formula weaker: = oYF 5 o

Ignore the semantics of the function, but:

Functional congruence: Instances of the same function return the
same value for equal arguments.

Prof. Dr. Erika Abraham - Satisfiability Checking

Removing constants

Theorem

There is an algorithm that generates for an input equality logic formula pF
an equisatisfiable output formula ¢F " without constants, in polynomial
time.

Algorithm: Exercise

In the following we assume that the formulas do not contain constants.

Prof. Dr. Erika Abraham - Satisfiability Checking

Conjunction of equalities
Conjunction of equalities with uninterpreted functions

Arbitrary Boolean combination of equalities
m Equality graphs
m The Sparse Method

Arbitrary Boolean combination of equalities with UFs

Prof. Dr. Erika Abraham - Satisfiability Checking

Outline

Conjunction of equalities

Prof. Dr. Erika Abraham - Satisfiability Checking

First: Conjunction of equalities without UF

Input: A conjunction ¢ of equalities and disequalities without UF
Algorithm

Define an equivalence class for each variable in .

For each equality x = y in ¢: merge the equivalence classes of x and
y.

For each disequality x # y in ¢:
if x is in the same class as y, return "UNSAT'.

Return 'SAT'.

Prof. Dr. Erika Abraham - Satisfiability Checking

cpE: X1 =xAXx2=x3AX4 =Xx5 \ X5 # X1
%, £
NE 4

Equivalence class 1 Equivalence class 2

Prof. Dr. Erika Abraham - Satisfiability Checking

Outline

Conjunction of equalities with uninterpreted functions

Prof. Dr. Erika Abraham - Satisfiability Checking

Next: Add uninterpreted functions

How do they relate?
m x=y, F(x) = Fy):
m x=y, F(x) # Fy):
m x #y, F(x) = F(y): unrelated (conjunction satisfiable)
m x 7y, F(x) # F(y): = (F(x) # F(y)) = (x # y)

= (x=y) = (F(x) = F(y))
conjunction unsatisfiable

y

m x =y, F(G(x)) = F(G(y)): = (x=y) = (F(GC(x)) = F(G(y)))

Prof. Dr. Erika Abraham - Satisfiability Checking

Next: Add uninterpreted functions

oF - x1=Xx2Ax2=x3Axs =x5 Axs #x1 A\ F(x1) # F(x)

Equivalence class 2

; _ b o
Equivalence class 1 P Equivalence class 3

—%

FE)

Equivalence class 4

Prof. Dr. Erika Abraham - Satisfiability Checking

Next: Compute the congruence closure

oF - x1=Xx2Ax2=x3Axs =x5 Axs #x1 A\ F(x1) # F(x)

Congruence closure:

If all the arguments of two function applications are in the same class,
merge the classes of the applications!

Equivalence class 1 Equivalence class 2 Equivalence class 3

Prof. Dr. Erika Abraham - Satisfiability Checking

Input: A conjunction ¢ of equalities and disequalities with UFs of type
D—D

Algorithm

C := {{t} | t occurs as subexpression in an (in)equation in ¢};

for each equality t = t’ in ¢
C:= (C\{[L [T} vl u [}
while exists F(t), F(t') in ¢ with [t] = [¢/] and [F(t)] # [F(t")]
C:= (C\A{[FOLIF(N}) v {IF@IU [F(]};
for each inequality t # t' in
if [t] =[t'] return "UNSAT";
return "SAT":

Prof. Dr. Erika Abraham - Satisfiability Checking

Arbitrary Boolean combination of equalities
m Equality graphs
m The Sparse Method

Prof. Dr. Erika Abraham - Satisfiability Checking

Adding disjunctions

m One option: syntactic case-splitting,
corresponds to transforming the formula to DNF.

m May result in exponential number of cases.

m Now we start looking at methods that split the search space instead.
This is called semantic splitting.

m SAT is a very good engine for performing semantic splitting, due to its
ability to guide the search, prune the search-space, and so on.

Prof. Dr. Erika Abraham - Satisfiability Checking

o ix=yAy=zrz#x

m The equality predicates: {x =y,y = z,z # x}

m Break into two sets:

E-={x=yy=2z}, Ei={z#x}

m The equality graph (E-graph) GE(oF) = (V, E_, Ex)

- ,,:

Prof. Dr. Erika Abraham - Satisfiability Checking

The E-graph and Boolean structure in

E. x=yANy=zAz#x unsatisfiable

¥1 -
oE: (x=yAy=2z)Vz#x satisfiablel

Their E-graph is the same:

— The graph GE(oF) represents an abstraction of (F.
It ignores the Boolean structure of ¢F.

Prof. Dr. Erika Abraham - Satisfiability Checking

Equality and disequality paths

Definition (Equality Path)

A path that uses E_ edges is an equality path. We write x =* z.

Definition (Disequality Path)

A path that uses edges from E_ and exactly one edge from E. is a
disequality path. We write x #* z.

Prof. Dr. Erika Abraham - Satisfiability Checking

Contradictory cycles

- G

Definition (Contradictory Cycle)

A cycle with one disequality edge is a contradictory cycle.

For every two nodes x,y on a contradictory cycle the following holds:

Ex="y

mxEy

Prof. Dr. Erika Abraham - Satisfiability Checking

Contradictory cycles

2 ,,:

A subgraph of E is called satisfiable iff the conjunction of the predicates
represented by its edges is satisfiable.

A subgraph is unsatisfiable iff it contains a contradictory cycle.

Prof. Dr. Erika Abraham - Satisfiability Checking

Simple cycles

Question: What is a simple cycle?

Every contradictory cycle is either simple, or contains a simple
contradictory cycle.

Prof. Dr. Erika Abraham - Satisfiability Checking

Simplifying the E-graph

O 0O
oL o 2

Let S be the set of edges that are not part of any contradictory cycle.

Theorem

Replacing all equations that correspond to solid edges in S with false, and
all equations that correspond to dashed edges in S with true preserves
satisfiability.

Prof. Dr. Erika Abraham - Satisfiability Checking

Simplifying the E-graph: Example

®
false
©)

(Xl =X V X1 = X4) VAN
| |

(Xl #x3 V xp = X3)

14 PR \
- XT— X2 traC—y

(Xl 7& x3 V Xo = X3)

m —false V true

m — Satisfiable!

Prof. Dr. Erika Abraham - Satisfiability Checking

Bryant & Velev 2000: The Sparse method

Goal: Transform equality logic to propositional logic

Step 1: Encode all edges with Boolean variables

2
QDE < x1=x2AXx2=x3A\X1 £ X3 o) @

0
Psk ec N e AN —e3

Ga)

m This is called the propositional skeleton
m This is an over-approximation
m Transitivity of equality is lost!

m — must add transitivity constraints!

Prof. Dr. Erika Abraham - Satisfiability Checking

Adding transitivity constraints

O

E . . <,
%) = x1=xAXx2=x3A\X1 # X3 o @

Psk ee N e AN e @ -y

Step 2: For each cycle: add a transitivity constraint
Ptrans = (el Ne — 63)/\
(e1 N es — e)A
(esNex — er)

Step 3: Check wsk A @rrans

Question: Complexity?

Prof. Dr. Erika Abraham - Satisfiability Checking

Optimizations

There can be an exponential number of cycles, so let's try to improve this
idea.

It is sufficient to constrain simple cycles only.

Only two simple cycles here.

Question: Complexity?

Prof. Dr. Erika Abraham - Satisfiability Checking

Optimizations

Still, there may be an exponential number of simple cycles.

Theorem

It is sufficient to constrain chord-free simple cycles.

Question: How many simple cycles?
Question: How many chord-free simple cycles?

Question: Complexity?

Prof. Dr. Erika Abraham - Satisfiability Checking

Optimizations

Still, there may be an exponential number of chord-free simple cycles...

Solution: make graph 'chordal’ by adding edges!

Prof. Dr. Erika Abraham - Satisfiability Checking

Making the E-graph chordal

Definition (Chordal graph)

A graph is chordal iff every cycle of length 4 or more has a chord.

Question: How to make a graph chordal?
A: Eliminate vertices one at a time, and connect their neighbors.

Prof. Dr. Erika Abraham - Satisfiability Checking

Making the E-graph chordal

m Once the graph is chordal, we only need to constrain the triangles.

m Note that this procedure adds not more than a polynomial number of
edges, and results in a polynomial number of constraints.

Prof. Dr. Erika Abraham - Satisfiability Checking

Exploiting the polarity

m So far we did not consider the polarity of the edges.

m Claim: in the following graph, @ians = €2 A e3 — ey is sufficient.

€1 €3

m This works because of the monotonicity of NNF.

Prof. Dr. Erika Abraham - Satisfiability Checking

Equality logic to propositional logic

m Input: Equality logic formula ¢f
m Output: satisfiability-equivalent propositional logic formula &

Algorithm

Construct pg by replacing each equality t; = ¢; in ©F by a fresh
Boolean variable e; ;.

Construct the E-graph GE(¢F) for ©F.

Make GE(F) chordal.

Ptrans = true.

For each triangle (i, € x, ex.;) in GE(pF):

Ptrans = Ptrans A (ei,j A ej,k) — €k,i
A (e,-J A\ e,-7k) — € k
A (e,-7k A eJ-’k) — &

@ Return @ A Otrans-

Prof. Dr. Erika Abraham - Satisfiability Checking

Arbitrary Boolean combination of equalities with UFs

Prof. Dr. Erika Abraham - Satisfiability Checking

From uninterpreted functions to equality logic

We lead back the problems of equality logic with uninterpreted functions to
those of equality logic without uninterpreted functions.

Two possible reductions:
m Ackermann’s reduction
m Bryant's reduction

We look only at Ackermann.

Prof. Dr. Erika Abraham - Satisfiability Checking

Ackermann’s reduction

Given an input formula YF of equality logic with uninterpreted functions,
transform the formula to a satisfiability-equivalent equality logic formula
©F of the form

E
©~ = Pflat \ Pcongs

where . is a flattening of pYF, and ¢cong is a conjunction of constraints
for functional congruence.

For validity-equivalence check

E .
@Y~ = Pcong —7 Pflat-

Note: This is quite similar to leading back equality logic to propositional
logic by
Psk N\ Ptrans-

Prof. Dr. Erika Abraham - Satisfiability Checking

Ackermann’s reduction

m Input: YF with m instances of an uninterpreted function F.

m Output: satisfiability-equivalent oF without any occurrences of F.

Algorithm

Assign indices to the F-instances.

©iat .= T (0YF) where T replaces each occurrence F; of F by a fresh
Boolean variable f;.

peong = N1 Nia (T (are(F) = T (arg(F}))) = f; = f;
Return Pflat N Pcong-

Prof. Dr. Erika Abraham - Satisfiability Checking

Ackermann’s reduction: Example

UF

Pflat
FCF

x1 7 x2) V (F(x1) = F(x)) vV (F(xa) # F(x3))
x1 #x)V(h="h)V(i#Hh)

(1=x) — (A="hH)A

(x1=x3) — (h=Hh)A

(e=x3) — (h=H))

Pcong N Pflat

(
(
(
(
(

Prof. Dr. Erika Abraham - Satisfiability Checking

Ackermann’s reduction: Example

int power3 (int in){
int out = in;
for (int i=0; i<2; i++)
out = out * in;
return out;

}

int power3 b (int in){
return ((in * in) * in);

}

B (1 = outy = in A outy = outy * in \ outy = outy x in
m oy = out, = (inxin)*in

m o3 = (p1 /A p2) — (outy = outy)

Prof. Dr. Erika Abraham - Satisfiability Checking

Ackermann’s reduction: Example

w3 = (outy = inA outy = outy * in A
outy = outy * in A\ outy = (in* in) * in) —
(Outg = outb)

©YF = (outy = in A outy = G(outy, in) A

outy = G(outy, in) A out, = G(G(in, in),in)) —
(out2 = outb)

Prof. Dr. Erika Abraham - Satisfiability Checking

Ackermann’s reduction: Example

oUF = (outy = in A out; = G(outy, in) A outy = G(out, in) A
out, = G(G(in,in),in)) — (outy = outp)
Cflat = (Outo =inAout; = Gy Aouty = Gy A

out, = Gy4) — (outy = outp) with

Ycong = ((outg = outy Ain=in) — G = G)A
((outg = in A in = in) — G = G)A
((Outo =Gz ANin= in) — G = G4)/\
((outy = inNin=in — G = G)A
((out1 =Gz ANin= in) — G = G4)/\
((in= Gz N in=in) — Gz = Gy)

Prof. Dr. Erika Abraham - Satisfiability Checking

	Conjunction of equalities
	Conjunction of equalities with uninterpreted functions
	Arbitrary Boolean combination of equalities
	Equality graphs
	The Sparse Method

	Arbitrary Boolean combination of equalities with UFs

