

Satisfiability Checking

The Simplex Algorithm

Prof. Dr. Erika Ábrahám

Theory of Hybrid Systems
Informatik 2

WS 10/11

Outline

- 1 Gaussian Elimination
- 2 Satisfiability with Simplex
- 3 General Simplex Form
- 4 Simplex Basics
- 5 The General Simplex Algorithm

Gaussian Elimination

- Given a linear system $Ax = b$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kk} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{pmatrix}$$

- Manipulate $A|b$ to obtain an upper-triangular form

$$\left(\begin{array}{cccc|c} a'_{11} & a'_{12} & \dots & a'_{1k} & b'_1 \\ 0 & a'_{22} & \dots & a'_{2k} & b'_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & a'_{kk} & b'_k \end{array} \right)$$

Gaussian Elimination

Then, solve backwards from k 's row according to:

$$x_i = \frac{1}{a'_{ii}}(b'_i - \sum_{j=i+1}^k a'_{ij}x_j)$$

Example

$$\begin{pmatrix} 1 & 2 & 1 \\ -2 & 3 & 4 \\ 4 & -1 & -8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ 9 \end{pmatrix} \quad \left| \begin{array}{ccc|c} 1 & 2 & 1 & 6 \\ -2 & 3 & 4 & 3 \\ 4 & -1 & -8 & 9 \end{array} \right.$$

$$\begin{array}{lcl} R3 & = & (4, -1, -8 \mid 9) \\ -4R1 & = & (-4, -8, -4 \mid -24) \\ R3 + & = & -4R1 \end{array} \quad \left| \begin{array}{ccc|c} 1 & 2 & 1 & 6 \\ -2 & 3 & 4 & 3 \\ 0 & -9 & -12 & -15 \end{array} \right.$$

$$\begin{array}{lcl} R2 & = & (-2, 3, 4 \mid 3) \\ 2R1 & = & (2, 4, 2 \mid 12) \\ R2 + & = & 2R1 \end{array} \quad \left| \begin{array}{ccc|c} 1 & 2 & 1 & 6 \\ 0 & 7 & 6 & 15 \\ 0 & -9 & -12 & -15 \end{array} \right.$$

$$\begin{array}{lcl} R3 & = & (0, -9, -12 \mid -15) \\ \frac{9}{7}R2 & = & (0, 9, \frac{6 \cdot 9}{7} \mid \frac{15 \cdot 9}{7}) \\ R3 + & = & \frac{9}{7}R2 \end{array} \quad \left| \begin{array}{ccc|c} 1 & 2 & 1 & 6 \\ 0 & 7 & 6 & 15 \\ 0 & 0 & -\frac{30}{7} & \frac{30}{7} \end{array} \right.$$

Now: $x_3 = -1$, $x_2 = 3$, $x_1 = 1$. Problem solved!

Satisfiability with Simplex

- Simplex was originally designed for solving the **optimization problem**:

$$\max \vec{c} \vec{x}$$

s.t.

$$A\vec{x} \leq \vec{b}, \quad \vec{x} \geq \vec{0}$$

- We are only interested in the **feasibility problem**
(= satisfiability problem).

General Simplex

- We will learn a variant called **general simplex**.
- Very suitable for solving the satisfiability problem fast.
- The input: $A\vec{x} \leq \vec{b}$
 - A is a $m \times n$ coefficient matrix
 - The problem variables are $\vec{x} = x_1, \dots, x_n$
- First step: convert the input to *general form*

Definition (General Form)

$$A\vec{x} = 0 \quad \text{and} \quad \bigwedge_{i=1}^m l_i \leq s_i \leq u_i$$

A combination of

- Linear equalities of the form $\sum_i a_i x_i = 0$
- Lower and upper bounds on variables

Transformation to General Form

- Replace $\sum_i a_i x_i \bowtie b_j$ (where $\bowtie \in \{=, \leq, \geq\}$)

with $\sum_i a_i x_i - s_j = 0$

and $s_j \bowtie b_j$.

- Note: no $>$, $<$!

- s_1, \dots, s_m are called the *additional variables*

Example 1

Convert $x + y \geq 2$!

Result:

$$x + y - s_1 = 0$$

$$s_1 \geq 2$$

It is common to keep the conjunctions implicit

Example 2

Convert

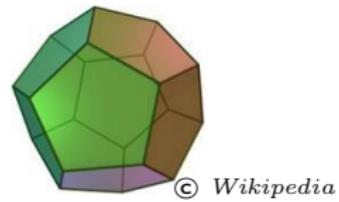
$$\begin{array}{lll} x & +y & \geq 2 \\ 2x & -y & \geq 0 \\ -x & +2y & \geq 1 \end{array}$$

Result:

$$\begin{array}{llll} x & +y & -s_1 & = 0 \\ 2x & -y & -s_2 & = 0 \\ -x & +2y & -s_3 & = 0 \\ & & s_1 & \geq 2 \\ & & s_2 & \geq 0 \\ & & s_3 & \geq 1 \end{array}$$

Geometrical Interpretation

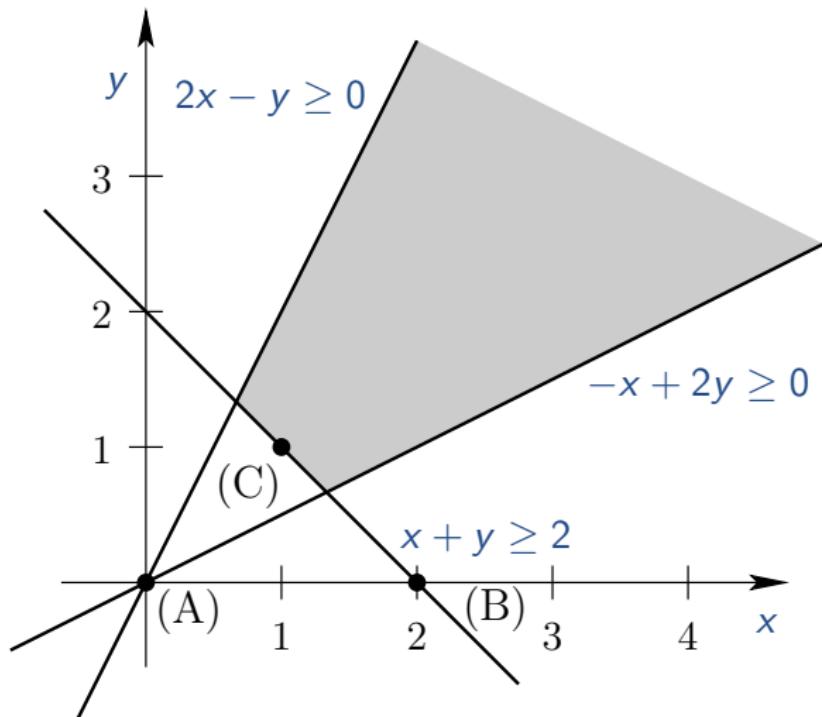
Linear inequality constraints,
geometrically, define a
convex polyhedron.



Geometrical Interpretation

Our example from before:

$$\begin{array}{rcl} x & + y & \geq 2 \\ 2x & - y & \geq 0 \\ -x & + 2y & \geq 1 \end{array}$$



Matrix Form

- Recall the general form: $A\vec{x} = 0$ and $\bigwedge_{i=1}^m l_i \leq s_i \leq u_i$
- A is now an $m \times (n + m)$ matrix due to the additional variables.

$$\begin{array}{rcl} x & +y & -s_1 = 0 \\ 2x & -y & -s_2 = 0 \\ -x & +2y & -s_3 = 0 \\ s_1 & \geq 2 \\ s_2 & \geq 0 \\ s_3 & \geq 1 \end{array} \quad \left(\begin{array}{ccccc} x & y & s_1 & s_2 & s_3 \\ 1 & 1 & -1 & 0 & 0 \\ 2 & -1 & 0 & -1 & 0 \\ -1 & 2 & 0 & 0 & -1 \end{array} \right)$$

The Tableau

- The diagonal part is inherent to the general form:

$$\begin{array}{ccccc} x & y & s_1 & s_2 & s_3 \\ \left(\begin{array}{ccccc} 1 & 1 & -1 & 0 & 0 \\ 2 & -1 & 0 & -1 & 0 \\ -1 & 2 & 0 & 0 & -1 \end{array} \right) \end{array}$$

- Instead, we can write:

$$\begin{array}{cc} x & y \\ \begin{array}{c} s_1 \\ s_2 \\ s_3 \end{array} & \left(\begin{array}{cc} 1 & 1 \\ 2 & -1 \\ -1 & 2 \end{array} \right) \end{array}$$

The Tableau

- The tableaux changes throughout the algorithm, but maintains its $m \times n$ structure
- Distinguish **basic** and **nonbasic** variables

Basic Variables \rightarrow $\begin{matrix} s_1 \\ s_2 \\ s_3 \end{matrix}$

$$\begin{array}{ccc} & x & y \\ \leftarrow & \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ -1 & 2 \end{pmatrix} & \text{Nonbasic variables} \end{array}$$

- Initially, basic variables = the additional variables

The Tableau

- Notation:

\mathcal{B} the basic variables

\mathcal{N} the nonbasic variables

- The tableaux is simply a different notation for the system

$$\bigwedge_{s_i \in \mathcal{B}} \left(s_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j \right)$$

- The basic variables are also called the **dependent variables**.

- Simplex maintains:
 - The tableau,
 - an assignment α to all variables,
 - an assignment to the bounds.
- Initially,
 - \mathcal{B} = additional variables,
 - \mathcal{N} = problem variables,
 - $\alpha(x_i) = 0$ for $i \in \{1, \dots, n+m\}$

- Two invariants are maintained throughout:
 - 1 $A\vec{x} = 0$
 - 2 All nonbasic variables satisfy their bounds
- The basic variables **do not need to satisfy their bounds.**
- Can you see why these invariants are maintained initially?

- The initial assignment satisfies $A\vec{x} = 0$
- If the bounds of all basic variables are satisfied by α , return “satisfiable”.
- Otherwise... *pivot*.

Pivoting

- 1 Find a basic variable x_i that violates its bounds.

Suppose that $\alpha(x_i) < l_i$.

- 2 Find a nonbasic variable x_j such that

- $a_{ij} > 0$ and $\alpha(x_j) < u_j$, or
- $a_{ij} < 0$ and $\alpha(x_j) > l_j$.

Why? Such a variable is called **suitable**.

- 3 If there is no suitable variable, return “unsatisfiable”.

Why?

Pivoting x_i and x_j (1)

1 Solve equation i for x_j :

$$\text{From: } x_i = a_{ij}x_j + \sum_{k \neq j} a_{ik}x_k$$

$$\text{To: } x_j = \frac{x_i}{a_{ij}} - \sum_{k \neq j} \frac{a_{ik}}{a_{ij}}x_k$$

2 Swap x_i and x_j , and update the i -th row accordingly

$$\text{From: } \boxed{a_{i1} \quad \dots \quad a_{ij} \quad \dots \quad a_{in}}$$

$$\text{To: } \boxed{\frac{-a_{i1}}{a_{ij}} \quad \dots \quad \frac{1}{a_{ij}} \quad \dots \quad \frac{-a_{in}}{a_{ij}}}$$

Pivoting x_i and x_j (2)

3 Update all other rows:

Replace x_j with its equivalent obtained from row i :

$$x_j = \frac{x_i}{a_{ij}} - \sum_{k \neq j} \frac{a_{ik}}{a_{ij}} x_k$$

4 Update α as follows:

- Increase $\alpha(x_j)$ by $\theta = \frac{l_i - \alpha(x_i)}{a_{ij}}$

Now x_j is a basic variable: it may violate its bounds.

Update $\alpha(x_i)$ accordingly.

Q: What is $\alpha(x_i)$ now?

- Update α for all other basic (dependent) variables.

Pivoting: Example (1)

- Recall the tableau and constraints in our example:

	x	y		
s_1	1	1	2	$\leq s_1$
s_2	2	-1	0	$\leq s_2$
s_3	-1	2	1	$\leq s_3$

- Initially, α assigns 0 to all variables
 \implies Violated are the bounds of s_1 and s_3
- We will fix s_1 .
- x is a *suitable* nonbasic variable for pivoting.
It has no upper bound!
- So now we pivot s_1 with x

Pivoting: Example (2)

	x	y	
s_1	1	1	$2 \leq s_1$
s_2	2	-1	$0 \leq s_2$
s_3	-1	2	$1 \leq s_3$

- Solve 1st row for x :

$$s_1 = x + y \iff x = s_1 - y$$

- Replace x in other rows:

$$\begin{aligned} s_2 &= 2(s_1 - y) - y &\iff s_2 = 2s_1 - 3y \\ s_3 &= -(s_1 - y) + 2y &\iff s_3 = -s_1 + 3y \end{aligned}$$

Pivoting: Example (3)

This results in the following new tableau:

$$\begin{aligned}x &= s_1 - y \\s_2 &= 2s_1 - 3y \\s_3 &= -s_1 + 3y\end{aligned}$$

	s_1	y	
x	1	-1	$2 \leq s_1$
s_2	2	-3	$0 \leq s_2$
s_3	-1	3	$1 \leq s_3$

What about the assignment?

- We should increase x by $\theta = \frac{2-0}{1} = 2$
- Hence, $\alpha(x) = 0 + 2 = 2$
- Now s_1 is equal to its lower bound: $\alpha(s_1) = 2$
- Update all the others

Pivoting: Example (4)

The new state:

	s_1	y	$\alpha(x) = 2$	$2 \leq s_1$
x	1	-1	$\alpha(y) = 0$	$0 \leq s_2$
s_2	2	-3	$\alpha(s_1) = 2$	$1 \leq s_3$
s_3	-1	3	$\alpha(s_2) = 4$	
			$\alpha(s_3) = -2$	

- Now s_3 violates its lower bound
- Which nonbasic variable is suitable for pivoting?
That's right... y
- We should increase y by $\theta = \frac{1-(-2)}{3} = 1$

Pivoting: Example (5)

The final state:

	s_1	s_3
x	2/3	-1/3
s_2	1	-1
y	1/3	1/3

$$\begin{array}{lclclcl} \alpha(x) & = & 1 & & & & \\ \alpha(y) & = & 1 & & 2 & \leq & s_1 \\ \alpha(s_1) & = & 2 & & 0 & \leq & s_2 \\ \alpha(s_2) & = & 1 & & 1 & \leq & s_3 \\ \alpha(s_3) & = & 1 & & & & \end{array}$$

All constraints are satisfied.

Observations I

The additional variables:

- Only additional variables have bounds.
- These bounds are permanent.
- Additional variables enter the base only on extreme points (their lower or upper bounds).
- When entering the base, they shift towards the other bound and possibly cross it (violate it).

Observations II

Q: Can it be that we pivot x_i, x_j and then pivot x_j, x_i and thus enter a (local) cycle?

A: No.

- For example, suppose that $a_{ij} > 0$.
- We increased $\alpha(x_j)$ so now $\alpha(x_i) = l_i$.
- After pivoting, possibly $\alpha(x_j) > u_j$, but $a'_{ij} = 1/a_{ij} > 0$, hence the coefficient of x_i is not suitable

Termination

Is termination guaranteed?

- Not obvious. Perhaps there are bigger cycles.
- In order to avoid circles, we use **Bland's rule**:
 - 1 Determine a total order on the variables
 - 2 Choose the first basic variable that violates its bounds, and the first nonbasic suitable variable for pivoting.
 - 3 It can be shown that this guarantees that no base is repeated, which implies termination.

General simplex With Bland's Rule

- 1 Transform the system into the general form

$$A\vec{x} = 0 \quad \text{and} \quad \bigwedge_{i=1}^m l_i \leq s_i \leq u_i .$$

- 2 Set \mathcal{B} to be the set of additional variables s_1, \dots, s_m .
- 3 Construct the tableau for A .
- 4 Determine a fixed order on the variables.
- 5 If there is no basic variable that violates its bounds, return "satisfiable". Otherwise, let x_i be the first basic variable in the order that violates its bounds.
- 6 Search for the first suitable nonbasic variable x_j in the order for pivoting with x_i . If there is no such variable, return "unsatisfiable".
- 7 Perform the pivot operation on x_i and x_j .
- 8 Go to step 5.