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Kripke Structure: Syntax

Let AP be a finite set of atomic propositions. A Kripke structure is a tuple
M = (S,Sinit, T, /_) with

m S a finite set of states,

B St € S an initial state,

m 7 CS xS atransition relation,

m L:S — 24P 3 labeling function
(24P denotes the powerset over AP).

The labeling function attaches information to the system: for a state s € S
the set L(s) consists of those atomic propositions that hold in s.
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Kripke Structure: Semantics

An (infinite) path m = sps1s, ... of a Kripke structure
M = (S, sinit, T, L) is a sequence of states such that

B So = Sinit and
m forall i >0, (s;,s141) € T.

We write 7w(j) for the jth state (starting with 0) of the path .
7ij denotes the postfix of 7 starting at 7(j).
A finite path of M is a finite prefix of an infinite path of M.

For a finite path m = sp. .. s, we define || = k.

The behaviour of M is given by the set of all of its infinite paths.
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Kripke Structure: Semantics
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Fischer's mutual exclusion protocol

There are also more complex systems we want to deal with later.
x1>BAk#1

xx1>BAk=1

X >BANk#2

x> BANk=2
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LTL Syntax

Syntax of the Linear-Time Temporal Logic (LTL):

o = a | phe | o | Xo | U |
Fo | Gy

m a € AP: atomic proposition
m X next time operator

m U/: until operator

Syntactic sugar:
mV, =, =, ...
m 7 finally (eventually) operator (Fy := true Uyp)
m G: globally (always) operator (G := —(true U—p))
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LTL Semantics - Next

S R S m = Xp
P
™ @ ——@——@— - ™ J=Xp
p p
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LTL Semantics - Until

m3: *—0—0—0 73 = pUq
p p p q

4! ® @ @ @ ™4 = pUq
q

ms: ® @ @ @ s f=pUq
p P P

6! ¢ @ @ @ ™6 f=pUq
p p p p
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LTL Semantics - Eventually

7 @@ ——@— m7 | Fp
p
7 @@ ——@——@— r7 J=Fp
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LTL Semantics - Always

5 @@ ——@— - 75 = Gp
P p P P

T @@ ——@— To J=Gp
p p p
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LTL Semantics

Definition (LTL Semantics)

TEDPp iff
T Ep1 App  iff
T E e iff
T EXp iff

TEe1U oo iff

T = Fp iff
TEGp iff

p € L(w(0))

T E 1 and T | @2

Uil

T E @

T |= @2 for some i > 0 and

=@ forall 0 <j<i
i = ¢ for some i >0
mi = forall i >0
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LTL Semantics

M E Ap

If all infinite paths of a Kripke structure M satisfy a property ¢, then we
say that the property holds for M.

M E E-p

If there is an infinite path of a Kripke structure M that does not satisfy a
property ¢, then we say that M violates the property (.

M = Enp

Also finite paths can violate a property, if they contain enough information
to assure the existence of an infinite path violating the property.
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Model Checking

Early 1980s: First implementations of Model Checking as verification
technique
m Explicit representations of the transition graphs
m Problem: Due to the state explosion not applicable for
most industrial settings
1990: Symbolic Model Checking

m BDDs represent characteristic functions of state sets
m Problem: Building the BDD may be expensive
1999: Bounded Model Checking by Biere et al.
m Incrementally finite paths of certain length are checked
by SAT-Solver
m Problem: No completeness is guaranteed
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Model Checking and Counterexamples

m Given a Kripke structure M and an LTL property ¢, a counterexample
is a path of M violating ¢.

m If a system is buggy, counterexamples are extremely important for
detecting and fixing the error.

m Bounded model checking (BMC) is a technique to search for finite
counterexamples, not only for Kripke structures, but also for more
complex systems.
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Finite and infinite Counterexamples

Property: GFa
Negation: =GFa = FG—a

Infinite counterexample: S1 S4 S3 S4 S3 S4 S3

Finite counterexample: 51 S3

“Loop detected”
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Definition of =

Satisfaction relation for finite paths

m i ¢ : the finite segment of 7 consisting of its ith to kth states
satisfies ¢

ThEee @ TEY
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Definition of =

Satisfaction relation for finite paths with a loop

For | < k we call an infinite path 7 a (k. /)-loop iff T(w(k),n(/)) and
7=u-v¥withu=mn(0)...7(/—1) and v =n(/)...7n(k).

We call 7 a k-loop iff 7 is a (k, /)-loop for some 0 < [ < k.

Definition (Bounded Semantics for a loop)

Let kK > 0 and let ™ be a k-loop. Then an LTL formula ¢ is valid along 7
with bound k (7 =4 @) iff m = .
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Definition of =

Definition (Bounded Semantics without a loop)

Let kK > 0 and let 7 be path that is not a k-loop. Then an LTL formula ¢
is valid along 7 with bound k (7 =4 ) iff 7 = ¢, where

77):;:(3 :ae L(n(i))
Thp-a o oaglm()
TEre1ANe2 0 T prand T = @)
T Xo : i</'<and7r):;<+1g0

77):5(9011/{%02 : ﬂlszwzforsomeigjgkand

TELeiforalli<n<j
77):;;]-"90 . 7w ¢ for some i < j < k
T G : false
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Properties of =4

Lemma

Let ¢ be an LTL formula and let = be a path. Then

TRy = Tl

Lemma

Let ¢ be an LTL formula and let M be a Kripke structure. Then

MpEEp = 3k>0 M &, Eop.
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Bounded Model Checking

Overview:

m Construction of a Boolean formula ¢ describing a finite path

m through the underlying system
m of length k, starting with 0,
m and reaching a certain state of interest, i.e., violating a property.

m A SAT-solver searches for a satisfying assignment of ¢
m If SAT, the resulting assignment describes a counterexample
m If UNSAT, k is incremented and the procedure starts again
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Bounded Model Checking

Counterexamples of length k for a Kripke structure M and an LTL formula
@ can be described by

[[Ma QD]]/( = I(SO) A T(SOa 51) ARTIWA T(Sk—la sk) A _'PI'Op(SO, SRR Sk)

[M, o]k is satisfiable <= there exists a finite counterexample

of length k

— check [M, ]« incrementally for k = 0,1, ... using a suitable solver

Prof. Dr. Erika Abraham - Satisfiability Checking




Formula Encoding

IM, ek = 1(so) A T(so,51) A... A T(sk_1,5«) A —=Prop(sp...sk)

How to build this formula?

m [ and T are (nearly) straightforward for Kripke structures. We build a
sub-formula describing initial paths of length k:

k—1

[MIic = 1(s0) A )\ T(si,sit1)
i=0

m This formula is called the unfolding of the transition relation
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Formula Encoding

IM, ek = 1(so) A T(so,51) A ... A T(sk—1,5k) A —=Prop(sp...sk)

How to build this formula?

m To get a counterexample for an LTL formula ¢ we have to find a
witness for —p.

m This will be encoded for paths of length k within the formula
—Prop(so, - - -, Sk)

m The translation of the formula depends on the fact whether the
considered path has a loop or not.
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Encoding of loops

Loop condition: Is there an transition from s, to a previous state?

Loop successor: Successor state of a state inside a loop

The loop condition Ly is true iff there exists a back loop from state s, to a
previous state or to itself: Lj := \/f(:0 T (sk,sr)

Let k,/ and i be non-negative integers with /, i < k.

m succ(i) =i+ 1, if i isinside a (k,/)-loop, i.e. i < k

m succ(i) :=1/fori=k
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Encoding of loops - Always

Given: LTL formula ¢ and path 7 with (k, /)-loop

Recursive translation over the sub-terms of ¢ and states in 7

Introduce intermediate formula of the form ;-]

m |/ start-state of the loop
m k bound
m / current position

Translation rule for Go:

Gl = ileli A Gl
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Encoding of loops - Eventually

Given: LTL formula ¢ and path 7 with (k, /)-loop

Recursive translation over the sub-terms of ¢ and states in 7

Introduce intermediate formula of the form ;-]

m |/ start-state of the loop
m k bound
m / current position

Translation rule for F:

IFel = el v [Fel et
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Encoding of loops

/[[P]]i} = P(Si)
el = —e(s)
e vl = leli VilvlL
e Avll = leli A ilvlE

Gl = ileli A iG]

IFell = ileli v ilFelye?
el = [l v (el A leuw]y?)
Ixeli = eyt
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Encoding without loops - Always

Given: LTL formula ¢ and path 7 without (k, /)-loop

Special case of loop translation

Extension to infinite path with considering all properties beyond si as
false

m k bound

m |/ current position

m Translation rule for Gy, i < k:

1G] == [l v [Go]
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Encoding without loops - Eventually

Given: LTL formula ¢ and path 7 without (k, /)-loop

Special case of loop translation

Extension to infinite path with considering all properties beyond si as
false

m k bound

m |/ current position

m Translation rule for Fo, i < k:

[Feli = [eli v [Fele?
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Encoding without loops

[pD
[Pl

Lo v ¥l
Lo A9l
[l

[Feli =
[etdy]) =

[X el

p(si)

—p(si)

[eli v [T

[elic A Tl

[eli A Gl

[elic V [Felj™

[w]k v (Tl A Tyl

[l
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General Translation to SAT-Problem

m Combining the components, BMC is encoded in propositional logic

m Given: LTL formula ¢, Kripke structure M, bound k

k
M el = IMLA (LA TR v\ (Tl s) A TETR)
1=0

m Unfolding of the transition relation

m There is no back loop ~+ Translation without loops

m All possible starting points of a loop are considered ~~ Translation for
(k, I)-loop together with loop condition

[M, | is satisfiable iff M =y Ep
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BMC is not complete

Application: Start with kK = 0 and increment until witness is found
Termination is guaranteed iff witness exists (M |= Eyp)

If no witness exists, procedure does not terminate (M ¥ E¢)
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Completeness Threshold

m For each (finite state) system M, property p and given translation
scheme there exists a number CT, called completeness threshold.

m Considering Gy formulas, CT is equal to the reachability diameter,
i.e., the minimal distance required to reach all (reachable) states of

the system.

Definition (Reachability Diameter)

/

rd(M) = min{i | Vn > i. Vso,...,sp. 3t <i.3sp,..., 5.

n—1 t—1
I(s0) A N\ T(sj,5501) | = [ 1) A\ T(slsslyn) Ast = s }
Jj=0 j=0

“Every state that is reachable in n steps, is also reachable in j steps.”
m This yields maximal shortest paths in the system.
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Completeness Threshold

m Problem: One has to choose n
m Let V/ be the set of variables defining the states. Worst case: n = 2!V
m Better: Choose n =i+ 1.

Definition (Reachability Diameter)

1

rd(M) := min{i | VS0, -+ ySit1. IS0+, 50
=il

Iso) AN\ T(s50) | = [ 1) A A T(shsi) AV of =siva | |
j=0 j=0 j=0

“Every state that is reachable in / + 1 steps, it is also reachable in i steps.”
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Completeness Threshold

m Problem: Formula contains alternation of quantifiers

m Solution: Over-approximation of rd(M)

Definition (Recurrence Diameter)

rdr(M) =

i—1 -1 i
max{i | Iso...si: I(s0) A /\ T(sj,sj+1) A /\ /\ sj # sk}

j=0 =0 k=j+1

“Longest loop-free initial path in M."

m As every shortest path is a loop-free path, this is an
over-approximation of rd(M).
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