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Kripke Structure: Syntax

Definition
Let AP be a finite set of atomic propositions. A Kripke structure is a tuple
M = (S , sinit,T , L) with

S a finite set of states,
sinit ∈ S an initial state,
T ⊆ S × S a transition relation,
L : S → 2AP a labeling function
(2AP denotes the powerset over AP).

The labeling function attaches information to the system: for a state s ∈ S
the set L(s) consists of those atomic propositions that hold in s.
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Kripke Structure: Semantics

An (infinite) path π = s0s1s2 . . . of a Kripke structure
M = (S , sinit,T , L) is a sequence of states such that

s0 = sinit and
for all i ≥ 0, (si , si+1) ∈ T .

We write π(j) for the jth state (starting with 0) of the path π.
πj denotes the postfix of π starting at π(j).
A finite path of M is a finite prefix of an infinite path of M.
For a finite path π = s0 . . . sk we define |π| = k .
The behaviour of M is given by the set of all of its infinite paths.
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Kripke Structure: Semantics
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Fischer’s mutual exclusion protocol

There are also more complex systems we want to deal with later.

idle1
test1
4
5 ≤ ẋ1 ≤ 1
x1 ≤ A

wait1
4
5 ≤ ẋ1 ≤ 1 crit1H1

k=0

x1 ≥ B ∧ k 6= 1

k = 0→ x1 := 0 k , x1 := 1, 0 x1 ≥ B ∧ k = 1

k := 0

idle2
test2
1 ≤ ẋ2 ≤ 11

10
x2 ≤ A

wait2
1 ≤ ẋ2 ≤ 11

10
crit2H2

k=0

x2 ≥ B ∧ k 6= 2

k = 0→ x2 := 0 k , x2 := 2, 0 x2 ≥ B ∧ k = 2

k := 0
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LTL Syntax

Syntax of the Linear-Time Temporal Logic (LTL):

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕ U ϕ |
Fϕ | Gϕ

a ∈ AP : atomic proposition
X : next time operator
U : until operator

Syntactic sugar:
∨,→, ⇐⇒ , . . .

F : finally (eventually) operator (Fϕ := true Uϕ)
G: globally (always) operator (Gϕ := ¬(true U¬ϕ))
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LTL Semantics - Next

π1:
p

... π1 |= Xp

π2: ...
p p

π2 6 |=Xp
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LTL Semantics - Until

π3:
p p p q

... π3 |= pUq

π4: ...
q

π4 |= pUq

π5:
p p p, q

... π5 6 |=pUq

π6: ...
...p p p p

π6 6 |=pUq
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LTL Semantics - Eventually

π7:
p

... π7 |= Fp

π7: ... π7 6 |=Fp
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LTL Semantics - Always

π8:
p p p p

...

...
π8 |= Gp

π9: ...
p p p

π9 6 |=Gp
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LTL Semantics

Definition (LTL Semantics)

π |= p iff p ∈ L(π(0))
π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2
π |= ¬ϕ iff π 6|= ϕ
π |= Xϕ iff π1 |= ϕ
π |= ϕ1 U ϕ2 iff πi |= ϕ2 for some i ≥ 0 and

πj |= ϕ1 for all 0 ≤ j < i
π |= Fϕ iff πi |= ϕ for some i ≥ 0
π |= Gϕ iff πi |= ϕ for all i ≥ 0
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LTL Semantics

M |= Aϕ

If all infinite paths of a Kripke structure M satisfy a property ϕ, then we
say that the property holds for M.

M |= E¬ϕ
If there is an infinite path of a Kripke structure M that does not satisfy a
property ϕ, then we say that M violates the property ϕ.

M |=k E¬ϕ
Also finite paths can violate a property, if they contain enough information
to assure the existence of an infinite path violating the property.
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Model Checking

Early 1980s: First implementations of Model Checking as verification
technique

Explicit representations of the transition graphs
Problem: Due to the state explosion not applicable for
most industrial settings

1990: Symbolic Model Checking
BDDs represent characteristic functions of state sets
Problem: Building the BDD may be expensive

1999: Bounded Model Checking by Biere et al.
Incrementally finite paths of certain length are checked
by SAT-Solver
Problem: No completeness is guaranteed
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Model Checking and Counterexamples

Given a Kripke structure M and an LTL property ϕ, a counterexample
is a path of M violating ϕ.
If a system is buggy, counterexamples are extremely important for
detecting and fixing the error.
Bounded model checking (BMC) is a technique to search for finite
counterexamples, not only for Kripke structures, but also for more
complex systems.
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Finite and infinite Counterexamples

Property: GFa
Negation: ¬GFa = FG¬a

s1

s2

s3

s4

{a}
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∅

{c}

Infinite counterexample: s1 s4 s3 s4 s3 s4 s3 ...

Finite counterexample: s1 s4 s3 s4

“Loop detected”
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Definition of |=k

Satisfaction relation for finite paths

π |=i
k ϕ : the finite segment of π consisting of its ith to kth states

satisfies ϕ
π |=k ϕ : π |=0

k ϕ
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Definition of |=k

Satisfaction relation for finite paths with a loop

Definition
For l ≤ k we call an infinite path π a (k , l)-loop iff T (π(k), π(l)) and
π = u · vω with u = π(0) . . . π(l − 1) and v = π(l) . . . π(k).

We call π a k-loop iff π is a (k , l)-loop for some 0 ≤ l ≤ k .

Definition (Bounded Semantics for a loop)

Let k ≥ 0 and let π be a k-loop. Then an LTL formula ϕ is valid along π
with bound k (π |=k ϕ) iff π |= ϕ.
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Definition of |=k

Definition (Bounded Semantics without a loop)

Let k ≥ 0 and let π be path that is not a k-loop. Then an LTL formula ϕ
is valid along π with bound k (π |=k ϕ) iff π |=0

k ϕ, where

π |=i
k a : a ∈ L(π(i))

π |=i
k ¬a : a 6∈ L(π(i))

π |=i
k ϕ1 ∧ ϕ2 : π |=i

k ϕ1 and π |=i
k ϕ2

π |=i
k Xϕ : i < k and π |=i+1

k ϕ

π |=i
k ϕ1 U ϕ2 : π |=j

k ϕ2 for some i ≤ j ≤ k and
π |=n

k ϕ1 for all i ≤ n < j
π |=i

k Fϕ : π |=j
k ϕ for some i ≤ j ≤ k

π |=i
k Gϕ : false
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Properties of |=k

Lemma
Let ϕ be an LTL formula and let π be a path. Then

π |=k ϕ ⇒ π |= ϕ.

Lemma
Let ϕ be an LTL formula and let M be a Kripke structure. Then

M |= Eϕ ⇒ ∃k ≥ 0. M |=k Eϕ.
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Bounded Model Checking

Overview:
Construction of a Boolean formula ϕ describing a finite path

through the underlying system
of length k , starting with 0,
and reaching a certain state of interest, i.e., violating a property.

A SAT-solver searches for a satisfying assignment of ϕ
If SAT, the resulting assignment describes a counterexample
If UNSAT, k is incremented and the procedure starts again
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Bounded Model Checking

Counterexamples of length k for a Kripke structure M and an LTL formula
ϕ can be described by

JM, ϕKk = I (s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧ ¬Prop(s0, . . . , sk)

JM, ϕKk is satisfiable ⇐⇒ there exists a finite counterexample
of length k

→ check JM, ϕKk incrementally for k = 0, 1, . . . using a suitable solver
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Formula Encoding

JM, ϕKk = I (s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧ ¬Prop(s0 . . . sk)

How to build this formula?

I and T are (nearly) straightforward for Kripke structures. We build a
sub-formula describing initial paths of length k :

JMKk := I (s0) ∧
k−1∧
i=0

T (si , si+1)

This formula is called the unfolding of the transition relation
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Formula Encoding

JM, ϕKk = I (s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧ ¬Prop(s0 . . . sk)

How to build this formula?

To get a counterexample for an LTL formula ϕ we have to find a
witness for ¬ϕ.
This will be encoded for paths of length k within the formula
¬Prop(s0, . . . , sk)
The translation of the formula depends on the fact whether the
considered path has a loop or not.
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Encoding of loops

Loop condition: Is there an transition from sk to a previous state?
Loop successor: Successor state of a state inside a loop

Definition
The loop condition Lk is true iff there exists a back loop from state sk to a
previous state or to itself: Lk :=

∨k
l=0 T (sk , sl )

Definition
Let k , l and i be non-negative integers with l , i ≤ k .

succ(i) := i + 1, if i is inside a (k , l)-loop, i.e. i < k
succ(i) := l for i = k
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Encoding of loops - Always

Given: LTL formula ϕ and path π with (k , l)-loop
Recursive translation over the sub-terms of ϕ and states in π
Introduce intermediate formula of the form lJ·Kik

l start-state of the loop
k bound
i current position

Translation rule for Gϕ:

lJGϕKik := lJϕKik ∧ lJGϕKsucc(i)
k

... ... ...
s0 sl si sk
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Encoding of loops - Eventually

Given: LTL formula ϕ and path π with (k , l)-loop
Recursive translation over the sub-terms of ϕ and states in π
Introduce intermediate formula of the form lJ·Kik

l start-state of the loop
k bound
i current position

Translation rule for Fϕ:

lJFϕKik := lJϕKik ∨ lJFϕKsucc(i)
k

... ... ...
s0 sl si sk
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Encoding of loops

lJpKik := p(si )

lJ¬pKik := ¬p(si )
lJϕ ∨ ψKik := lJϕKik ∨ lJψKik
lJϕ ∧ ψKik := lJϕKik ∧ lJψKik

lJGϕKik := lJϕKik ∧ lJGϕKsucc(i)
k

lJFϕKik := lJϕKik ∨ lJFϕKsucc(i)
k

lJϕUψKik := lJψKik ∨ (lJϕKik ∧ lJϕUψKsucc(i)
k )

lJXϕKik := lJϕKsucc(i)
k
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Encoding without loops - Always

Given: LTL formula ϕ and path π without (k , l)-loop
Special case of loop translation
Extension to infinite path with considering all properties beyond sk as
false

k bound
i current position

Translation rule for Gϕ, i ≤ k :

JGϕKik := JϕKik ∨ JGϕKsucc(i)
k
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Encoding without loops - Eventually

Given: LTL formula ϕ and path π without (k , l)-loop
Special case of loop translation
Extension to infinite path with considering all properties beyond sk as
false

k bound
i current position

Translation rule for Fϕ, i ≤ k :

JFϕKik := JϕKik ∨ JFϕKsucc(i)
k

Prof. Dr. Erika Ábrahám - Satisfiability Checking 31 / 37



Encoding without loops

JpKik := p(si )
J¬pKik := ¬p(si )

Jϕ ∨ ψKik := JϕKik ∨ JψKik
Jϕ ∧ ψKik := JϕKik ∧ JψKik

JGϕKik := JϕKik ∧ JGϕKi+1
k

JFϕKik := JϕKik ∨ JFϕKi+1
k

JϕUψKik := JψKik ∨ (JϕKik ∧ JϕUψKi+1
k )

JXϕKik := JϕKi+1
k
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General Translation to SAT-Problem

Combining the components, BMC is encoded in propositional logic
Given: LTL formula ϕ, Kripke structure M, bound k

JM, ϕKk := JMKk ∧
(
(¬Lk ∧ JϕK0k) ∨

k∨
l=0

(T (sk , sl ) ∧ lJϕK0k)
)

Unfolding of the transition relation
There is no back loop  Translation without loops
All possible starting points of a loop are considered  Translation for
(k, l)-loop together with loop condition

Theorem
JM, ϕKk is satisfiable iff M |=k Eϕ
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BMC is not complete

Application: Start with k = 0 and increment until witness is found
Termination is guaranteed iff witness exists (M |= Eϕ)
If no witness exists, procedure does not terminate (M 2 Eϕ)
Upper bound for k to ensure property: Completeness threshold
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Completeness Threshold

For each (finite state) system M, property p and given translation
scheme there exists a number CT , called completeness threshold.
Considering Gϕ formulas, CT is equal to the reachability diameter,
i.e., the minimal distance required to reach all (reachable) states of
the system.

Definition (Reachability Diameter)

rd(M) := min
{
i | ∀n > i . ∀s0, . . . , sn. ∃t ≤ i . ∃s ′0, . . . , s ′t .I (s0) ∧

n−1∧
j=0

T (sj , sj+1)

→
I (s ′0) ∧

t−1∧
j=0

T (s ′j , s
′
j+1) ∧ s ′t = sn

}

“Every state that is reachable in n steps, is also reachable in i steps.”
This yields maximal shortest paths in the system.
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Completeness Threshold

Problem: One has to choose n
Let V be the set of variables defining the states. Worst case: n = 2|V |

Better: Choose n = i + 1.

Definition (Reachability Diameter)

rd(M) := min
{
i | ∀s0, . . . , si+1. ∃s ′0, . . . , s ′i .I (s0) ∧

i∧
j=0

T (sj , sj+1)

→
I (s ′0) ∧

i−1∧
j=0

T (s ′j , s
′
j+1) ∧

i∨
j=0

s ′j = si+1

}

“Every state that is reachable in i + 1 steps, it is also reachable in i steps.”
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Completeness Threshold

Problem: Formula contains alternation of quantifiers
Solution: Over-approximation of rd(M)

Definition (Recurrence Diameter)

rdr(M) :=

max
{
i | ∃s0 . . . si : I (s0) ∧

i−1∧
j=0

T (sj , sj+1) ∧
i−1∧
j=0

i∧
k=j+1

sj 6= sk
}

“Longest loop-free initial path in M.”
As every shortest path is a loop-free path, this is an
over-approximation of rd(M).
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