
Satis�ability Checking
Propositional Logic

Prof. Dr. Erika Ábrahám

Theory of Hybrid Systems

Informatik 2

WS 11/12

Erika Ábrahám - Propositional logic 1 / 69

Propositional logic

The slides are partly taken from:

www.decision-procedures.org/slides/

Erika Ábrahám - Propositional logic 2 / 69

Propositional logic - Outline

Abstract grammar of propositional logic

Semantics of propositional logic

Satis�ability and validity

Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Erika Ábrahám - Propositional logic 3 / 69

Propositional logic - Outline

Abstract grammar of propositional logic

Semantics of propositional logic

Satis�ability and validity

Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Erika Ábrahám - Propositional logic 4 / 69

Abstract syntax of propositional logic

Propositional logic is the quanti�er-free fragment of the �rst-order theory
with Σ = {} without axioms.

Abstract grammar of well-formed propositional formulae:

ϕ := a | (¬ϕ) | (ϕ ∧ ϕ)

with a ∈ Prop and Prop a set of propositions (Boolean variables).

Syntactic sugar:

⊥ := (a ∧ ¬a)
> := (a ∨ ¬a)

(ϕ1 ∨ ϕ2) := ¬((¬ϕ1) ∧ (¬ϕ2))
(ϕ1 → ϕ2) := ((¬ϕ1) ∨ ϕ2)
(ϕ1 ↔ ϕ2) := ((ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1))
(ϕ1

⊕
ϕ2) := (ϕ1 ↔ (¬ϕ2))

Erika Ábrahám - Propositional logic 5 / 69

Formulae

Examples of well-formed formulae:
(¬a)
(¬(¬a))
(a ∧ (b ∧ c))
(a→ (b → c))

Remember: we omit parenthesis whenever we may restore them
through operator precedence:

binds stronger

¬ ∧ ∨ → ↔

Erika Ábrahám - Propositional logic 6 / 69

Propositional logic - Outline

Abstract grammar of propositional logic

Semantics of propositional logic

Satis�ability and validity

Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Erika Ábrahám - Propositional logic 7 / 69

Semantics: Assignments

Structures for predicate logic:

The domain is B = {0, 1}.
Since there are no constants, function or predicate symbols, the
interpretation just assigns Boolean values to the variables:

α : Prop→ {0, 1}
We call these special interpretations assignments and use Ass to denote the
set of all assignments.
Example: Prop = {a, b}, α(a) = 0, α(b) = 1

Equivalently, we can see an assignment α as a set of variables (α ∈ 2Prop),
de�ning the variables from the set to be true and the others false.
Example: Prop = {a, b}, α = {b}

An assignment can also be seen as being of type α ∈ {0, 1}Prop , if we have
an order on the propositions.
Example: Prop = {a, b}, α = {01}

Erika Ábrahám - Propositional logic 8 / 69

Only the projected assignment matters...

Let α1, α2 ∈ Ass and ϕ ∈ Formula.

AP(ϕ) - the atomic propositions in ϕ.

Clearly AP(ϕ) ⊆ Prop.

Lemma: if α1|AP(ϕ) = α2|AP(ϕ) , then

Projection

(α1 satis�es ϕ) i� (α2 satis�es ϕ)

We will assume, for simplicity, that Prop = AP(ϕ).

Erika Ábrahám - Propositional logic 9 / 69

Semantics I: Truth tables

Truth tables de�ne the semantics (=meaning) of the operators.
They can be used to de�ne the semantics of formulae inductively over
their structure.

Convention: 0 = false, 1 = true

p q ¬p p ∧ q p ∨ q p → q p ↔ q p
⊕

q

0 0 1 0 0 1 1 0
0 1 1 0 1 1 0 1
1 0 0 0 1 0 0 1
1 1 0 1 1 1 1 0

Each possible assignment is covered by a line of the truth table.
α is a model for ϕ i� in the line for α and the column for ϕ the entry is 1.

Q: How many binary operators can we de�ne that have di�erent
semantics?
A: 16

Erika Ábrahám - Propositional logic 10 / 69

Example

Let ϕ be de�ned as (a ∨ (b → c)).
Let α : {a, b, c} → {0, 1} be an assignment with
α(a) = 0, α(b) = 0, and α(c) = 1.

Q: Does α satisfy ϕ?
A1: Compute with truth table:

a b c b → c a ∨ (b → c)

0 0 0 1 1
0 0 1 1 1
0 1 0 0 0
0 1 1 1 1
1 0 0 1 1
1 0 1 1 1
1 1 0 0 1
1 1 1 1 1

(0 ∨ (0→ 1︸ ︷︷ ︸
1

)︸ ︷︷ ︸
1

)Erika Ábrahám - Propositional logic 11 / 69

Semantics II: Satisfaction relation

Satisfaction relation: |= ⊆ Ass × Formula
Instead of (α,ϕ) ∈|= we write α |= ϕ and say that

α satis�es ϕ or

ϕ holds for α or

α is a model of ϕ.

|= is de�ned recursively:

α |= p i� α(p) = true
α |= ¬ϕ i� α 6 |= ϕ
α |= ϕ1 ∧ ϕ2 i� α |= ϕ1 and α |= ϕ2

α |= ϕ1 ∨ ϕ2 i� α |= ϕ1 or α |= ϕ2

α |= ϕ1 → ϕ2 i� α |= ϕ1 implies α |= ϕ2

α |= ϕ1 ↔ ϕ2 i� α |= ϕ1 i� α |= ϕ2

Erika Ábrahám - Propositional logic 12 / 69

Example

Let ϕ be de�ned as (a ∨ (b → c)).

Let α : {a, b, c} → {0, 1} be an assignment with
α(a) = 0, α(b) = 0, and α(c) = 1.

Q: Does α satisfy ϕ?

A2: Compute with the satisfaction relation:

α |= (a ∨ (b → c))

i� α |= a or α |= (b → c)

i� α |= a or (α |= b implies α |= c)

i� 0 or (0 implies 1)

i� 0 or 1

i� 1

Erika Ábrahám - Propositional logic 13 / 69

Semantics III: The algorithmic view

Using the satisfaction relation we can de�ne an algorithm for the
problem to decide if an assignment α : AP→ {0, 1} is a model of a
propositional logic formula ϕ with variables from AP:

Eval(ϕ, α) {
i f ϕ ≡ a return α(a) ;
i f ϕ ≡ (¬ϕ1) return not Eval(ϕ1, α) ;
i f ϕ ≡ (ϕ1 op ϕ2)

return Eval(ϕ1, α) [[op]] Eval(ϕ2, α) ;
}

Complexity? Eval uses polynomial time and space.

Erika Ábrahám - Propositional logic 14 / 69

Example

Recall our example
ϕ = (a ∨ (b → c))
α : {a, b, c} → {0, 1} with α(a) = 0, α(b) = 0, and α(c) = 1.

Eval(ϕ, α) = Eval(a, α) or Eval(b → c, α) =
0 or (Eval(b, α) implies Eval(c , α)) =
0 or (0 implies 1) =
0 or 1 =
1

Hence, α |= ϕ.

Erika Ábrahám - Propositional logic 15 / 69

Set of assignments

Intuition: a formula speci�es a set of truth assignments.

Remember: Ass denotes the set of all assignments.

Function models : Formula→ 2Ass

(a formula → set of satisfying assignments)
Recursive de�nition:

models(a) = {α | α(a) = 1}, a ∈ Prop

models(¬ϕ1) = Ass \ models(ϕ1)
models(ϕ1 ∧ ϕ2) = models(ϕ1) ∩models(ϕ2)
models(ϕ1 ∨ ϕ2) = models(ϕ1) ∪models(ϕ2)
models(ϕ1 → ϕ2) = (Ass \ models(ϕ1)) ∪models(ϕ2)

Erika Ábrahám - Propositional logic 16 / 69

Example

models(a ∨ b) = {α ∈ Ass | α(a) = 1 or α(b) = 1}

This is compatible with the recursive de�nition:

models(a ∨ b) = models(a) ∪models(b) =

{α ∈ Ass | α(a) = 1} ∪ {α ∈ Ass | α(b) = 1}

Erika Ábrahám - Propositional logic 17 / 69

Theorem

Let ϕ ∈ Formula and α ∈ Ass, then the following statements are
equivalent:

1. α |= ϕ
2. α ∈ models(ϕ)

Erika Ábrahám - Propositional logic 18 / 69

Extension of |= to sets of assignments

Let ϕ ∈ Formula.

Let T be a set of assignments, i.e., T ⊆ 2Ass

De�nition: |= ⊆ 2Ass× Formula with

T |= ϕ i� T ⊆ models(ϕ)

Erika Ábrahám - Propositional logic 19 / 69

Extension of |= to formulae

|= ⊆ 2Formula × 2Formula

De�nition. Let ϕ1, ϕ2 be propositional formulae.
ϕ1 |= ϕ2

i� models(ϕ1) ⊆ models(ϕ2), or equivalently
i� for all α ∈ Ass

if α |= ϕ1 then α |= ϕ2

Examples:

x1 ∧ x2 |= x1 ∨ x2

x1 ∧ x2 |= x2 ∨ x3

Erika Ábrahám - Propositional logic 20 / 69

Short summary for propositional logic

Syntax: ϕ := prop | (¬ϕ) | (ϕ ∧ ϕ)

Semantics:

Assignments:
α : Prop→ {0, 1}
α ∈ 2Prop

α ∈ {0, 1}Prop

Satis�ability relation:

|= ⊆ Ass× Formula , (e.g., α |=ϕ)
|= ⊆ 2Ass × Formula , (e.g., {α1, . . . , αn}|=ϕ)
|= ⊆ Formula× Formula , (e.g., ϕ1 |=ϕ2)
models : Formula→ 2Ass, (e.g., models(ϕ))

Erika Ábrahám - Propositional logic 21 / 69

Propositional logic - Outline

Abstract grammar of propositional logic

Semantics of propositional logic

Satis�ability and validity

Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Erika Ábrahám - Propositional logic 22 / 69

Semantic classi�cation of formulae

A formula ϕ is called valid if models(ϕ) = Ass.

(Also called a tautology).

A formula ϕ is called satis�able if models(ϕ) 6= ∅.

A formula ϕ is called unsatis�able if models(ϕ) = ∅.
(Also called a contradiction).

satis�able unsatis�able

valid

Erika Ábrahám - Propositional logic 23 / 69

Some notations

We can write:

|= ϕ when ϕ is valid

6|= ϕ when ϕ is not valid

6|= ¬ϕ when ϕ is satis�able

|= ¬ϕ when ϕ is unsatis�able

Erika Ábrahám - Propositional logic 24 / 69

Examples

(x1 ∧ x2)→ (x1 ∨ x2)

(x1 ∨ x2)→ x1

(x1 ∧ x2) ∧ ¬x1

is valid

is satis�able

is unsatis�able

Erika Ábrahám - Propositional logic 25 / 69

Examples

Here are some valid formulae:
|= a ∧ 1↔ a

|= a ∧ 0↔ 0
|= ¬¬a↔ a // The double-negation rule
|= a ∧ (b ∨ c)↔ (a ∧ b) ∨ (a ∧ c)

Some more (De Morgan rules):
|= ¬(a ∧ b)↔ (¬a ∨ ¬b)
|= ¬(a ∨ b)↔ (¬a ∧ ¬b)

Erika Ábrahám - Propositional logic 26 / 69

The decision problem of formulae

The decision problem:

Given a propositional formula ϕ, is ϕ satis�able?

An algorithm that always terminates with a correct answer to this
problem is called a decision procedure for propositional logic.

Erika Ábrahám - Propositional logic 27 / 69

Characteristics of formulae

Goal: Design a satis�ability checker

Is ϕ satis�able? Satis�ability

checker

yes

no

Lemma:

A formula ϕ is valid i� ¬ϕ is unsatis�able.

Erika Ábrahám - Propositional logic 28 / 69

Propositional logic - Outline

Abstract grammar of propositional logic

Semantics of propositional logic

Satis�ability and validity

Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Erika Ábrahám - Propositional logic 29 / 69

Before we solve this problem...

Suppose we can solve the satis�ability problem... how can this help us?

There are numerous problems in the industry that are solved via the
satis�ability problem of propositional logic

Logistics
Planning
Electronic Design Automation industry
Cryptography
. . .

Erika Ábrahám - Propositional logic 30 / 69

Example 1: Placement of wedding guests

Three chairs in a row: 1, 2, 3

We need to place Aunt, Sister and Father.
Constraints:

Aunt doesn't want to sit near Father
Aunt doesn't want to sit in the left chair
Sister doesn't want to sit to the right of Father

Q: Can we satisfy these constraints?

Erika Ábrahám - Propositional logic 31 / 69

Example 1 (continued)

Denote: Aunt = 1, Sister = 2, Father = 3

Introduce a propositional variable for each pair (person, place).

xij = �person i is sited in place j , for 1 ≤ i , j ≤ 3�
Constraints:

Aunt doesn't want to sit near Father:
((x1,1 ∨ x1,3)→ ¬x3,2) ∧ (x1,2 → (¬x3,1 ∧ ¬x3,3))
Aunt doesn't want to sit in the left chair
¬x1,1
Sister doesn't want to sit to the right of Father
x3,1 → ¬x2,2 ∧ x3,2 → ¬x2,3

Erika Ábrahám - Propositional logic 32 / 69

Example 1 (continued)

More constraints:

Each person is placed:

(x1,1 ∨ x1,2 ∨ x1,3) ∧ (x2,1 ∨ x2,2 ∨ x2,3) ∧ (x3,1 ∨ x3,2 ∨ x3,3)

Or, more concisely:
3∧

i=1

3∨
j=1

xi ,j

No person is placed in more than one place:

3∧
i=1

2∧
j=1

3∧
k=j+l

(¬xi ,j ∨ ¬xi ,k)

Overall 9 variables, 26 conjoined constraints.

Erika Ábrahám - Propositional logic 33 / 69

Example 2: Assignment of frequencies

n radio stations

For each assign one of k transmission frequencies, k < n.

E � set of pairs of stations, that are too close to have the same
frequency.

Q: Can we assign to each station a frequency, such that no statin
pairs from E have the same frequency?

Erika Ábrahám - Propositional logic 34 / 69

Example 2 (continued)

xi ,j : station i is assigned frequency j , for 1 ≤ i ≤ n, 1 ≤ j ≤ k .
Every station is assigned at least one frequency:

n∧
i=1

k∨
j=1

xi,j

Every station is assigned not more than one frequency:

n∧
i=1

k−1∧
j=1

(xi,j →
∧

j<t≤k

¬xi,t)

Close stations are not assigned the same frequency:
For each (i , j) ∈ E ,

k∧
t=1

(xi,t → ¬xj,t)

Erika Ábrahám - Propositional logic 35 / 69

Two classes of algorithms for validity

Q: Is ϕ satis�able? (Is ¬ϕ valid?)

Complexity: NP-Complete (Cook's theorem)
Two classes of algorithms for �nding out:

Enumeration of possible solutions (Truth tables etc.)
Deduction

More generally (beyond propositional logic):
Enumeration is possible only in some logics.
Deduction cannot necessarily be fully automated.

Erika Ábrahám - Propositional logic 36 / 69

The satis�ability problem

Given a formula ϕ, is ϕ satis�able?

Enumeration the �rst:

Boolean SAT(ϕ){
result:= f a l s e ;
fo r a l l α ∈ Ass

result = result ∨ Eval(ϕ, α) ;
return result ;

}

Enumeration the second:
Use substitution to eliminate all variables one by one:

ϕ i� ϕ[0/a] ∨ ϕ[1/a]

What is the di�erence?
There must be a better way to do that in practice.

Erika Ábrahám - Propositional logic 37 / 69

Propositional logic - Outline

Abstract grammar of propositional logic

Semantics of propositional logic

Satis�ability and validity

Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Erika Ábrahám - Propositional logic 38 / 69

De�nitions

De�nition: A literal is either a variable or a negation of a variable.

Let ϕ = ¬(a ∨ ¬b). Then:

Variables: AP(ϕ) = {a, b}
Literals: lit(ϕ) = {a,¬b}
Equivalent formulae can have di�erent literals

ϕ′ = ¬a ∧ b

Now lit(ϕ′) = {¬a, b}

Erika Ábrahám - Propositional logic 39 / 69

De�nitions

De�nition: a term is a conjunction of literals
Example: (a ∧ ¬b ∧ c)

De�nition: a clause is a disjunction of literals
Example: (a ∨ ¬b ∨ c)

Erika Ábrahám - Propositional logic 40 / 69

Negation Normal Form (NNF)

De�nition: A formula is in Negation Normal Form (NNF) i�
(1) it contains only ¬, ∧ and ∨ as connectives and
(2) only variables are negated.

Examples:

ϕ1 = ¬(a ∨ ¬b) is not in NNF

ϕ2 = ¬a ∧ b is in NNF

Erika Ábrahám - Propositional logic 41 / 69

Converting to NNF

Every formula can be converted to NNF in linear time:
Eliminate all connectives other than ∧, ∨, ¬
Use De Morgan and double-negation rules to push negations to the
right

Example: ϕ = ¬(a→ ¬b)

Eliminate '→ ' : ϕ = ¬(¬a ∨ ¬b)
Push negation using De Morgan: ϕ = (¬¬a ∧ ¬¬b)
Use double-negation rule: ϕ = (a ∧ b)

Erika Ábrahám - Propositional logic 42 / 69

Disjunctive Normal Form (DNF)

De�nition: A formula is said to be in Disjunctive Normal Form (DNF)
i� it is a disjunction of terms.

In other words, it is a formula of the form∨
i

(
∧
j

li,j)

where li,j is the j-th literal in the i-th term.

Example:

ϕ = (a ∧ ¬b ∧ c) ∨ (¬a ∧ d) ∨ (b) is in DNF

DNF is a special case of NNF

Erika Ábrahám - Propositional logic 43 / 69

Converting to DNF

Every formula can be converted to DNF in exponential time and
space:

1 Convert to NNF
2 Distribute disjunctions following the rule:
|= a ∧ (b ∨ c)↔ ((a ∧ b) ∨ (a ∧ c))

Example:

ϕ = (a ∨ b) ∧ (¬c ∨ d)
= ((a ∨ b) ∧ (¬c)) ∨ ((a ∨ b) ∧ d)
= (a ∧ ¬c) ∨ (b ∧ ¬c) ∨ (a ∧ d) ∨ (b ∧ d)

Q: How many clauses would the DNF have had if we started from a
conjunction of n binary clauses (i.e., clauses with 2 literals)?

Erika Ábrahám - Propositional logic 44 / 69

Satis�ability of DNF

Is the following DNF formula satis�able?

(a1 ∧ a2 ∧ ¬a1) ∨ (a2 ∧ a1) ∨ (a2 ∧ ¬a3 ∧ a3)

Q: What is the complexity of the satis�ability check of DNF formulae?

Erika Ábrahám - Propositional logic 45 / 69

Conjunctive Normal Form (CNF)

De�nition: A formula is said to be in Conjunctive Normal Form (CNF)
i� it is a conjunction of clauses.

In other words, it is a formula of the form∧
i

(
∨
j

li ,j)

where li ,j is the j-th literal in the i-th clause.

Example:

ϕ = (a ∨ ¬b ∨ c) ∧ (¬a ∨ d) ∧ (b) is in CNF

CNF is a special case of NNF

Erika Ábrahám - Propositional logic 46 / 69

Converting to CNF

Every formula can be converted to CNF:
in exponential time and space with the same set of variables, or
in linear time and space if new variables are added.

For the latter�the so-called Tseitin's encoding�the original and the
converted formulae are equi-satis�able, but not equivalent.

Q: Can there be any such linear transformation into DNF?

A: No. Linear DNF transformation and linear DNF solution would
violate the NP-completeness of the problem.

Erika Ábrahám - Propositional logic 47 / 69

Converting to CNF: The exponential way

CNF(ϕ){
case

ϕ is a literal: return ϕ
ϕ is ϕ1 ∧ ϕ2: return CNF(ϕ1) ∧ CNF(ϕ2)
ϕ is ϕ1 ∨ ϕ2: return Dist(CNF(ϕ1),CNF(ϕ2))

}

Dist(ϕ1,ϕ2) {
case

ϕ1 is ϕ11 ∧ ϕ12: return Dist(ϕ11,ϕ2) ∧ Dist(ϕ12,ϕ2)
ϕ2 is ϕ21 ∧ ϕ22: return Dist(ϕ1,ϕ21) ∧ Dist(ϕ1,ϕ22)
else: return ϕ1 ∨ ϕ2

}

Erika Ábrahám - Propositional logic 48 / 69

Converting to CNF: The exponential way

Consider the formula

ϕ = (a1 ∧ b1) ∨ (a2 ∧ b2)

CNF(ϕ) = (a1 ∨ a2) ∧ (a1 ∨ b2) ∧ (b1 ∨ a2) ∧ (b1 ∨ b2)

Now consider: ϕn = (a1 ∧ b1) ∨ (a2 ∧ b2) ∨ . . . ∨ (an ∧ bn)

Q: How many clauses does CNF(ϕ) return?

A: 2n

Erika Ábrahám - Propositional logic 49 / 69

Converting to CNF: Tseitin's encoding

Consider the formula

ϕ = (a→ (b ∧ c))

The Parse Tree:

→ h1

a ∧ h2

b c

Associate a new auxiliary variable with each gate.

Add constraints that de�ne these new variables.

Finally, enforce the root node.

Erika Ábrahám - Propositional logic 50 / 69

Converting to CNF: Tseitin's encoding

Need to satisfy:

(h1 ↔ (a → h2))∧
(h2 ↔ (b ∧ c))∧
(h1)

→ h1

a ∧ h2

b c

Each gate encoding has a CNF representation with 3 or 4 clauses.

Erika Ábrahám - Propositional logic 51 / 69

Converting to CNF: Tseitin's encoding

Need to satisfy:

(h1 ↔ (a→ h2)) ∧ (h2 ↔ (b ∧ c)) ∧ (h1)

First: (h1 ∨ a) ∧ (h1 ∨ ¬h2) ∧ (¬h1 ∨ ¬a ∨ h2)

Second: (¬h2 ∨ b) ∧ (¬h2 ∨ c) ∧ (h2 ∨ ¬b ∨ ¬c)

Erika Ábrahám - Propositional logic 52 / 69

Converting to CNF: Tseitin's encoding

Let's go back to

ϕn = (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xn ∧ yn)

With Tseitin's encoding we need:
n auxiliary variables a1, . . . , an.
Each adds 3 constraints.
Top clause: (a1 ∨ · · · ∨ an)

Hence, we have
3n + 1 clauses, instead of 2n.
3n variables rather than 2n.

Erika Ábrahám - Propositional logic 53 / 69

Propositional logic - Outline

Abstract grammar of propositional logic

Semantics of propositional logic

Satis�ability and validity

Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Erika Ábrahám - Propositional logic 54 / 69

Deduction requires axioms and inference rules

Inference rules:
Antecedents
Consequents

(rule-name)

Meaning: If all antecedents hold then at least one of the consequents
can be derived.

Examples:
a→ b b → c

a→ c
(Trans)

a→ b a

b
(M.P.)

Erika Ábrahám - Propositional logic 55 / 69

Axioms

Axioms are inference rules with no antecedents, e.g.,

a→ (b → a)
(H1)

We can turn an inference rule into an axiom if we have '→' in the
logic.

So the di�erence between them is not sharp.

Erika Ábrahám - Propositional logic 56 / 69

Proofs

A proof uses a given set of axioms and inference rules.

This is called the proof system.

Let H be a proof system.

Γ `H ϕ means: There is a proof of ϕ in system H whose premises are
included in Γ

`H is called the provability relation.

Erika Ábrahám - Propositional logic 57 / 69

Example

Let H be the proof system comprised of the rules Trans and M.P. that
we saw earlier:

a→ b b → c

a→ c
(Trans)

a→ b a

b
(M.P.)

Does the following relation hold?

a→ b, b → c , c → d , d → e, a `H e

Erika Ábrahám - Propositional logic 58 / 69

Deductive proof: Example

a→ b b → c

a→ c
(Trans)

a→ b a

b
(M.P.)

a→ b, b → c, c → d , d → e, a `H e

1. a→ b premise
2. b → c premise
3. a→ c 1, 2, Trans
4. c → d premise
5. d → e premise
6. c → e 4, 5, Trans
7. a→ e 3, 6, Trans
8. a premise
9. e 7, 8, M.P.

Erika Ábrahám - Propositional logic 59 / 69

Proof graph (DAG)

e
M.P.

a→ e
trans

a→ c
trans

a→ b b → c

c → e
trans

c → d d → e

a

Erika Ábrahám - Propositional logic 60 / 69

Correctness and Completeness

` is a relation de�ned by syntactic transformations of the underlying
proof system.
For a given proof system H,

Correctness: Does ` conclude �correct� conclusions from premises?
Completeness: Can we conclude all true statements with H?

Correct with respect to what?

With respect to the semantic de�nition of the logic. In the case of
propositional logic truth tables give us this.

Erika Ábrahám - Propositional logic 61 / 69

Soundness and completeness

Let H be a proof system

Soundness of H : if `H ϕ then |= ϕ
Completeness of H : if |= ϕ then `H ϕ

How to prove soundness and completeness?

Erika Ábrahám - Propositional logic 62 / 69

Example: Hilbert axiom system (H)

Let H be (M.P.) together with the following axiom schemes:

a→ (b → a)
(H1)

((a→ (b → c))→ ((a→ b)→ (a→ c)))
(H2)

(¬b → ¬a)→ (a→ b)
(H3)

H is sound and complete for propositional logic.

Erika Ábrahám - Propositional logic 63 / 69

Soundness and completeness

To prove soundness of H, prove the soundness of its axioms and
inference rules (easy with truth-tables).
For example:

a b a→ (b → a)

0 0 1
0 1 1
1 0 1
1 1 1

Completeness: harder, but possible.

Erika Ábrahám - Propositional logic 64 / 69

The resolution inference system

The resolution inference rule for CNF:

(l ∨ l1 ∨ l2 ∨ ... ∨ ln) (¬l ∨ l ′1 ∨ ... ∨ l ′m)

(l1 ∨ ... ∨ ln ∨ l ′1 ∨ ... ∨ l ′m)
Resolution

Example:
(a ∨ b) (¬a ∨ c)

(b ∨ c)

We �rst see some example proofs, before proving soundness and
completeness.

Erika Ábrahám - Propositional logic 65 / 69

Proof by resolution

Let ϕ = (a1 ∨ a3) ∧ (¬a1 ∨ a2 ∨ a5) ∧ (¬a1 ∨ a4) ∧ (¬a1 ∨ ¬a4)

We'll try to prove ϕ → (a3)

(a3)

(a1 ∨ a3) (¬a1)

(¬a1 ∨ a4) (¬a1 ∨ ¬a4)

Erika Ábrahám - Propositional logic 66 / 69

Resolution

Resolution is a sound and complete inference system for CNF.

If the input formula is unsatis�able, there exists a proof of the empty
clause.

Erika Ábrahám - Propositional logic 67 / 69

Example

Let ϕ = (a1 ∨ a3) ∧ (¬a1 ∨ a2) ∧ (¬a1 ∨ a4) ∧ (¬a1 ∨ ¬a4) ∧ (¬a3) .

()

a3

(¬a1)

(¬a1 ∨ a4) (¬a1 ∨ ¬a4)

(a1 ∨ a3)

¬a3

Erika Ábrahám - Propositional logic 68 / 69

Soundness and completeness of resolution

Soundness is straightforward. Just prove by truth table that

|= ((ϕ1 ∨ a) ∧ (ϕ2 ∨ ¬a))→ (ϕ1 ∨ ϕ2).

Completeness is a bit more involved.
Basic idea: Use resolution for variable elimination .

(a ∨ ϕ1) ∧ . . . ∧ (a ∨ ϕn)∧
(¬a ∨ ψ1) ∧ . . . (¬a ∨ ψm)∧

R

⇔
(ϕ1 ∨ ψ1) ∧ . . . ∧ (ϕ1 ∨ ψm)∧

. . .
(ϕn ∨ ψ1) ∧ . . . (ϕn ∨ ψm)∧

R

where ϕi (i = 1, . . . , n), ψj (j = 1, . . . ,m), and R contains neither a
nor ¬a.

Erika Ábrahám - Propositional logic 69 / 69

	Propositional logic

