

Satisfiability Checking Propositional Logic

Prof. Dr. Erika Ábrahám

Theory of Hybrid Systems
Informatik 2

WS 11/12

Propositional logic

The slides are partly taken from:

www.decision-procedures.org/slides/

Propositional logic - Outline

- Abstract grammar of propositional logic
- Semantics of propositional logic
- Satisfiability and validity
- Modeling with propositional logic
- Normal forms
- Deductive proofs and resolution

Propositional logic - Outline

- Abstract grammar of propositional logic
- Semantics of propositional logic
- Satisfiability and validity
- Modeling with propositional logic
- Normal forms
- Deductive proofs and resolution

Abstract syntax of propositional logic

Propositional logic is the quantifier-free fragment of the first-order theory with $\Sigma = \{\}$ without axioms.

Abstract grammar of well-formed propositional formulae:

$$\varphi := a \mid (\neg\varphi) \mid (\varphi \wedge \varphi)$$

with $a \in \text{Prop}$ and Prop a set of propositions (Boolean variables).

Syntactic sugar:

$$\begin{array}{ll} \perp & := (a \wedge \neg a) \\ \top & := (a \vee \neg a) \\ (\varphi_1 \vee \varphi_2) & := \neg((\neg\varphi_1) \wedge (\neg\varphi_2)) \\ (\varphi_1 \rightarrow \varphi_2) & := ((\neg\varphi_1) \vee \varphi_2) \\ (\varphi_1 \leftrightarrow \varphi_2) & := ((\varphi_1 \rightarrow \varphi_2) \wedge (\varphi_2 \rightarrow \varphi_1)) \\ (\varphi_1 \oplus \varphi_2) & := (\varphi_1 \leftrightarrow (\neg\varphi_2)) \end{array}$$

Formulae

- Examples of **well-formed** formulae:
 - $(\neg a)$
 - $(\neg(\neg a))$
 - $(a \wedge (b \wedge c))$
 - $(a \rightarrow (b \rightarrow c))$
- Remember: we omit parenthesis whenever we may restore them through operator precedence:

binds stronger

Propositional logic - Outline

- Abstract grammar of propositional logic
- **Semantics of propositional logic**
- Satisfiability and validity
- Modeling with propositional logic
- Normal forms
- Deductive proofs and resolution

Semantics: Assignments

Structures for predicate logic:

- The domain is $\mathbb{B} = \{0, 1\}$.
- Since there are no constants, function or predicate symbols, the interpretation just assigns Boolean values to the variables:

$$\alpha : \text{Prop} \rightarrow \{0, 1\}$$

We call these special interpretations assignments and use Ass to denote the set of all assignments.

Example: $\text{Prop} = \{a, b\}, \alpha(a) = 0, \alpha(b) = 1$

Equivalently, we can see an assignment α as a set of variables ($\alpha \in 2^{\text{Prop}}$), defining the variables from the set to be true and the others false.

Example: $\text{Prop} = \{a, b\}, \alpha = \{b\}$

An assignment can also be seen as being of type $\alpha \in \{0, 1\}^{\text{Prop}}$, if we have an order on the propositions.

Example: $\text{Prop} = \{a, b\}, \alpha = \{01\}$

Only the projected assignment matters...

- Let $\alpha_1, \alpha_2 \in \text{Ass}$ and $\varphi \in \text{Formula}$.
- $\text{AP}(\varphi)$ - the atomic propositions in φ .
- Clearly $\text{AP}(\varphi) \subseteq \text{Prop}$.
- **Lemma:** if $\alpha_1|_{\text{AP}(\varphi)} = \alpha_2|_{\text{AP}(\varphi)}$, then

Projection

$(\alpha_1 \text{ satisfies } \varphi) \text{ iff } (\alpha_2 \text{ satisfies } \varphi)$

- We will assume, for simplicity, that $\text{Prop} = \text{AP}(\varphi)$.

Semantics I: Truth tables

- **Truth tables** define the semantics (=meaning) of the operators.
They can be used to define the semantics of formulae inductively over their structure.
- Convention: 0 = false, 1 = true

p	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \leftrightarrow q$	$p \oplus q$
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	0	0	1
1	1	0	1	1	1	1	0

Each possible assignment is covered by a line of the truth table.
 α is a model for φ iff in the line for α and the column for φ the entry is 1.

Q: How many binary operators can we define that have different semantics?

A: 16

Example

- Let φ be defined as $(a \vee (b \rightarrow c))$.
- Let $\alpha : \{a, b, c\} \rightarrow \{0, 1\}$ be an assignment with $\alpha(a) = 0$, $\alpha(b) = 0$, and $\alpha(c) = 1$.

Q: Does α satisfy φ ?

A1: Compute with truth table:

a	b	c	$b \rightarrow c$	$a \vee (b \rightarrow c)$
0	0	0	1	1
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	0	1
1	1	1	1	1

Semantics II: Satisfaction relation

Satisfaction relation: $\models \subseteq \text{Ass} \times \text{Formula}$

Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- α satisfies φ or
- φ holds for α or
- α is a model of φ .

\models is defined recursively:

$\alpha \models p$	iff $\alpha(p) = \text{true}$
$\alpha \models \neg\varphi$	iff $\alpha \not\models \varphi$
$\alpha \models \varphi_1 \wedge \varphi_2$	iff $\alpha \models \varphi_1$ and $\alpha \models \varphi_2$
$\alpha \models \varphi_1 \vee \varphi_2$	iff $\alpha \models \varphi_1$ or $\alpha \models \varphi_2$
$\alpha \models \varphi_1 \rightarrow \varphi_2$	iff $\alpha \models \varphi_1$ implies $\alpha \models \varphi_2$
$\alpha \models \varphi_1 \leftrightarrow \varphi_2$	iff $\alpha \models \varphi_1$ iff $\alpha \models \varphi_2$

Example

- Let φ be defined as $(a \vee (b \rightarrow c))$.
- Let $\alpha : \{a, b, c\} \rightarrow \{0, 1\}$ be an assignment with $\alpha(a) = 0$, $\alpha(b) = 0$, and $\alpha(c) = 1$.
- Q: Does α satisfy φ ?

A2: Compute with the satisfaction relation:

$$\begin{aligned}\alpha \models (a \vee (b \rightarrow c)) \\ \text{iff } \alpha \models a \text{ or } \alpha \models (b \rightarrow c) \\ \text{iff } \alpha \models a \text{ or } (\alpha \models b \text{ implies } \alpha \models c) \\ \text{iff } 0 \text{ or } (0 \text{ implies } 1) \\ \text{iff } 0 \text{ or } 1 \\ \text{iff } 1\end{aligned}$$

Semantics III: The algorithmic view

- Using the satisfaction relation we can define an **algorithm** for the problem to decide if an assignment $\alpha : AP \rightarrow \{0, 1\}$ is a model of a propositional logic formula φ with variables from AP:

```
Eval( $\varphi$ ,  $\alpha$ ) {  
    if  $\varphi \equiv a$  return  $\alpha(a)$ ;  
    if  $\varphi \equiv (\neg\varphi_1)$  return not Eval( $\varphi_1, \alpha$ );  
    if  $\varphi \equiv (\varphi_1 \text{ op } \varphi_2)$   
        return Eval( $\varphi_1, \alpha$ ) [op] Eval( $\varphi_2, \alpha$ );  
}
```

- Complexity? Eval uses **polynomial** time and space.

Example

- Recall our example
 - $\varphi = (a \vee (b \rightarrow c))$
 - $\alpha : \{a, b, c\} \rightarrow \{0, 1\}$ with $\alpha(a) = 0$, $\alpha(b) = 0$, and $\alpha(c) = 1$.
- $\text{Eval}(\varphi, \alpha) = \text{Eval}(a, \alpha) \text{ or } \text{Eval}(b \rightarrow c, \alpha) =$
 $0 \text{ or } (\text{Eval}(b, \alpha) \text{ implies } \text{Eval}(c, \alpha)) =$
 $0 \text{ or } (0 \text{ implies } 1) =$
 $0 \text{ or } 1 =$
 1
- Hence, $\alpha \models \varphi$.

Set of assignments

- Intuition: a formula specifies a **set of truth assignments**.
- Remember: Ass denotes the set of all assignments.
- Function **models** : $\text{Formula} \rightarrow 2^{\text{Ass}}$
(a formula \rightarrow set of satisfying assignments)
- Recursive definition:
 - $\text{models}(a) = \{\alpha \mid \alpha(a) = 1\}$, $a \in \text{Prop}$
 - $\text{models}(\neg\varphi_1) = \text{Ass} \setminus \text{models}(\varphi_1)$
 - $\text{models}(\varphi_1 \wedge \varphi_2) = \text{models}(\varphi_1) \cap \text{models}(\varphi_2)$
 - $\text{models}(\varphi_1 \vee \varphi_2) = \text{models}(\varphi_1) \cup \text{models}(\varphi_2)$
 - $\text{models}(\varphi_1 \rightarrow \varphi_2) = (\text{Ass} \setminus \text{models}(\varphi_1)) \cup \text{models}(\varphi_2)$

Example

- $\text{models}(a \vee b) = \{\alpha \in \text{Ass} \mid \alpha(a) = 1 \text{ or } \alpha(b) = 1\}$
- This is compatible with the recursive definition:

$$\begin{aligned}\text{models}(a \vee b) &= \text{models}(a) \cup \text{models}(b) = \\ &\{ \alpha \in \text{Ass} \mid \alpha(a) = 1 \} \cup \{ \alpha \in \text{Ass} \mid \alpha(b) = 1 \}\end{aligned}$$

Theorem

- Let $\varphi \in \text{Formula}$ and $\alpha \in \text{Ass}$, then the following statements are equivalent:
 - $\alpha \models \varphi$
 - $\alpha \in \text{models}(\varphi)$

Extension of \models to sets of assignments

- Let $\varphi \in \text{Formula}$.
- Let T be a set of assignments, i.e., $T \subseteq 2^{\text{Ass}}$
- Definition: $\models \subseteq 2^{\text{Ass}} \times \text{Formula}$ with
 $T \models \varphi$ iff $T \subseteq \text{models}(\varphi)$

Extension of \models to formulae

- $\models \subseteq 2^{\text{Formula}} \times 2^{\text{Formula}}$
- Definition. Let φ_1, φ_2 be propositional formulae.

$$\varphi_1 \models \varphi_2$$

iff $\text{models}(\varphi_1) \subseteq \text{models}(\varphi_2)$, or equivalently
iff for all $\alpha \in \text{Ass}$

$$\text{if } \alpha \models \varphi_1 \text{ then } \alpha \models \varphi_2$$

Examples:

$$x_1 \wedge x_2 \models x_1 \vee x_2$$

$$x_1 \wedge x_2 \models x_2 \vee x_3$$

Short summary for propositional logic

- Syntax: $\varphi := \text{prop} \mid (\neg\varphi) \mid (\varphi \wedge \varphi)$

- Semantics:

- Assignments:

$$\alpha : \text{Prop} \rightarrow \{0, 1\}$$

$$\alpha \in 2^{\text{Prop}}$$

$$\alpha \in \{0, 1\}^{\text{Prop}}$$

- Satisfiability relation:

$$\models \subseteq \text{Ass} \times \text{Formula} \quad , \quad (\text{e.g., } \alpha \models \varphi)$$

$$\models \subseteq 2^{\text{Ass}} \times \text{Formula} \quad , \quad (\text{e.g., } \{\alpha_1, \dots, \alpha_n\} \models \varphi)$$

$$\models \subseteq \text{Formula} \times \text{Formula} \quad , \quad (\text{e.g., } \varphi_1 \models \varphi_2)$$

$$\text{models} : \text{Formula} \rightarrow 2^{\text{Ass}}, \quad (\text{e.g., } \text{models}(\varphi))$$

Propositional logic - Outline

- Abstract grammar of propositional logic
- Semantics of propositional logic
- **Satisfiability and validity**
- Modeling with propositional logic
- Normal forms
- Deductive proofs and resolution

Semantic classification of formulae

- A formula φ is called **valid** if $\text{models}(\varphi) = \text{Ass.}$
(Also called a **tautology**).
- A formula φ is called **satisfiable** if $\text{models}(\varphi) \neq \emptyset$.
- A formula φ is called **unsatisfiable** if $\text{models}(\varphi) = \emptyset$.
(Also called a **contradiction**).

satisfiable	unsatisfiable
valid	

Some notations

- We can write:

- $\models \varphi$ when φ is valid
- $\not\models \varphi$ when φ is not valid
- $\not\models \neg\varphi$ when φ is satisfiable
- $\models \neg\varphi$ when φ is unsatisfiable

Examples

- $(x_1 \wedge x_2) \rightarrow (x_1 \vee x_2)$ is valid
- $(x_1 \vee x_2) \rightarrow x_1$ is satisfiable
- $(x_1 \wedge x_2) \wedge \neg x_1$ is unsatisfiable

Examples

- Here are some valid formulae:
 - $\models a \wedge 1 \leftrightarrow a$
 - $\models a \wedge 0 \leftrightarrow 0$
 - $\models \neg\neg a \leftrightarrow a$ // The double-negation rule
 - $\models a \wedge (b \vee c) \leftrightarrow (a \wedge b) \vee (a \wedge c)$
- Some more (De Morgan rules):
 - $\models \neg(a \wedge b) \leftrightarrow (\neg a \vee \neg b)$
 - $\models \neg(a \vee b) \leftrightarrow (\neg a \wedge \neg b)$

The decision problem of formulae

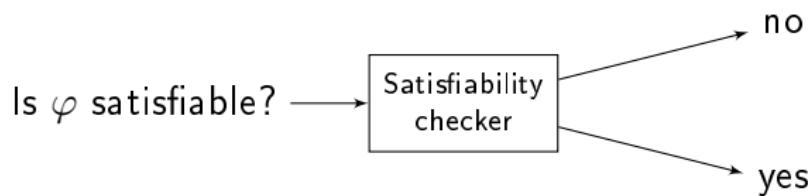
- The **decision problem**:

Given a propositional formula φ , is φ satisfiable?

- An algorithm that always terminates with a correct answer to this problem is called a **decision procedure** for propositional logic.

Characteristics of formulae

Goal: Design a satisfiability checker



Lemma:

- A formula φ is valid iff $\neg\varphi$ is unsatisfiable.

Propositional logic - Outline

- Abstract grammar of propositional logic
- Semantics of propositional logic
- Satisfiability and validity
- **Modeling with propositional logic**
- Normal forms
- Deductive proofs and resolution

Before we solve this problem...

- Suppose we can solve the satisfiability problem... how can this help us?
- There are numerous problems in the industry that are solved via the satisfiability problem of propositional logic
 - Logistics
 - Planning
 - Electronic Design Automation industry
 - Cryptography
 - ...

Example 1: Placement of wedding guests

- Three chairs in a row: 1, 2, 3
- We need to place Aunt, Sister and Father.
- Constraints:
 - Aunt doesn't want to sit near Father
 - Aunt doesn't want to sit in the left chair
 - Sister doesn't want to sit to the right of Father
- **Q:** Can we satisfy these constraints?

Example 1 (continued)

- Denote: Aunt = 1, Sister = 2, Father = 3
- Introduce a propositional variable for each pair (person, place).
- x_{ij} = “person i is sited in place j , for $1 \leq i, j \leq 3$ ”
- Constraints:
 - Aunt doesn't want to sit near Father:
$$((x_{1,1} \vee x_{1,3}) \rightarrow \neg x_{3,2}) \wedge (x_{1,2} \rightarrow (\neg x_{3,1} \wedge \neg x_{3,3}))$$
 - Aunt doesn't want to sit in the left chair
$$\neg x_{1,1}$$
 - Sister doesn't want to sit to the right of Father
$$x_{3,1} \rightarrow \neg x_{2,2} \wedge x_{3,2} \rightarrow \neg x_{2,3}$$

Example 1 (continued)

- More constraints:
- Each person is placed:

$$(x_{1,1} \vee x_{1,2} \vee x_{1,3}) \wedge (x_{2,1} \vee x_{2,2} \vee x_{2,3}) \wedge (x_{3,1} \vee x_{3,2} \vee x_{3,3})$$

- Or, more concisely:

$$\bigwedge_{i=1}^3 \bigvee_{j=1}^3 x_{i,j}$$

- No person is placed in more than one place:

$$\bigwedge_{i=1}^3 \bigwedge_{j=1}^2 \bigwedge_{k=j+1}^3 (\neg x_{i,j} \vee \neg x_{i,k})$$

- Overall 9 variables, 26 conjoined constraints.

Example 2: Assignment of frequencies

- n radio stations
- For each assign one of k transmission frequencies, $k < n$.
- E – set of pairs of stations, that are too close to have the same frequency.
- **Q:** Can we assign to each station a frequency, such that no station pairs from E have the same frequency?

Example 2 (continued)

- $x_{i,j}$: station i is assigned frequency j , for $1 \leq i \leq n$, $1 \leq j \leq k$.
 - Every station is assigned at least one frequency:

$$\bigwedge_{i=1}^n \bigvee_{j=1}^k x_{i,j}$$

- Every station is assigned not more than one frequency:

$$\bigwedge_{i=1}^n \bigwedge_{j=1}^{k-1} (x_{i,j} \rightarrow \bigwedge_{j < t \leq k} \neg x_{i,t})$$

- Close stations are not assigned the same frequency:
For each $(i,j) \in E$,

$$\bigwedge_{t=1}^k (x_{i,t} \rightarrow \neg x_{j,t})$$

Two classes of algorithms for validity

- **Q:** Is φ satisfiable? (Is $\neg\varphi$ valid?)
- Complexity: **NP-Complete** (Cook's theorem)
- Two classes of algorithms for finding out:
 - Enumeration of possible solutions (Truth tables etc.)
 - Deduction
- More generally (beyond propositional logic):
 - **Enumeration** is possible only in some logics.
 - **Deduction** cannot necessarily be fully automated.

The satisfiability problem

- Given a formula φ , is φ satisfiable?

Enumeration the first:

```
Boolean SAT( $\varphi$ ){  
    result:= false;  
    for all  $\alpha \in Ass$   
        result = result  $\vee$  Eval( $\varphi, \alpha$ );  
    return result;  
}
```

Enumeration the second:

Use substitution to eliminate all variables one by one:

$$\varphi \quad \text{iff} \quad \varphi[0/a] \vee \varphi[1/a]$$

- What is the difference?
- There must be a better way to do that in practice.

Propositional logic - Outline

- Abstract grammar of propositional logic
- Semantics of propositional logic
- Satisfiability and validity
- Modeling with propositional logic
- **Normal forms**
- Deductive proofs and resolution

Definitions

- Definition: A **literal** is either a variable or a negation of a variable.
- Let $\varphi = \neg(a \vee \neg b)$. Then:
- Variables: $AP(\varphi) = \{a, b\}$
- Literals: $lit(\varphi) = \{a, \neg b\}$
- Equivalent formulae can have different literals
- $\varphi' = \neg a \wedge b$
- Now $lit(\varphi') = \{\neg a, b\}$

Definitions

- Definition: a **term** is a conjunction of literals
 - Example: $(a \wedge \neg b \wedge c)$
- Definition: a **clause** is a disjunction of literals
 - Example: $(a \vee \neg b \vee c)$

Negation Normal Form (NNF)

- Definition: A formula is in **Negation Normal Form (NNF)** iff
 - (1) it contains only \neg , \wedge and \vee as connectives and
 - (2) only variables are negated.
- Examples:
 - $\varphi_1 = \neg(a \vee \neg b)$ is **not** in NNF
 - $\varphi_2 = \neg a \wedge b$ is **in** NNF

Converting to NNF

- Every formula can be converted to NNF in linear time:
 - Eliminate all connectives other than \wedge , \vee , \neg
 - Use De Morgan and double-negation rules to push negations to the right
- Example: $\varphi = \neg(a \rightarrow \neg b)$
 - Eliminate ' \rightarrow ': $\varphi = \neg(\neg a \vee \neg b)$
 - Push negation using De Morgan: $\varphi = (\neg \neg a \wedge \neg \neg b)$
 - Use double-negation rule: $\varphi = (a \wedge b)$

Disjunctive Normal Form (DNF)

- Definition: A formula is said to be in **Disjunctive Normal Form (DNF)** iff it is a disjunction of terms.
 - In other words, it is a formula of the form

$$\bigvee_i (\bigwedge_j l_{i,j})$$

where $l_{i,j}$ is the j -th literal in the i -th term.

- Example:

$$\varphi = (a \wedge \neg b \wedge c) \vee (\neg a \wedge d) \vee (b) \text{ is in DNF}$$

- DNF is a special case of NNF

Converting to DNF

- Every formula can be converted to DNF in **exponential** time and space:
 - 1 Convert to NNF
 - 2 Distribute disjunctions following the rule:
 $\models a \wedge (b \vee c) \leftrightarrow ((a \wedge b) \vee (a \wedge c))$
- Example:
$$\begin{aligned}\varphi &= (a \vee b) \wedge (\neg c \vee d) \\ &= ((a \vee b) \wedge (\neg c)) \vee ((a \vee b) \wedge d) \\ &= (a \wedge \neg c) \vee (b \wedge \neg c) \vee (a \wedge d) \vee (b \wedge d)\end{aligned}$$
- Q: How many clauses would the DNF have had if we started from a conjunction of n binary clauses (i.e., clauses with 2 literals)?

Satisfiability of DNF

- Is the following DNF formula satisfiable?

$$(a_1 \wedge a_2 \wedge \neg a_1) \vee (a_2 \wedge a_1) \vee (a_2 \wedge \neg a_3 \wedge a_3)$$

- **Q:** What is the complexity of the satisfiability check of DNF formulae?

Conjunctive Normal Form (CNF)

- Definition: A formula is said to be in **Conjunctive Normal Form (CNF)** iff it is a conjunction of clauses.

In other words, it is a formula of the form

$$\bigwedge_i \left(\bigvee_j l_{i,j} \right)$$

where $l_{i,j}$ is the j -th literal in the i -th clause.

- Example:

$$\varphi = (a \vee \neg b \vee c) \wedge (\neg a \vee d) \wedge (b) \text{ is in CNF}$$

- CNF is a special case of NNF

Converting to CNF

- Every formula can be converted to CNF:
 - in **exponential** time and space with the same set of variables, or
 - in **linear** time and space if new variables are added.
- For the latter—the so-called **Tseitin's encoding**—the original and the converted formulae are **equi-satisfiable**, but **not equivalent**.
- **Q:** Can there be any such linear transformation into DNF?
- **A:** No. Linear DNF transformation and linear DNF solution would violate the NP-completeness of the problem.

Converting to CNF: The exponential way

$\text{CNF}(\varphi)\{$

case

φ is a literal: return φ

φ is $\varphi_1 \wedge \varphi_2$: return $\text{CNF}(\varphi_1) \wedge \text{CNF}(\varphi_2)$

φ is $\varphi_1 \vee \varphi_2$: return $\text{Dist}(\text{CNF}(\varphi_1), \text{CNF}(\varphi_2))$

}

$\text{Dist}(\varphi_1, \varphi_2) \{$

case

φ_1 is $\varphi_{11} \wedge \varphi_{12}$: return $\text{Dist}(\varphi_{11}, \varphi_2) \wedge \text{Dist}(\varphi_{12}, \varphi_2)$

φ_2 is $\varphi_{21} \wedge \varphi_{22}$: return $\text{Dist}(\varphi_1, \varphi_{21}) \wedge \text{Dist}(\varphi_1, \varphi_{22})$

else: return $\varphi_1 \vee \varphi_2$

}

Converting to CNF: The exponential way

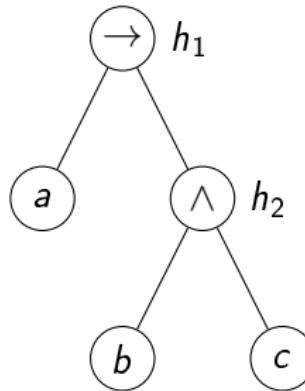
- Consider the formula
- $\varphi = (a_1 \wedge b_1) \vee (a_2 \wedge b_2)$
- $\text{CNF}(\varphi) = (a_1 \vee a_2) \wedge (a_1 \vee b_2) \wedge (b_1 \vee a_2) \wedge (b_1 \vee b_2)$
- Now consider: $\varphi_n = (a_1 \wedge b_1) \vee (a_2 \wedge b_2) \vee \dots \vee (a_n \wedge b_n)$
- **Q:** How many clauses does $\text{CNF}(\varphi)$ return?
- **A:** 2^n

Converting to CNF: Tseitin's encoding

- Consider the formula

$$\varphi = (a \rightarrow (b \wedge c))$$

The Parse Tree:



- Associate a new auxiliary variable with each gate.
- Add constraints that define these new variables.
- Finally, enforce the root node.

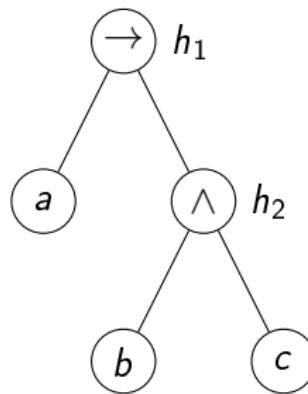
Converting to CNF: Tseitin's encoding

- Need to satisfy:

$$(h_1 \leftrightarrow (a \rightarrow h_2)) \wedge$$

$$(h_2 \leftrightarrow (b \wedge c)) \wedge$$

$$(h_1)$$



- Each gate encoding has a CNF representation with 3 or 4 clauses.

Converting to CNF: Tseitin's encoding

- Need to satisfy:

$$(h_1 \leftrightarrow (a \rightarrow h_2)) \wedge (h_2 \leftrightarrow (b \wedge c)) \wedge (h_1)$$

- First: $(h_1 \vee a) \wedge (h_1 \vee \neg h_2) \wedge (\neg h_1 \vee \neg a \vee h_2)$
- Second: $(\neg h_2 \vee b) \wedge (\neg h_2 \vee c) \wedge (h_2 \vee \neg b \vee \neg c)$

Converting to CNF: Tseitin's encoding

- Let's go back to

$$\varphi_n = (x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \cdots \vee (x_n \wedge y_n)$$

- With Tseitin's encoding we need:

- n auxiliary variables a_1, \dots, a_n .
- Each adds 3 constraints.
- Top clause: $(a_1 \vee \cdots \vee a_n)$

- Hence, we have

- $3n + 1$ clauses, instead of 2^n .
- $3n$ variables rather than $2n$.

Propositional logic - Outline

- Abstract grammar of propositional logic
- Semantics of propositional logic
- Satisfiability and validity
- Modeling with propositional logic
- Normal forms
- **Deductive proofs and resolution**

Deduction requires axioms and inference rules

- Inference rules:

Antecedents
Consequents (rule-name)

Meaning: If all antecedents hold then at least one of the consequents can be derived.

- Examples:

$$\frac{a \rightarrow b \quad b \rightarrow c}{a \rightarrow c} \quad (\text{Trans})$$

$$\frac{a \rightarrow b \quad a}{b} \quad (\text{M.P.})$$

Axioms

- **Axioms** are inference rules with no antecedents, e.g.,

$$\frac{}{a \rightarrow (b \rightarrow a)} \quad (\text{H1})$$

- We can turn an inference rule into an axiom if we have ' \rightarrow ' in the logic.
- So the difference between them is not sharp.

- A proof uses a given set of axioms and inference rules.
- This is called the **proof system**.
- Let \mathcal{H} be a proof system.
- $\Gamma \vdash_{\mathcal{H}} \varphi$ means: There is a proof of φ in system \mathcal{H} whose premises are included in Γ
- $\vdash_{\mathcal{H}}$ is called the **provability relation**.

Example

- Let \mathcal{H} be the proof system comprised of the rules **Trans** and **M.P.** that we saw earlier:

$$\frac{a \rightarrow b \ b \rightarrow c}{a \rightarrow c} \quad (\text{Trans})$$

$$\frac{a \rightarrow b \ a}{b} \quad (\text{M.P.})$$

- Does the following relation hold?

$$a \rightarrow b, \ b \rightarrow c, \ c \rightarrow d, \ d \rightarrow e, \ a \vdash_{\mathcal{H}} e$$

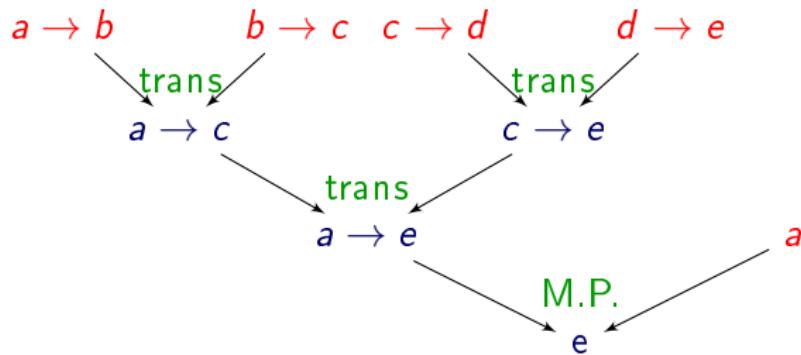
Deductive proof: Example

$$\frac{a \rightarrow b \quad b \rightarrow c}{a \rightarrow c} \quad (\text{Trans}) \quad \frac{a \rightarrow b \quad a}{b} \quad (\text{M.P.})$$

$$a \rightarrow b, \quad b \rightarrow c, \quad c \rightarrow d, \quad d \rightarrow e, \quad a \quad \vdash_{\mathcal{H}} \quad e$$

1. $a \rightarrow b$ premise
2. $b \rightarrow c$ premise
3. $a \rightarrow c$ 1, 2, Trans
4. $c \rightarrow d$ premise
5. $d \rightarrow e$ premise
6. $c \rightarrow e$ 4, 5, Trans
7. $a \rightarrow e$ 3, 6, Trans
8. a premise
9. e 7, 8, M.P.

Proof graph (DAG)



Correctness and Completeness

- \vdash is a relation defined by syntactic transformations of the underlying proof system.
- For a given proof system \mathcal{H} ,
 - **Correctness:** Does \vdash conclude “correct” conclusions from premises?
 - **Completeness:** Can we conclude all true statements with \mathcal{H} ?
- **Correct with respect to what?**
- With respect to the semantic definition of the logic. In the case of propositional logic truth tables give us this.

Soundness and completeness

- Let \mathcal{H} be a proof system

Soundness of \mathcal{H} : if $\vdash_{\mathcal{H}} \varphi$ then $\models \varphi$
Completeness of \mathcal{H} : if $\models \varphi$ then $\vdash_{\mathcal{H}} \varphi$

- How to prove soundness and completeness?

Example: Hilbert axiom system (H)

- Let H be (M.P.) together with the following axiom schemes:

$$\frac{}{a \rightarrow (b \rightarrow a)} \quad (H1)$$

$$\frac{}{((a \rightarrow (b \rightarrow c)) \rightarrow ((a \rightarrow b) \rightarrow (a \rightarrow c)))} \quad (H2)$$

$$\frac{}{(\neg b \rightarrow \neg a) \rightarrow (a \rightarrow b)} \quad (H3)$$

- H is **sound and complete** for propositional logic.

Soundness and completeness

- To prove soundness of H , prove the soundness of its axioms and inference rules (easy with truth-tables).

For example:

a	b	$a \rightarrow (b \rightarrow a)$
0	0	1
0	1	1
1	0	1
1	1	1

- Completeness: harder, but possible.

The resolution inference system

- The **resolution** inference rule for CNF:

$$\frac{(I \vee I_1 \vee I_2 \vee \dots \vee I_n) \quad (\neg I \vee I'_1 \vee \dots \vee I'_m)}{(I_1 \vee \dots \vee I_n \vee I'_1 \vee \dots \vee I'_m)} \text{ Resolution}$$

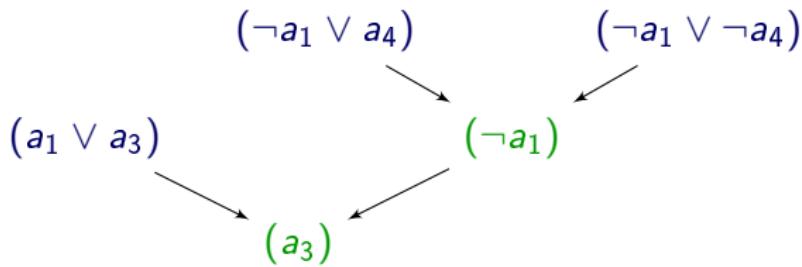
- Example:

$$\frac{(a \vee b) \quad (\neg a \vee c)}{(b \vee c)}$$

- We first see some example proofs, before proving soundness and completeness.

Proof by resolution

- Let $\varphi = (a_1 \vee a_3) \wedge (\neg a_1 \vee a_2 \vee a_5) \wedge (\neg a_1 \vee a_4) \wedge (\neg a_1 \vee \neg a_4)$
- We'll try to prove $\varphi \rightarrow (a_3)$

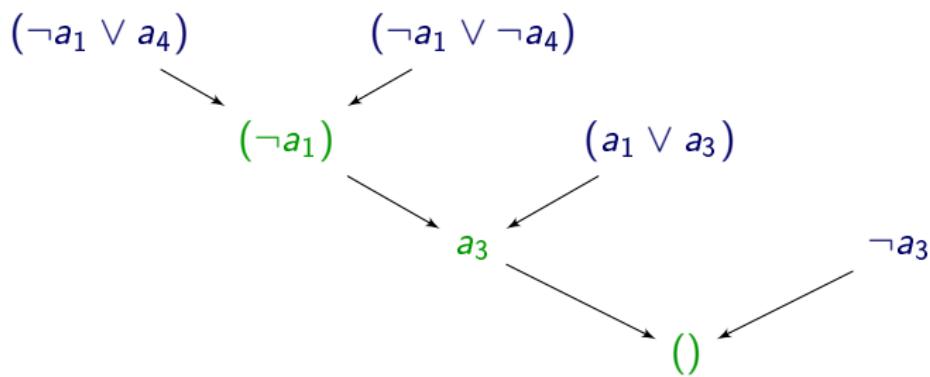


Resolution

- Resolution is a sound and complete inference system for CNF.
- If the input formula is unsatisfiable, **there exists** a proof of the **empty clause**.

Example

Let $\varphi = (a_1 \vee a_3) \wedge (\neg a_1 \vee a_2) \wedge (\neg a_1 \vee a_4) \wedge (\neg a_1 \vee \neg a_4) \wedge (\neg a_3)$.



Soundness and completeness of resolution

- **Soundness** is straightforward. Just prove by truth table that

$$\models ((\varphi_1 \vee a) \wedge (\varphi_2 \vee \neg a)) \rightarrow (\varphi_1 \vee \varphi_2).$$

- **Completeness** is a bit more involved.

Basic idea: Use resolution for **variable elimination**.

$$\begin{aligned} & (a \vee \varphi_1) \wedge \dots \wedge (a \vee \varphi_n) \wedge \\ & (\neg a \vee \psi_1) \wedge \dots \wedge (\neg a \vee \psi_m) \wedge \\ & \qquad \qquad \qquad R \\ & \qquad \qquad \qquad \Leftrightarrow \\ & (\varphi_1 \vee \psi_1) \wedge \dots \wedge (\varphi_1 \vee \psi_m) \wedge \\ & \qquad \qquad \qquad \dots \\ & (\varphi_n \vee \psi_1) \wedge \dots \wedge (\varphi_n \vee \psi_m) \wedge \\ & \qquad \qquad \qquad R \end{aligned}$$

where φ_i ($i = 1, \dots, n$), ψ_j ($j = 1, \dots, m$), and R contains neither a nor $\neg a$.