Erika Abraham - Propositional logic

Satisfiability Checking

Propositional Logic

Prof. Dr. Erika Abraham

Theory of Hybrid Systems
Informatik 2

WS 11/12

Propositional logic

The slides are partly taken from:

www.decision-procedures.org/slides/

Erika Abraham - Propositional logic

Propositional logic - Outline

Abstract grammar of propositional logic
Semantics of propositional logic
Satisfiability and validity

Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Erika Abraham - Propositional logic

Propositional logic - Outline

Abstract grammar of propositional logic
Semantics of propositional logic
Satisfiability and validity

Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Erika Abraham - Propositional logic

Abstract syntax of propositional logic

Propositional logic is the quantifier-free fragment of the first-order theory
with ¥ = {} without axioms.

Abstract grammar of well-formed propositional formulae:
= a | (=¢) | (¢1re)
with a € Prop and Prop a set of propositions (Boolean variables).

Syntactic sugar:

1 = (a A —a)
T = (aV —a)
(w1 vV w2)i=((e1) A(m92))
(1 = w2)= (1) V)
(w1 < w2)= ({1 = p2) Ap2 = ¢1))
(o1 D w2)=(p1¢ (mp2))

Erika Abraham - Propositional logic

Formulae

m Examples of well-formed formulae:
m (—a)
(=(=a))
(an(bAc))
(a—= (b—0))
m Remember: we omit parenthesis whenever we may restore them
through operator precedence:

binds stronger

- ANV = &

Erika Abraham - Propositional logic

Propositional logic - Outline

Abstract grammar of propositional logic
Semantics of propositional logic
Satisfiability and validity

Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Erika Abraham - Propositional logic

Semantics: Assignments

Structures for predicate logic:
m The domain is B = {0,1}.

m Since there are no constants, function or predicate symbols, the
interpretation just assigns Boolean values to the variables:

a: Prop — {0,1}
We call these special interpretations assignments and use Ass to denote the

set of all assignments.
Example: Prop = {a, b}, a(a) =0, a(b) =1

Equivalently, we can see an assignment « as a set of variables (a € 2F7°P),
defining the variables from the set to be true and the others false.
Example: Prop = {a, b}, a = {b}

An assignment can also be seen as being of type o € {0,1}F*°P | if we have
an order on the propositions.
Example: Prop = {a, b}, = {01}

Erika Abraham - Propositional logic

Only the projected assignment matters...

Let a3, € Assand ¢ € Formula.
AP((p) - the atomic propositions in .
Clearly AP(y) C Prop.

Lemma: if a1|ap(p) = 2|ap(p) - then
\ . .

(a7 satisfies p) iff (ap satisfies p)

m We will assume, for simplicity, that Prop = AP().

Erika Abraham - Propositional logic

Semantics I: Truth tables

m Truth tables define the semantics (=meaning) of the operators.
They can be used to define the semantics of formulae inductively over
their structure.

m Convention: 0 = false, 1 = true

Plall-pP|lPAg|lpValp—=qg|lpsq|pDyg
olo[1] o 0 1 1 0
o1 1] o 1 1 0 1
1jofo] o 1 0 0 1
110 1 1 1 1 0

Each possible assignment is covered by a line of the truth table.
« is a model for ¢ iff in the line for o and the column for ¢ the entry is 1.

Q: How many binary operators can we define that have different
semantics?
A: 16

Erika Abraham - Propositional logic

m Let ¢ be defined as (a vV (b — ¢)).
m Let a:{a,b,c} — {0,1} be an assignment with
a(a) =0, a(b) =0, and a(c) = 1.

m Q: Does «a satisfy 7
m Al: Compute with truth table:

alblc|b—claVv(b—c)
0/0|0 1 1
0101 1 1
0(1]0 0 0
0|11 1 1
11010 1 1
1101 1 1
1110 0 1
1111 1 1

Erika Abraham - Propositional logic

Semantics Il: Satisfaction relation

Satisfaction relation: = C Ass x Formula
Instead of (o, p) €= we write a |= ¢ and say that

m « satisfies ¢ or
m ¢ holds for « or
m « is a model of .

= is defined recursively:

a Ep iff a(p) = true

a E-p iff o J= ¢

a Epihgy iffa Epranda = ¢
a EFeiVe iffa E=prora Ee

a Ee1— e iffa = impliesa E ¢
a Epreo e iffaEeriffa = o

Erika Abraham - Propositional logic

m Let ¢ be defined as (a vV (b — ¢)).

m Let a:{a,b,c} — {0,1} be an assignment with
a(a) =0, a(b) =0, and a(c) = 1.

m Q: Does «a satisfy 7

A2: Compute with the satisfaction relation:

akE=(av(b—rc))
iff alFaoral=(b—c)
iff al=aor (o= bimplies a = c)
iff 0 or (0 implies 1)
iff 0orl
iff 1

Erika Abraham - Propositional logic

Semantics Il The algorithmic view

m Using the satisfaction relation we can define an algorithm for the
problem to decide if an assignment « : AP — {0,1} is a model of a
propositional logic formula ¢ with variables from AP:

Eval(p, a) {
if o=a return a(a);
if o =(-¢1) return not Eval(p1,a);
if ©=(p10p p2)
return Eval(pi,a) [op] Eval(pz, a);

m Complexity? Eval uses polynomial time and space.

Erika Abraham - Propositional logic

m Recall our example
mp=(aVv(b—0))
m «o:{ab,c} — {0,1} with a(a) =0, a(b) =0, and a(c) = 1.

m Eval(p,a) = Eval(a,a) or Eval(b — ¢, a) =
0 or (Eval(b, o) implies Eval(c, o)) =
0 or (0 implies 1) =
Oorl=
1

m Hence, a | ¢.

Erika Abraham - Propositional logic

Set of assignments

Intuition: a formula specifies a set of truth assignments.

Remember: Ass denotes the set of all assignments.
m Function models : Formula — 245

(a formula — set of satisfying assignments)
Recursive definition:
m models(a) = {« | a(a) =1}, a € Prop

m models(—y1) = Ass \ models(i1)

m models(p1 A 2) = models(p1) N models(i)

m models(p1 V 2) = models(p1) U models(i-)

m models(yp; — ¢3) = (Ass \ models(¢1)) U models(ip;)

Erika Abraham - Propositional logic

m models(aV b) = {a € Ass | a(a) =1 or a(b) =1}
m This is compatible with the recursive definition:

models(a Vv b) = models(a) U models(b) =
{a € Ass | a(a) =1} U{a € Ass | a(b) =1}

Erika Abraham - Propositional logic

m Let ¢ € Formula and a € Ass, then the following statements are
equivalent:

l.a E ¢
2. a € models(y)

Erika Abraham - Propositional logic

Extension of |= to sets of assignments

m Let ¢ € Formula.

m Let T be a set of assignments, i.e., T C 245

m Definition: = C 24%x Formula with

T = ¢ iff T C models()

Erika Abraham - Propositional logic

Extension of = to formulae

-): C 2Formu|a % 2Formu|a

m Definition. Let 1, vo be propositional formulae.

1 @2
iff models(y1) C models(i,), or equivalently
iff for all o € Ass

if « =1 then a = 2
Examples:
x1AxEx1 V x
x1Ax2Ex2 V x3

Erika Abraham - Propositional logic

Short summary for propositional logic

m Syntax: ¢ := prop | (—¢) | (¢ A p)
m Semantics;

m Assignments:
a : Prop — {0,1}
a € 2PreP
a € {0,1}Frep

m Satisfiability relation:

= C Ass x Formula)
= C 245 x Formula ,
= C Formula x Formula
models : Formula — 2455,

eg. a Fe)
eg. {01, an}=p)
e.g. ¥ Fp2)
e.g., models(y))

~ N~

Erika Abraham - Propositional logic

Propositional logic - Outline

Abstract grammar of propositional logic
Semantics of propositional logic
Satisfiability and validity

Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Erika Abraham - Propositional logic

Semantic classification of formulae

m A formula ¢ is called valid if models(y) = Ass.
(Also called a tautology).

m A formula ¢ is called satisfiable if models(y) # 0.

m A formula ¢ is called unsatisfiable if models(yp) = 0.

(Also called a contradiction).

satisfiable unsatisfiable

Erika Abraham - Propositional logic

Some notations

m We can write:

m = ¢ when ¢ is valid
m [~ ¢ when ¢ is not valid
m [~ —¢ when ¢ is satisfiable

m = —p when ¢ is unsatisfiable

Erika Abraham - Propositional logic

B (x1 Ax2) = (x1V x2) is valid
B (x1VXx)—x is satisfiable
B (x1 Ax2) A xg is unsatisfiable

Erika Abraham - Propositional logic

m Here are some valid formulae:

Eanlea

Fan0«0

= ——a < a // The double-negation rule
Ean(bvc)« (anb)V(anc)

m Some more (De Morgan rules):
m =—-(aAb) < (-aV-b)
m =-(aVvb) < (-an-b)

Erika Abraham - Propositional logic

The decision problem of formulae

m The decision problem:
Given a propositional formula ¢, is ¢ satisfiable?

m An algorithm that always terminates with a correct answer to this
problem is called a decision procedure for propositional logic.

Erika Abraham - Propositional logic

Characteristics of formulae

Goal: Design a satisfiability checker

no

Satisfiability

Is ¢ satisfiable’ checker

/
\

Lemma:

yes

m A formula ¢ is valid iff =y is unsatisfiable.

Erika Abraham - Propositional logic

Propositional logic - Outline

Abstract grammar of propositional logic
Semantics of propositional logic
Satisfiability and validity

Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Erika Abraham - Propositional logic

Before we solve this problem...

m Suppose we can solve the satisfiability problem... how can this help us?

m There are numerous problems in the industry that are solved via the
satisfiability problem of propositional logic
m Logistics
Planning
Electronic Design Automation industry
Cryptography

Erika Abraham - Propositional logic

Example 1: Placement of wedding guests

m Three chairs in a row: 1,2,3

m We need to place Aunt, Sister and Father.
m Constraints:

m Aunt doesn’'t want to sit near Father
m Aunt doesn't want to sit in the left chair
m Sister doesn't want to sit to the right of Father

m Q: Can we satisfy these constraints?

Erika Abraham - Propositional logic

Example 1 (continued)

m Denote: Aunt = 1, Sister = 2, Father = 3

m Introduce a propositional variable for each pair (person, place).

m x; = "person i is sited in place j, for 1 <i,j < 3"

m Constraints:

Erika Abraham -

Aunt doesn’t want to sit near Father:

((x1,1 Vx13) = =x32) A(x12 = (7x31 A —x3.3))
Aunt doesn’'t want to sit in the left chair

X111

Sister doesn't want to sit to the right of Father
X31 — "Xo2 A X302 — TX23

Propositional logic

Example 1 (continued)

More constraints:

Each person is placed:

(x1,1 Vx12Vx13) A(x21Vx2Vx23)A(x31V x32V x33)

m Or, more concisely:

AV

i=1j=1
m No person is placed in more than one place:
3 3
/\ /\ /\ (_‘XI,J V X k)
i=1j=1k=j+I
m Overall 9 variables, 26 conjoined constraints.

Erika Abraham - Propositional logic

Example 2: Assignment of frequencies

m n radio stations
m For each assign one of k transmission frequencies, k < n.

m £ — set of pairs of stations, that are too close to have the same
frequency.

m Q: Can we assign to each station a frequency, such that no statin
pairs from E have the same frequency?

Erika Abraham - Propositional logic

Example 2 (continued)

m X j: station / is assigned frequency j, for 1 </ <n, 1<) <k,
m Every station is assigned at least one frequency:

n k
AV %

i=1j=1

m Every station is assigned not more than one frequency:

n k—1
AVACT A
i=1 j=1 j<t<k

m Close stations are not assigned the same frequency:
For each (i,j) € E,

k
/\(Xi,t = Xj.¢)

t=1

Erika Abraham - Propositional logic

Two classes of algorithms for validity

Q: s ¢ satisfiable? (Is = valid?)
Complexity: NP-Complete (Cook’s theorem)

m Two classes of algorithms for finding out:

m Enumeration of possible solutions (Truth tables etc.)
m Deduction

More generally (beyond propositional logic):

m Enumeration is possible only in some logics.
m Deduction cannot necessarily be fully automated.

Erika Abraham - Propositional logic

The satisfiability problem

m Given a formula ¢, is ¢ satisfiable?
Enumeration the first:
Boolean SAT(¢){
result:=false;
for all a€ Ass

result = result V Eval(y, a);
return result;

}

Enumeration the second:
Use substitution to eliminate all variables one by one:

o iff p[0/a] vV p[1/4]

m What is the difference?
m There must be a better way to do that in practice.

Erika Abraham - Propositional logic

Propositional logic - Outline

Abstract grammar of propositional logic
Semantics of propositional logic
Satisfiability and validity

Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Erika Abraham - Propositional logic

Definition: A literal is either a variable or a negation of a variable.
Let ¢ = =(aV =b). Then:

Variables: AP(y) = {a, b}

Literals: lit(p) = {a, ~b}

Equivalent formulae can have different literals

o =-aAb

Now lit(¢') = {—a, b}

Erika Abraham - Propositional logic

m Definition: a term is a conjunction of literals
m Example: (aA-bAc)

m Definition: a clause is a disjunction of literals
m Example: (aVv-bVc)

Erika Abraham - Propositional logic

Negation Normal Form (NNF)

m Definition: A formula is in Negation Normal Form (NNF) iff
(1) it contains only =, A and V as connectives and
(2) only variables are negated.

m Examples:
m o1 = —(aV —b)is not in NNF
m o, =-aAbisin NNF

Erika Abraham - Propositional logic

Converting to NNF

m Every formula can be converted to NNF in linear time:
m Eliminate all connectives other than A, Vv, —
m Use De Morgan and double-negation rules to push negations to the
right

m Example: ¢ = —(a — —b)
m Eliminate "= ': ¢ = =(-a Vv —b)
m Push negation using De Morgan: ¢ = (—=—a A ——b)
m Use double-negation rule: ¢ = (a A b)

Erika Abraham - Propositional logic

Disjunctive Normal Form (DNF)

m Definition: A formula is said to be in Disjunctive Normal Form (DNF)
iff it is a disjunction of terms.

m In other words, it is a formula of the form

\/(A li ;)

i

where /; j is the j-th literal in the i-th term.

m Example:
o= (aN-bAc)V(-and)V(b) isin DNF

m DNF is a special case of NNF

Erika Abraham - Propositional logic

Converting to DNF

m Every formula can be converted to DNF in exponential time and
space:
Convert to NNF
Distribute disjunctions following the rule:
Ean(bVvc)« ((anb)Vv(anc))

m Example:
¢ =(aVb)A(-cVd)
=((avVb)A(—¢c))V((aVvb)Ad)
=(aN—c)V(bA—=c)V(and)V (bAd)

m Q: How many clauses would the DNF have had if we started from a
conjunction of n binary clauses (i.e., clauses with 2 literals)?

Erika Abraham - Propositional logic

Satisfiability of DNF

m |s the following DNF formula satisfiable?
(81 A ax A\ —\81) vV (82 A a1) vV (ag N —az A 83)

m Q: What is the complexity of the satisfiability check of DNF formulae?

Erika Abraham - Propositional logic

Conjunctive Normal Form (CNF)

m Definition: A formula is said to be in Conjunctive Normal Form (CNF)
iff it is a conjunction of clauses.

In other words, it is a formula of the form

AN i)
i

i

where [; ; is the j-th literal in the i-th clause.

m Example:
p=(aVv-bVc)A(—aVvd)A(b) isin CNF

m CNF is a special case of NNF

Erika Abraham - Propositional logic

Converting to CNF

Every formula can be converted to CNF:

m in exponential time and space with the same set of variables, or

m in linear time and space if new variables are added.
For the latter—the so-called Tseitin's encoding—the original and the
converted formulae are equi-satisfiable, but not equivalent.

Q: Can there be any such linear transformation into DNF?

m A: No. Linear DNF transformation and linear DNF solution would
violate the NP-completeness of the problem.

Erika Abraham - Propositional logic

Converting to CNF: The exponential way

CNF(e){
case
@ is a literal: return ¢
@ is 1 A pa: return CNF(¢1) A CNF(¢2)
@ is v1 V pa: return Dist(CNF(¢p1),CNF(v2))

Dist(i01,¢2) {
case
1 1s w11 A @120 return Dist(p11,¢02) A Dist(p12,02)

(%)) iS Y21 A (Y25 return DiSt(gOl,gDQ;l) A DiSt(ng,(pQQ)
else: return 1 V g

Erika Abraham - Propositional logic

Converting to CNF: The exponential way

Consider the formula
Y= (31 /\bl)\/(ag /\b2)
CNF(p) = (a1 V a2) A(a1 V b2) A (b1 V a2) A (b1 V b2)

m Now consider: ¢, = (a1 A b1) V(a2 A b2) V...V (an A bp)
m Q: How many clauses does CNF(y) return?
m A 2"

Erika Abraham - Propositional logic

Converting to CNF: Tseitin's encoding

m Consider the formula The Parse Tree:

p=(a—(bAc)) h1

OO
&) (©

m Associate a new auxiliary variable with each gate.
m Add constraints that define these new variables.

m Finally, enforce the root node.

Erika Abraham - Propositional logic

Converting to CNF: Tseitin's encoding

m Need to satisfy: e hy
(hl < (a — h2))/\

(h2 — (b A C))/\
(hy) e 0 ha
ONNO

m Each gate encoding has a CNF representation with 3 or 4 clauses.

Erika Abraham - Propositional logic

Converting to CNF: Tseitin's encoding

m Need to satisfy:
(hl > (a — hz)) VAN (h2 > (b A C)) VAN (hl)

m First: (hl V a) AN (h1 vV ﬁhz) VAN (ﬁhl V-aV h2)
m Second: (—hy V b) A (=ha V) A (haV=bV —c)

Erika Abraham - Propositional logic

Converting to CNF: Tseitin's encoding

m Let's go back to
en=(1Ay1)V (2 Ay2) V-V (xn A yn)

m With Tseitin’s encoding we need:

m n auxiliary variables ay, ..., a,.
m Each adds 3 constraints.
m Top clause: (a1 V-V a,)

m Hence, we have
m 3n+1 clauses, instead of 2”.
m 3n variables rather than 2n.

Erika Abraham - Propositional logic

Propositional logic - Outline

Abstract grammar of propositional logic
Semantics of propositional logic
Satisfiability and validity

Modeling with propositional logic

Normal forms

Deductive proofs and resolution

Erika Abraham - Propositional logic

Deduction requires axioms and inference rules

m Inference rules:

Antecedents
_— (rule-name)
Consequents

Meaning: If all antecedents hold then at least one of the consequents
can be derived.

m Examples:
b b
a7 i (Trans)
a—c
a—b a
Y (M.P.)

Erika Abraham - Propositional logic

m Axioms are inference rules with no antecedents, e.g.,

a—(b—a) (H1)

m We can turn an inference rule into an axiom if we have '—' in the
logic.

m So the difference between them is not sharp.

Erika Abraham - Propositional logic

A proof uses a given set of axioms and inference rules.
This is called the proof system.
Let # be a proof system.

I3 @ means: There is a proof of ¢ in system H whose premises are
included in

F4; is called the provability relation.

Erika Abraham - Propositional logic

m Let H be the proof system comprised of the rules Trans and M.P. that

we saw earlier:
a—b b—c

T
PR (Trans)
a—b a

5 (M.P.)

m Does the following relation hold?

a—b b—c,c—d d—e a Fy e

Erika Abraham - Propositional logic

Deductive proof: Example

a—b b—c (Trans) a—b a

P b (M.P.)

a—>b b—oc,c—d d—e a by e

1. a— b premise
2. b—c premise
3. a—c¢ 1,2 Trans
4, c—d premise
5. d — e premise
6. c—e 4,5 Trans
7. a—e 3,06, Trans
8. a premise
9. e 7, 8, M.P.

Erika Abraham - Propositional logic

Proof graph (DAG)

a—b b—c c—d d—e

\\Qran§// \\Qran§//

a—cC c— e

\\\\\Xtransx/////

a—ée a

\I\/I.P/

Erika Abraham - Propositional logic

Correctness and Completeness

m I is a relation defined by syntactic transformations of the underlying
proof system.
m For a given proof system H,
m Correctness: Does | conclude “correct” conclusions from premises?
m Completeness: Can we conclude all true statements with H?
m Correct with respect to what?

m With respect to the semantic definition of the logic. In the case of
propositional logic truth tables give us this.

Erika Abraham - Propositional logic

Soundness and completeness

m Let H be a proof system

Soundness of H : if Fy ¢ then
Completeness of H: if = ¢ then

T
s I
€ 6

m How to prove soundness and completeness?

Erika Abraham - Propositional logic

Example: Hilbert axiom system (H)

m Let H be (M.P.) together with the following axiom schemes:

a—(b—a) (H1)

((a—=(b—c))—=((a— b)—(a—0))) (H2)

(H3)

(b — —a) = (a— b)

m H is sound and complete for propositional logic.

Erika Abraham - Propositional logic

Soundness and completeness

m To prove soundness of H, prove the soundness of its axioms and
inference rules (easy with truth-tables).
For example:

a|bla—(b—a)
0101
0]1 |1
11011
1111

m Completeness: harder, but possible.

Erika Abraham - Propositional logic

The resolution inference system

m The resolution inference rule for CNF:

(IVhVvhv. ..V (=IvVEv.VvI)

Resoluti
(/1\/...V/,,\//{\/m\//’/n) esolution

m Example:
(avb) (—aVe)

(bVec)

m We first see some example proofs, before proving soundness and
completeness.

Erika Abraham - Propositional logic

Proof by resolution

mletp=(arVaz)A(-a1VaxVas)A(—arVag)A(—arV-as)
m We'll try to prove ¢ — (a3)

(—\81 V 34) (—\31 V —|a4)
N ~

(31 V 33) (—|31)

as

Erika Abraham - Propositional logic

Resolution

m Resolution is a sound and complete inference system for CNF.

m If the input formula is unsatisfiable, there exists a proof of the empty
clause.

Erika Abraham - Propositional logic

Let o = (a1 V a3) A (—a1 V az) A (—a1 V as) A (—ar V —ag) A (—as) .

(—\al V a4) (‘!21 V —|a4)

N e
(—a1) (a1 Vv a3)

>~
\/

Erika Abraham - Propositional logic

Soundness and completeness of resolution

m Soundness is straightforward. Just prove by truth table that

= ((p1 Va) A(p2V=a)) = (¢1V p2).

m Completeness is a bit more involved.
Basic idea: Use resolution for variable elimination .
(aVer)A...A(aVen)A
(maVYr) A (maV ym)A
R
~
(991 V ’l/)l) VANAN (991 V wm)/\

(on VUL) Ao i(@n V Um)A
R
where ; (i=1,...,n),¢; (j =1,...,m), and R contains neither a
nor —a.

Erika Abraham - Propositional logic

	Propositional logic

