Propositional logic on examples
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Satisfiability with semantical algorithm

Evallap) = alp)

Eval(a, —A) = —Eval(a, A)

Eval(a, AV B) = Eval(a,A)V Eval(a, B)

Eval(o, ANB) = Eval(e, A) A Eval(a, B)
Eval(a,A— B) = Eval(a,-A) V Eval(e, B)
Eval(o,A+ B) = Eval(o, A— B) A Eval( ,A<+ B)
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¢p:=(anb)V(-cA(dVe))

CNF(¢) =
(—\31 Vay V 83) A (31 V —\32) A (31 vV —|a3)
(maz V a) A (maxVb) A (a2V-aVv-b)
(a3 V —c) A (mazVas) A (azVcV-as)
(mragsvdve) A (aaV-d) A (asV-—e)

al

> > > >



Resolution

(Ll ) (L)
Choood 1)

Examples:

(avb) (—aVe)
(bVc)
(avb) (—aVvb)
(b)
(avb) (—av-b)
(true)
(a) (=2

)

>

>

>



Resolution: completeness

(aVP)N...AN(@aVP)A(maVQ)A...(maV Qm)AR
&
(Pl\/Ql)/\.../\(Pl\/Qm)/\...(Pn\/Ql)/\...(Pn\/Qm)/\R

Similar: Quantifier elimination

¢ < ¢[true/a] V ¢[false/a]



