Satisfiability Checking

SAT-Solving

Prof. Dr. Erika Abraham

Theory of Hybrid Systems
Informatik 2

WS 11/12

Prof. Dr. Erika Abraham - Satisfiability Checking

Resolution

(mxV -y AN(@VyY)A(—zVyV-2)A(yVz)A(-yV-z)
—_——— e —————— e e —

C1 Cc2 c3 C4 C5

Prof. Dr. Erika Abraham - Satisfiability Checking

Resolution: Variable order

(mxV -y AN(@VyY)A(—zVyV-2)A(yVz)A(-yV-z)
—_——— e —————— e e —

C1 Cc2 c3 C4 C5

Prof. Dr. Erika Abraham - Satisfiability Checking

Enumeration

(mx VYA (@VyYA(zVyV-2)A(yVz)A(-yV-z)
—_——— —— —— "~ ———

C1 Cc2 c3 C4 C5

L[[[lerfcafeseca]es]

Prof. Dr. Erika Abraham - Satisfiability Checking

Enumeration: Order of assignments

(mx VYA (@VyY)A(—zVyV-2)A(yVz)A(-yV-z)
—_———— —— —— "~ ———

c1 Cc2 Cc3 Cq C5
[elylzllafelealale] [[][alelalals]
T[1]1] 0

1[1]0] 0

1[0[1]1][1]0

1[0]0] 1 [1]1]0

01 111|110

o(Tjo| 111 11

0/0]1

0]0]0

Dr. Erika Abraham - Satisfiability Checking

Enumeration: Sign of assignments

(mx VYA (@VyY)A(—zVyV-2)A(yVz)A(-yV-z)
—_———— —— —— "~ ———

c1 Cc2 Cc3 Cq C5
[elylzllafelealale] [[][alelalals]
T[1]1] 0

1[1]0] 0

1[0[1]1][1]0

1[0]0] 1 [1]1]0

01 111|110

o(Tjo| 111 11

0/0]1

0]0]0

Dr. Erika Abraham - Satisfiability Checking

Enumeration: Propagation

(mx VYA (@VyYA(zVyV-2)A(yVz)A(-yV-z)
—_——— —— —— "~ ———

c1 c2 c3 C4 C5
(zlylzfafalalale]

11110

1110} 0

1101 1}]1]0

110(0) 1]1]1

Oj1 11|11 0
oj(1rj0p1rj1y1,1]1

0101

0100

Prof. Dr. Erika Abraham - Satisfiability Checking

Enumeration: Propagation

(mxV -y AN(@VyY)A(—zVyV-2)A(yVz)A(-yV-z)
—_——— e —————— e e —
c1 c2 c3 C4 C5

r<y<zsign: 1

Prof. Dr. Erika Abraham - Satisfiability Checking

Enumeration + resolution

(mxV -y AN(@VyY)A(—zVyV-2)A(yVz)A(-yV-z)
—_——— e —————— e e —
c1 c2 c3 C4 C5

r<y<zsign: 1

Prof. Dr. Erika Abraham - Satisfiability Checking

A basic SAT algorithm

Choose the next variable
and value.

Return false if all variables
are assigned.

while (true)
{
if (Idecide()) return SAT;
while (IBCP())
if (Igesolve conflict()) return UNSAT;

Boolean Constraint Prop- Conflict resolution and
agation. Return false if backtracking. Return false
reached a conflict. if impossible.

Prof. Dr. Erika Abraham - Satisfiability Checking

SAT-solving: Components

m Decision
m Boolean Constraint Propagation (BCP)

m Conflict resolution and backtracking

Prof. Dr. Erika Abraham - Satisfiability Checking

SAT-solving: Components

m Decision
m Boolean Constraint Propagation (BCP)

m Conflict resolution and backtracking

Prof. Dr. Erika Abraham - Satisfiability Checking

Decision heuristics

DLIS (Dynamic Largest Individual Sum) — choose the assignment that
increases the most the number of satisfied clauses

m For a given variable z:

m C,, — # unresolved clauses in which = appears positively
m C,, - # unresolved clauses in which = appears negatively
m Let « be the literal for which C;,, is maximal

m Let y be the literal for which Cy,, is maximal

m If Cypp > Cyy, choose z and assign it TRUE

m Otherwise choose y and assign it FALSE

m Requires O(#literals) queries for each decision.

Prof. Dr. Erika Abraham - Satisfiability Checking

Decision heuristics

Jersolow-Wang method

Compute for every clause ¢ and every literal [:

JO): > 27

l€c,ced

m Choose a literal [that maximizes J(I).

m This gives an exponentially higher weight to literals in shorter clauses

Prof. Dr. Erika Abraham - Satisfiability Checking

ocision heuristics

m We will see other (more advanced) decision heuristics soon.

m These heuristics are integrated with learning of conflict clauses.

Prof. Dr. Erika Abraham - Satisfiability Checking

SAT-solving: Components

m Decision
m Boolean Constraint Propagation (BCP)

m Conflict resolution and backtracking

Prof. Dr. Erika Abraham - Satisfiability Checking

Status of clause

m A clause can be

satisfied: at least one literal is satisfied
unsatisfied: all literals are assigned but none are statisfied
unit: all but one literals are assigned but none are satisfied

unresolved: all other cases

m Example: ¢ = (21 V2V x3)

1 | 2 | I3 C
110 satisfied
0| 0| O | unsatisfied
010 unit
0 unresolved

BCP: Unit clauses are used to imply consequences of decisions.

Prof. Dr. Erika Abraham - Satisfiability Checking

Implication graph

m Organize the search in the form of an implication graph

m Each node corresponds to a variable assignment
m Decision Level (DL) is the depth of the node in the decision tree.

m Notation: x = v@d
x is assigned to v € {0,1} at the decision level d

Prof. Dr. Erika Abraham - Satisfiability Checking

Formalisation: Implication graph

Definition

An implication graph is a labeled directed acyclic graph G(V, E), where

m V represents the literals of the current partial assignment.

Each node is labeled with the literal that it represents and the decision
level at which it entered the partial assignment.

m E with E = {(v;,v;)|vs,v; € V,v; # vj, v; € Antecedent(v;)}
denotes the set of directed edges where each edge (v;, v;) is labeled
with Antecedent(v;).

m (G can also contain a single conflict node labeled with x and incoming

edges {(v, k)|—v € ¢} labeled with ¢ for some conflicting clause c.

Prof. Dr. Erika Abraham - Satisfiability Checking

Implication graph: Example

Current assignment: {x7 = 0Q1, zg = 0Q2, x9 = 0Q3}
New decision: {z; = 1@4}

c1 = (“271 V 1172)
Cco = (—|x1 Vx3V x7) rg = 0@2
c3 = (‘!1‘2 V —x3 V 1‘4)
¢y = (—xz4 Vs Vas)
cs = (mz4 V26 V T9)
Cg = (—|$5 V —\wﬁ)

xr = 1@4

Ty = 0@l Tg = 0@3

Prof. Dr. Erika Abraham - Satisfiability Checking

Watches

m For BCP, it would be a large effort to check for each propagation the
value of each literal in each clause.

m One could keep for each literal a list of clauses in which it occurs.

m It is even enough to watch two literals in each clause such that either
one of them is true or both are unassigned.
If a literal [gets true, we check each clause in which —[is a watch
literal (which is now false).

m If the other watch is true, the clause is satisfied.

Else, if we find a new watch position, we are done.

Else, if the other watch is unassigned, the clause is unit.

Else, if the other watch is false, the clause is conflicting.

Prof. Dr. Erika Abraham - Satisfiability Checking

SAT-solving: Components

m Decision
m Boolean Constraint Propagation (BCP)

m Conflict resolution and backtracking

Prof. Dr. Erika Abraham - Satisfiability Checking

Non-chronological backtracking

Current truth assignment: {z7; = 0Q1, zg = 0@Q2, zg = 0@Q3}
Current decision assignment: {z; = 1Q4}

c] = (‘!CCl V wg)
Ccy = (—|£U1 V x3 V 1'7) rg = 0Q2
c3 = (mzg V —z3 V x4)
cyg = (mxg VasV :L'g)
¢5 = (g Vg V Tg)
Cg = (—|CC5 V _‘336)

xr1 = 1@4

r7 = 0Q@1 g = 0Q3

We learn the conflict clause ¢7 : (mz1 V 27 V 28 V x9)

Prof. Dr. Erika Abraham - Satisfiability Checking

Non-chronological backtracking

What to do now?
m Undo decision level 4.
Propagate in the new clause c; at decision level 3.

m It leads to a new assignment at decision level 3.

Propagate the newly assigned literals.

So the rule is:
m Backtrack to the largest decision level in the learned clause,
m propagate in the learned clause, and

m propagate all new assignments.

Prof. Dr. Erika Abraham - Satisfiability Checking

m Let L be a set of literals labeling nodes that form a cut in the
implication graph, seperating the conflict node from the roots.

m Vel is called a conflict clause.

1-(378 V oz Vg Vag)
2.(xg V ~wy V)

3.(xg V mxe V a3 V 29)

x7 = 0Q@1 zg = 0@3 \\

Prof. Dr. Erika Abraham - Satisfiability Che.

Conflict clauses

m How many clauses should we add?
m If not all, then which ones?
m Shorter ones?

m Check their influence on the backtracking level?
m The most "influential"?

Prof. Dr. Erika Abraham - Satisfiability Checking

Conflict clauses

m An asserting clause is a conflict clause with a single literal from the
current decision level.

Backtracking (to the right level) makes it a unit clause.

m Asserting clauses are those that force an immediate change in the
search path.

m Modern solvers only consider asserting clauses.

Prof. Dr. Erika Abraham - Satisfiability Checking

Unique Implication Points (UTP’s)

m A Unique Implication Point (UIP) is an internal node in the
implication graph such that all paths from the last decision to the
conflict node go through it.

m The first UIP is the UIP closest to the conflict.

Prof. Dr. Erika Abraham - Satisfiability Checking

Conflict-driven backtracking

m So the rule is: backtrack to the second highest decision level d/, but
do not erase it.

m This way the literal with the currently highest decision level will be
implied at decision level dl.
m Question: What if the conflict clause has a single literal?

m For example, from (z V —y) A (z V y) and decision 2z = 0, we learn the
conflict clause (z).

Prof. Dr. Erika Abraham - Satisfiability Checking

Prog

ress of a SAT solver

Deci

Level

work invested in refuting z =1

Refutation of z =1

ision

Time @ Decision

@ Conflict

Prof. Dr

. Erika Abraha Satisfiability Checki

Conflict clauses and resolution

m The binary resolution is a sound (and complete) inference rule:

(BV(Ll\/...\/a,L) (—\ﬁ\/bl\/...\/bm)
((11 V.Va,Vb V..V bm)

(Binary Resolution)

m Example:

(1‘1 V 5172) (_‘.’L'l VxsV $4)
(:1,‘2 VaxsV :E4)

What is the relation of resolution and conflict clauses?

Prof. Dr. Erika Abraham - Satisfiability Checking

Conflict clauses and resolution

m Consider the following example:

T = 0@2
*S

c] = (“%4 VoV x5)

c2 = (mx4 V@10 V T6)

c3 = (‘@5 V —xg V ﬁI7) T4
(

¢y = (mxg V 1}7) a7 = 0@5
. 2
Cq
c2

T10 = 0Q3

m Conflict clause: ¢35 : (z2 V —z4 V 210)

Prof. Dr. Erika Abraham - Satisfiability Checking

Conflict clauses and resolution

m Conflict clause: ¢5 : (z2 V —z4 V 210)

Ty = 0@2

.\

C1

(“$4 VoV .135)

= (mxq V10 V T6)
c3 = (mw5 V -6 V -wy)
(

cy = (mxe V :v7) x7 = 0Q@5

4

T = 0@3

m Assigment order: x4, x5, T, T7
mT1l= ReS(C4,Cg,l‘7) = (—\335 V _‘376)
m T2 = Res(T1,c,26) = (mxg V25 V X10)
m T3 = ReS(T2,01,$5) = (3’]2 V —xy V 51310)

Prof. Dr. Erika Abraham - Satisfiability Che.

Finding the conflict clause

procedure analyze conflict() {

if (current decision level = 0) return false;
cl := current conflicting clause;
while (not stop criterion met(cl)) do {

lit = last_assigned literal(cl);

var = variable of literal(lit);

ante := antecedent(var);

cl := resolve(cl, ante, var);

¥

add clause to database(cl);
return true;

name cl lit wvar ante
C4 (—WG V CE7) x7 x7 c3
(—|$5 V —\Iﬁ) Te Tg Co
(—|$4 V x19V —‘I5) x5 s 1
(—|I4 Vo V 3310)

Applied to our example:

Cs5

Prof. Dr. Erika Abraham - Satisfiability Checking

Unsatisfiable core

An unsatisfiable core of an unsatisfiable CNF formula is an unsatisfiable
subset of the original set of clauses.

m The set of all original clauses is an unsatisfiable core.

m The set of those original clauses that were used for resolution in
conflict analysis during SAT-solving (inclusively the last conflict at
decision level 0) gives us an unsatisfiable core which is in general much
smaller.

m However, this unsatifiable core is still not always minimal (i.e., we can
remove clauses from it still having an unsatisfiable core).

Erika Abraham - Satisfiability Checking

The resolution graph

A resolution graph gives us more information to get a minimal unsatisfiable
core.

© Original Clause
@ Learned Clause

Prof. Dr. Erika Abraham - Satisfiability Che.

Resolution graph: Examp

Empty Clause E

learning Inferred Clauses

Original (lauses

Unsatisfiable Core

Prof. Dr. Erika Abraham - Satisfiability Checking

Termination

Theorem

It is never the case that the solver enters decision level dI again with the
same partial assignment.

Proof.

Define a partial order on partial assignments: « < 3 iff either « is an
extension of 8 or o has more assignments at the smallest decision level at
that o and 3 do not agree.

BCP decreases the order, conflict-driven backtracking also. Since the order
always decreases during the search, the theorem holds. O

Prof. Dr. Erika Abraham - Satisfiability Checking

SAT-solving: Components

Back to decision heuristics...
m Decision
m Boolean Constraint Propagation (BCP)

m Conflict resolution and backtracking

Prof. Dr. Erika Abraham - Satisfiability Checking

Decision heuristics - VSIDS

m VSIDS(Variable State Independent Decaying Sum)
m Gives priority to variables involved in recent conflicts.

m “Involved” can have different definitions. We take those variables that
occur in clauses used for conflict resolution.

Each variable in each polarity has a counter initialized to 0.
We define an increment value (e.g., 1).
When a conflict occurs, we increase the counter of each variable, that

occurs in at least one clause used for conflict resolution, by the
increment value.

Afterwards we increase the increment value (e.g., by 1).

For decisions, the unassigned variable with the highest counter is
chosen.

Periodically, all the counters and the increment value are divided by a
constant.

Prof. Dr. Erika Abraham - Satisfiability Checking

Decision heuristics - VSIDS (cont’d)

m Chaff holds a list of unassigned variables sorted by the counter value.

m Updates are needed only when adding conflict causes.

m Thus - decision is made in constant time.

Prof. Dr. Erika Abraham - Satisfiability Checking

Decision heuristics

VSIDS is a 'quasi-static’ strategy:
m static because it doesn’t depend on current assignment

m dynamic because it gradually changes. Variables that appear in recent
conflicts have higher priority.

This strategy is a conflict-driven decision strategy.

"'...employing this strategy dramatically (i.e., an order of magnitude)
improved performance..."

Prof. Dr. Erika Abraham - Satisfiability Checking

The SAT competitions

900

MiniSat
800 - pMiniSat
Barcelogic
Fsat
MXC
700 preSAT
CMUSAT =
kw
= picosat -
€9 Eureka
ManySat* v
LocalMinisat <
500 - MiraXT
SATzilla
eSAT
L Spear
400 Tinisat
clasp
SAT4d

*

Runtime [s]

[L=]

80 100

i-th best instance

taken from http://baldur.iti.uka.de/sat-race-2008/analysis.html

Erika Abraham - Satisfiability Checki

