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Resolution

(¬x ∨ ¬y)︸ ︷︷ ︸
c1

∧ (x ∨ y)︸ ︷︷ ︸
c2

∧ (¬x ∨ y ∨ ¬z)︸ ︷︷ ︸
c3

∧ (y ∨ z)︸ ︷︷ ︸
c4

∧ (¬y ∨ ¬z)︸ ︷︷ ︸
c5
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Resolution: Variable order

(¬x ∨ ¬y)︸ ︷︷ ︸
c1

∧ (x ∨ y)︸ ︷︷ ︸
c2

∧ (¬x ∨ y ∨ ¬z)︸ ︷︷ ︸
c3

∧ (y ∨ z)︸ ︷︷ ︸
c4

∧ (¬y ∨ ¬z)︸ ︷︷ ︸
c5
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Enumeration

(¬x ∨ ¬y)︸ ︷︷ ︸
c1

∧ (x ∨ y)︸ ︷︷ ︸
c2

∧ (¬x ∨ y ∨ ¬z)︸ ︷︷ ︸
c3

∧ (y ∨ z)︸ ︷︷ ︸
c4

∧ (¬y ∨ ¬z)︸ ︷︷ ︸
c5

c1 c2 c3 c4 c5
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Enumeration: Order of assignments

(¬x ∨ ¬y)︸ ︷︷ ︸
c1

∧ (x ∨ y)︸ ︷︷ ︸
c2

∧ (¬x ∨ y ∨ ¬z)︸ ︷︷ ︸
c3

∧ (y ∨ z)︸ ︷︷ ︸
c4

∧ (¬y ∨ ¬z)︸ ︷︷ ︸
c5

x y z c1 c2 c3 c4 c5

1 1 1 0

1 1 0 0

1 0 1 1 1 0

1 0 0 1 1 1 0

0 1 1 1 1 1 1 0

0 1 0 1 1 1 1 1

0 0 1

0 0 0

c1 c2 c3 c4 c5
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Enumeration: Sign of assignments

(¬x ∨ ¬y)︸ ︷︷ ︸
c1

∧ (x ∨ y)︸ ︷︷ ︸
c2

∧ (¬x ∨ y ∨ ¬z)︸ ︷︷ ︸
c3

∧ (y ∨ z)︸ ︷︷ ︸
c4

∧ (¬y ∨ ¬z)︸ ︷︷ ︸
c5

x y z c1 c2 c3 c4 c5

1 1 1 0

1 1 0 0

1 0 1 1 1 0

1 0 0 1 1 1 0

0 1 1 1 1 1 1 0

0 1 0 1 1 1 1 1

0 0 1

0 0 0

c1 c2 c3 c4 c5
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Enumeration: Propagation

(¬x ∨ ¬y)︸ ︷︷ ︸
c1

∧ (x ∨ y)︸ ︷︷ ︸
c2

∧ (¬x ∨ y ∨ ¬z)︸ ︷︷ ︸
c3

∧ (y ∨ z)︸ ︷︷ ︸
c4

∧ (¬y ∨ ¬z)︸ ︷︷ ︸
c5

x y z c1 c2 c3 c4 c5

1 1 1 0
1 1 0 0
1 0 1 1 1 0
1 0 0 1 1 1 0
0 1 1 1 1 1 1 0
0 1 0 1 1 1 1 1
0 0 1
0 0 0
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Enumeration: Propagation

(¬x ∨ ¬y)︸ ︷︷ ︸
c1

∧ (x ∨ y)︸ ︷︷ ︸
c2

∧ (¬x ∨ y ∨ ¬z)︸ ︷︷ ︸
c3

∧ (y ∨ z)︸ ︷︷ ︸
c4

∧ (¬y ∨ ¬z)︸ ︷︷ ︸
c5

x < y < z, sign: 1
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Enumeration + resolution

(¬x ∨ ¬y)︸ ︷︷ ︸
c1

∧ (x ∨ y)︸ ︷︷ ︸
c2

∧ (¬x ∨ y ∨ ¬z)︸ ︷︷ ︸
c3

∧ (y ∨ z)︸ ︷︷ ︸
c4

∧ (¬y ∨ ¬z)︸ ︷︷ ︸
c5

x < y < z, sign: 1
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A basic SAT algorithm

while (true)
{

if (!decide()) return SAT;
while (!BCP())

if (!resolve_con�ict()) return UNSAT;
}

Choose the next variable
and value.
Return false if all variables
are assigned.

Boolean Constraint Prop-
agation. Return false if
reached a con�ict.

Con�ict resolution and
backtracking. Return false
if impossible.
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SAT-solving: Components

Decision

Boolean Constraint Propagation (BCP)

Con�ict resolution and backtracking
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SAT-solving: Components

Decision

Boolean Constraint Propagation (BCP)

Con�ict resolution and backtracking
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Decision heuristics

DLIS (Dynamic Largest Individual Sum) � choose the assignment that
increases the most the number of satis�ed clauses

For a given variable x:
Cxp � # unresolved clauses in which x appears positively
Cxn - # unresolved clauses in which x appears negatively
Let x be the literal for which Cxp is maximal
Let y be the literal for which Cyn is maximal
If Cxp > Cyn choose x and assign it TRUE
Otherwise choose y and assign it FALSE

Requires O(#literals) queries for each decision.
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Decision heuristics

Jersolow-Wang method

Compute for every clause c and every literal l:

J(l) :
∑

l∈c,c∈φ
2−|c|

Choose a literal l that maximizes J(l).

This gives an exponentially higher weight to literals in shorter clauses
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Decision heuristics

We will see other (more advanced) decision heuristics soon.

These heuristics are integrated with learning of con�ict clauses.
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SAT-solving: Components

Decision

Boolean Constraint Propagation (BCP)

Con�ict resolution and backtracking
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Status of clause

A clause can be
satis�ed: at least one literal is satis�ed
unsatis�ed: all literals are assigned but none are statis�ed
unit: all but one literals are assigned but none are satis�ed
unresolved: all other cases

Example: c = (x1 ∨ x2 ∨ x3)
x1 x2 x3 c

1 0 satis�ed
0 0 0 unsatis�ed
0 0 unit

0 unresolved

BCP: Unit clauses are used to imply consequences of decisions.
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Implication graph

Organize the search in the form of an implication graph

Each node corresponds to a variable assignment

Decision Level (DL) is the depth of the node in the decision tree.

Notation: x = v@d
x is assigned to v ∈ {0, 1} at the decision level d
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Formalisation: Implication graph

De�nition

An implication graph is a labeled directed acyclic graph G(V,E), where

V represents the literals of the current partial assignment.
Each node is labeled with the literal that it represents and the decision
level at which it entered the partial assignment.

E with E = {(vi, vj)|vi, vj ∈ V, vi 6= vj ,¬vi ∈ Antecedent(vj)}
denotes the set of directed edges where each edge (vi, vj) is labeled
with Antecedent(vj).

G can also contain a single con�ict node labeled with κ and incoming

edges {(v, κ)|¬v ∈ c} labeled with c for some con�icting clause c.
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Implication graph: Example

Current assignment: {x7 = 0@1, x8 = 0@2, x9 = 0@3}
New decision: {x1 = 1@4}

x8 = 0@2

x2 = 1@4 x5 = 1@4

x1 = 1@4 x4 = 1@4

x3 = 1@4 x6 = 1@4

x7 = 0@1 x9 = 0@3

κ

c4

c1 c6
c4c3

c2
c3

c2

c5

c5

c6

c1 = (¬x1 ∨ x2)
c2 = (¬x1 ∨ x3 ∨ x7)
c3 = (¬x2 ∨ ¬x3 ∨ x4)
c4 = (¬x4 ∨ x5 ∨ x8)
c5 = (¬x4 ∨ x6 ∨ x9)
c6 = (¬x5 ∨ ¬x6)
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Watches

For BCP, it would be a large e�ort to check for each propagation the
value of each literal in each clause.

One could keep for each literal a list of clauses in which it occurs.

It is even enough to watch two literals in each clause such that either
one of them is true or both are unassigned.
If a literal l gets true, we check each clause in which ¬l is a watch
literal (which is now false).

If the other watch is true, the clause is satis�ed.
Else, if we �nd a new watch position, we are done.
Else, if the other watch is unassigned, the clause is unit.
Else, if the other watch is false, the clause is con�icting.
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SAT-solving: Components

Decision

Boolean Constraint Propagation (BCP)

Con�ict resolution and backtracking
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Non-chronological backtracking

Current truth assignment: {x7 = 0@1, x8 = 0@2, x9 = 0@3}
Current decision assignment: {x1 = 1@4}

x8 = 0@2

x2 = 1@4 x5 = 1@4

x1 = 1@4 x4 = 1@4 κ

x3 = 1@4 x6 = 1@4

x7 = 0@1 x9 = 0@3

c4

c1 c6
c4c3

c2
c3

c2

c5

c5

c6

c1 = (¬x1 ∨ x2)
c2 = (¬x1 ∨ x3 ∨ x7)
c3 = (¬x2 ∨ ¬x3 ∨ x4)
c4 = (¬x4 ∨ x5 ∨ x8)
c5 = (¬x4 ∨ x6 ∨ x9)
c6 = (¬x5 ∨ ¬x6)

We learn the con�ict clause c7 : (¬x1 ∨ x7 ∨ x8 ∨ x9)
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Non-chronological backtracking

What to do now?

Undo decision level 4.

Propagate in the new clause c7 at decision level 3.

It leads to a new assignment at decision level 3.

Propagate the newly assigned literals.

So the rule is:

Backtrack to the largest decision level in the learned clause,

propagate in the learned clause, and

propagate all new assignments.
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More con�ict clauses

Let L be a set of literals labeling nodes that form a cut in the
implication graph, seperating the con�ict node from the roots.

∨l∈L¬l is called a con�ict clause.

x8 = 0@2

x2 = 1@4 x5 = 1@4

x1 = 1@4 x4 = 1@4 κ

x3 = 1@4 x6 = 1@4

x7 = 0@1 x9 = 0@3

conflict

c4

c1 c6
c4c3

c2
c3

c2

c5

c5

c6

1

2

3

1.(x8 ∨ ¬x1 ∨ x7 ∨ x9)

2.(x8 ∨ ¬x4 ∨ x9)

3.(x8 ∨ ¬x2 ∨ ¬x3 ∨ x9)

...

...
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Con�ict clauses

How many clauses should we add?
If not all, then which ones?

Shorter ones?
Check their in�uence on the backtracking level?
The most "in�uential"?
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Con�ict clauses

An asserting clause is a con�ict clause with a single literal from the
current decision level.

Backtracking (to the right level) makes it a unit clause.

Asserting clauses are those that force an immediate change in the
search path.

Modern solvers only consider asserting clauses.
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Unique Implication Points (UIP's)

A Unique Implication Point (UIP) is an internal node in the
implication graph such that all paths from the last decision to the
con�ict node go through it.

The �rst UIP is the UIP closest to the con�ict.

UIP UIP
κ

c4

c1 c6
c4c3

c2
c3

c2

c5

c5

c6
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Con�ict-driven backtracking

So the rule is: backtrack to the second highest decision level dl, but
do not erase it.

This way the literal with the currently highest decision level will be
implied at decision level dl.
Question: What if the con�ict clause has a single literal?

For example, from (x ∨ ¬y) ∧ (x ∨ y) and decision x = 0, we learn the
con�ict clause (x).
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Progress of a SAT solver

work invested in refuting x = 1

Decision
Level

Time

Refutation of x = 1

Decision

Con�ict

x = 1

C1

C2

C3

C4

C5

C
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Con�ict clauses and resolution

The binary resolution is a sound (and complete) inference rule:

(β ∨ a1 ∨ ... ∨ an) (¬β ∨ b1 ∨ ... ∨ bm)
(a1 ∨ ... ∨ an ∨ b1 ∨ ... ∨ bm)

(Binary Resolution)

Example:

(x1 ∨ x2) (¬x1 ∨ x3 ∨ x4)
(x2 ∨ x3 ∨ x4)

What is the relation of resolution and con�ict clauses?
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Con�ict clauses and resolution

Consider the following example:

x2 = 0@2

x5 = 1@5

x4 = 1@5
x7 = 0@5

x6 = 1@5

x10 = 0@3 κ

c1

c3
c1

c2
c4

c3

c4
c2

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)
...

...

Con�ict clause: c5 : (x2 ∨ ¬x4 ∨ x10)
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Con�ict clauses and resolution

Con�ict clause: c5 : (x2 ∨ ¬x4 ∨ x10)

x2 = 0@2

x5 = 1@5

x4 = 1@5
x7 = 0@5

x6 = 1@5

x10 = 0@3 κ

c1

c3
c1

c2
c4

c3

c4
c2

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)
...

...

Assigment order: x4, x5, x6, x7
T1 = Res(c4, c3, x7) = (¬x5 ∨ ¬x6)
T2 = Res(T1,c2, x6) = (¬x4 ∨ ¬x5 ∨ x10)
T3 = Res(T2,c1, x5) = (x2 ∨ ¬x4 ∨ x10)
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Finding the con�ict clause

p rocedu r e a n a l y z e_ c o n f l i c t ( ) {
i f ( c u r r e n t_d e c i s i o n_ l e v e l = 0) return f a l s e ;
c l := c u r r e n t_ c o n f l i c t i n g_ c l a u s e ;
while ( not s top_cr i t e r i on_met ( c l ) ) do {

l i t := l a s t_ a s s i g n e d_ l i t e r a l ( c l ) ;
v a r := v a r i a b l e_ o f_ l i t e r a l ( l i t ) ;
ante := an t e c eden t ( va r ) ;
c l := r e s o l v e ( c l , ante , va r ) ;

}
add_clause_to_database ( c l ) ;
return true ;

}

Applied to our example:

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3
(¬x5 ∨ ¬x6) ¬x6 x6 c2
(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)
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Unsatis�able core

De�nition

An unsatis�able core of an unsatis�able CNF formula is an unsatis�able
subset of the original set of clauses.

The set of all original clauses is an unsatis�able core.

The set of those original clauses that were used for resolution in
con�ict analysis during SAT-solving (inclusively the last con�ict at
decision level 0) gives us an unsatis�able core which is in general much
smaller.

However, this unsati�able core is still not always minimal (i.e., we can
remove clauses from it still having an unsatis�able core).
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The resolution graph

A resolution graph gives us more information to get a minimal unsatis�able
core.

Empty Clause
Involved Clauses

Original Clause

Learned Clause
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Resolution graph: Example

Empty Clause

Inferred Clauseslearning

Original Clauses

Unsatis�able Core

L:

()

(x1)

(x1 x6)

(x1 x3 x6) (¬x3) (x4)

(x1 x3 ¬x2) (x2 x6) (¬x3 ¬x4) (¬x3 x4) (¬x6) (¬x1) (x3)
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Termination

Theorem

It is never the case that the solver enters decision level dl again with the

same partial assignment.

Proof.

De�ne a partial order on partial assignments: α < β i� either α is an
extension of β or α has more assignments at the smallest decision level at
that α and β do not agree.
BCP decreases the order, con�ict-driven backtracking also. Since the order
always decreases during the search, the theorem holds.
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SAT-solving: Components

Back to decision heuristics...

Decision

Boolean Constraint Propagation (BCP)

Con�ict resolution and backtracking
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Decision heuristics - VSIDS

VSIDS(Variable State Independent Decaying Sum)

Gives priority to variables involved in recent con�icts.

�Involved� can have di�erent de�nitions. We take those variables that
occur in clauses used for con�ict resolution.

1 Each variable in each polarity has a counter initialized to 0.

2 We de�ne an increment value (e.g., 1).

3 When a con�ict occurs, we increase the counter of each variable, that
occurs in at least one clause used for con�ict resolution, by the
increment value.
Afterwards we increase the increment value (e.g., by 1).

4 For decisions, the unassigned variable with the highest counter is
chosen.

5 Periodically, all the counters and the increment value are divided by a
constant.
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Decision heuristics - VSIDS (cont'd)

Cha� holds a list of unassigned variables sorted by the counter value.

Updates are needed only when adding con�ict causes.

Thus - decision is made in constant time.
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Decision heuristics

VSIDS is a 'quasi-static' strategy:

static because it doesn't depend on current assignment

dynamic because it gradually changes. Variables that appear in recent
con�icts have higher priority.

This strategy is a con�ict-driven decision strategy.

"...employing this strategy dramatically (i.e., an order of magnitude)
improved performance..."
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The SAT competitions

taken from http://baldur.iti.uka.de/sat-race-2008/analysis.html
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