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Branch and bound

We use Simplex to find a real solution. If the solution is not integer-valued,
we generate a new constraint such that the new (reduced) feasible region
has two important properties:

m |t does not contain the found non-integer solution any more.

m |t still contains all feasible solutions to the original ILP problem.
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Branch and bound

We looked at branching by dividing the value domain of an integer
variable into two halfs (branching).

We could also cut with other, better contraints.
E.g., for x € Z, from 2x < 11 we can conclude x <5.

But how to generate such cutting planes?

We look at one method for generating cutting planes: Gomory cuts.
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Cutting planes, geometrically.

e

satisfying assignments
-~

The dotted line is a cutting plane.
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Example: Gomory cuts

Suppose our input integer linear problem has
m integer variables x1, xp, x3 and
m lower bounds 1 < x; and 0.5 < x».
After solving the relaxed problem:

m The final tableau of the general simplex algorithm includes the
constraint
x3 = 0.5x1 + 2.5x»

m and the solution o is
{X3 — 1.75,X1 — 1,X2 — 0.5}

with 1.75=0.5-1+4+2.5-0.5.
m Subtracting these values from the variables gives us

x3 — 1.75 = 0.5(X1 — 1) + 2.5(X2 — 05) .
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Example: Gomory cuts

x3 —1.75 = 0.5(X1 — 1) + 2.5(X2 — 0.5)

m We rewrite this equation so the left-hand side is an integer:
x3—1=0.75+ 050 — 1) +2.5(xp — 0.5) .

The two right-most terms must be positive because 1 and 0.5 are the

lower bounds of x; and x», respectively.

m Since the right-hand side must add up to an integer, this implies that
0.75+0.5(x1 —1)+25(xx —05) > 1.

This constraint is unsatisfied by - because a(x;) = 1 and a(x2) = 0.5.

Hence, this constraint removes the current solution.

m On the other hand, it is implied by the integer system of constraints,
and hence cannot remove any integer solution.
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m Generalizing this example:

m Upper bounds.

m Both positive and negative coefficients.
m The description that follows is based on

m Integrating Simplex with DPLL(T)
Technical report SRI-CSL-06-01
Dutertre and de Moura (2006).
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Gomory cuts

There are two preliminary conditions for deriving a Gomory cut from a
constraint:

m The assignment to at least one basic or original variable is fractional.

m The nonbasic variables are either additional variables or their
coefficients are integers.

m One more constraint which we discuss later.
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Let o be the assignment returned by Simplex and let A/; and N, denote
the additional resp. original nonbasic variables.
m Consider the j-th constraint

xi=| > apg |+ D aix

XjENa XjGNa
with x; € B, «(x;) not an integer and aj; integer for all j € N,. Then

Xj — E ajjxj = E ajjX;

XjeNa XjENa

T

Note: T is integer-valued.
m Since « is a solution,

oT) =Y ajalx).

XjENa

Assumption: «(7T) is not an integer.
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m We have
T = Z ajjX;
X[ €N,
oT) = Y ajalx).
XjENa
m Then also
T—a(T) = > aj(x—alx))
JENa
—la(T)] = (T) - La(T) + > a5(x — alx))
fT JENa

m It follows that

fr+ > ailx

JEN,
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m Partition the nonbasic additional variables to

m those that are currently assigned their lower bound, and
m those that are currently assigned their upper bound:

L = {jlxeNanaly) =1}
U = {j|lxeNana(x))=uj}.

m We further split L and U as follows:

LY = {jljelna;>0}
L= = {jljelna;<0}
Ut = {jljeUna;>0}
U- = {jljeUna; <0}
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m Remember:
fr+ Y ai(x — a(x))
JEN,
should be integer-valued.
m Using our definitions from the previous slide, this equals

fr+) a5 — 1) — Y ag(u; —x)

JeL Jjeu
m and further equals

fro+ D ailg—h)+ > a0 — 1)

JeLt JjeL—
= D Ay —x) = Y a5y — x)
jeu- jeut
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Case 10 > ey ajj(xi — ) — Dojep aij(uj — %) >0

m Then
fr+ Y ai(g =) =Y ag(u; — x)
JeL jeu
positive and integer-valued, thus
fr+ Y a0 —h) =Y ay(u;—x) > 1
JjeL jeu
m Gathering the positive components,
D alg =) = Y ayluj—x) >1—fr,
jel+ jeu-
or, equivalently,

Zlif( - ) - Z%(“j‘xj)zl-

JeLt jeu-
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Case 2: 3 iy ajj(xj — i) — Xjey @ij(uj — x) <0
m Then

fr+ a5 — 1) =Y aj(uj =) <0

JeL jeu

m Gathering the negative components,

Do als =) = D ai(uj—x) < ~fr.

jeL- jeut

m Dividing by —fT gives us

—Za” Z%(Uj_xj)zl-

jeL— jeut
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m Case 1: ) e aii( — ) = Xjev aij(uj — %) > 0

ajj o dij . .
2T 2 gl =t
JjeLt JeEU~
m Case 2: EJ-E,_ aji(xj — ;) — Ejeu ajj(uj — %) <0

_Zau Zz( —x)>1.

JjeL— jeut

m Therefore these two equations imply (note that all sums-blocks are
non-negative)

PO = R D SE=CRY)

jeLt jeL—
aj; aji
+y Flu—xg) = > e (u—x) =1.
s 21 f
jeut jeu—
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PR ED S CRY)

jeLt T JeL—
aji ajj
+Z U _Z 17UfT(UJ'7XJ') >1.
JGU+ jeu—

m Since each of the elements on the left-hand side is equal to zero under
the current assignment «, this assignment « is ruled out by the new
constraint.

m In other words: the solution to the linear problem augmented with the
constraint is guaranteed to be different from the previous one.
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