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The Omega Test

Goal: Decide satis�ability for conjunctions of linear constraints of the
form ∑

0≤i≤n
aixi ≥ 0

over integers.

Original application:
Program optimizations done by a compiler.

Extension of Fourier-Motzkin variable elimination:

Pick one variable and eliminate it

Continue until all variables but one are eliminated
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Preprocessing (1)

Normalize coe�cients: divide by the GCD

8x + 6y ≤ 0 −→ 4x + 3y ≤ 0
4y ≥ 1 −→ y ≥ d1/4e

'Tightening'

3x + 3y = 2 −→ x + y = 2/3 −→ UNSAT
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Preprocessing (2)

Eliminate equalities

Assume an equation
∑

0≤i≤n aixi = 0.

If ak = 1 for some k then use this equation to eliminate xk by the
substitution [−

∑
0≤i≤n,i 6=k

aixi/xk ].

Otherwise, pick variable xk and make ak positive

De�ne a m̂od b := a − bba/b + 1/2c
Let m = ak + 1

Note that ak m̂odm = −1
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Preprocessing (2)

Eliminate equalities

Create a new variable σ and add:∑
i

(ai m̂odm)xi = mσ + b m̂odm

Solve for xk :

xk = −mσ − b m̂odm +
∑
i 6=k

(ai m̂odm)xi

Q: What is the point of adding a constraint to eliminate one?
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Overview of the Omega Test

Check
REAL shadow

?

-No
solution?

UNSAT

Check
DARK shadow

?
Possible solution

-Integer
solution? SAT

Check
GREY shadow

?
No integer solution

-Integer
solution? SAT

?
No integer solution

UNSAT
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The real shadow

Check
REAL shadow

Assume we eliminate variable z

For each pair of upper/lower bound:

β ≤ bz cz ≤ γ (b, c > 0)
cβ ≤ cbz cbz ≤ bγ

Constraint for real shadow:

cβ ≤ bγ
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The real shadow: Example I

Check
REAL shadow
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4y ≤ 2x
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Eliminate x :

4y ≤ 2x 4y ≤ −2x + 6
@
@R

�
�	

4y ≤ 6− 4y
8y ≤ 6

Real Shadow:
8y ≤ 6
4y ≥ 1

y ≤ 0.75
y ≥ 0.25

No integer solution

=⇒ Original problem
has no solution
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The real shadow: Example II

Check
REAL shadow
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4y ≤ 2x

4y ≤ −2x + 6
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Let's eliminate y instead:

1 ≤ 4y 4y ≤ 2x
H
Hj

�
��

1 ≤ 2x

1 ≤ 4y 4y ≤ −2x + 6
H
Hj

�
��

1 ≤ −2x + 6

Real Shadow:
1 ≤ 2x
1 ≤ −2x + 6

x ≤ 0.5
x ≥ 2.5

Integer solution!
But original problem
has no integer solution!
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From Real to Dark Shadow

Check
REAL shadow

?

-No
solution?

UNSAT

Check
DARK shadow

?
Possible solution

An integer solution for the REAL shadow does not guarantee that
there is an integer solution for the original problem

Thus, we check the DARK shadow next
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Idea of the dark shadow

Check
DARK shadow

Idea of the DARK shadow:

β ≤ bz | : b cz ≤ γ | : c
β
b
≤ z z ≤ γ

c
z ∈ N

How to compute the dark shadow?

Try to prove that there is an integer z between β
b
and γ

c
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Dark shadow: Proof by contradiction

Check
DARK shadow

Assume there is no integer z between β
b
and γ

c
. Then:

Let i := bβ
b
c i ∈ Z

-
i β

b

γ
c

i + 1︸ ︷︷ ︸
≥ 1

b

︸ ︷︷ ︸
≥ 1

c
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Dark shadow: Proof by contradiction

-
i β

b

γ
c

i + 1︸ ︷︷ ︸
≥ 1

b

︸ ︷︷ ︸
≥ 1

c

β
b
− i ≥ 1

b

i + 1− γ
c
≥ 1

c

β
b
+ 1− γ

c
≥ 1

b
+ 1

c
| · c · b

cβ + cb − bγ ≥ c + b | − cb

cβ − bγ ≥ −cb + c + b | · (−1)

bγ − cβ ≤ cb − c − b
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Dark shadow: Proof by contradiction

From previous slide:

bγ − cβ ≤ cb − c − b

⇐⇒ ¬(bγ − cβ > cb − c − b)
⇐⇒ ¬(bγ − cβ ≥ cb − c − b + 1)
⇐⇒ ¬(bγ − cβ ≥ (c − 1)(b − 1))︸ ︷︷ ︸

*

Thus, if * holds, we know that there must be an integer solution.

If c = 1 or b = 1, then this is the same as the real shadow.
This case is called an exact projection.
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Example for the dark shadow

Check
DARK shadow
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2y ≤ 2x + 1
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Eliminate y with the dark shadow:

2y ≤ 2x + 1 4y ≥ 3
HHj ���

4(2x + 1)− 2 · 3 ≥ (2− 1)(4− 1)

4y ≥ 3 2y ≤ −2x + 5
HHj ���

4(−2x + 5)− 2 · 3 ≥ (2− 1)(4− 1)

Dark Shadow:

x ≥ 5/8
x ≤ 11/8

=⇒ Integer solution!
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From Dark to Grey Shadow

Check
REAL shadow

?

-No
solution?

UNSAT

Check
DARK shadow

?
Possible solution

-Integer
solution? SAT

Check
GREY shadow

?
No integer solution

No integer solution in the DARK shadow does not guarantee that
there is no integer solution for the original problem

Thus, we check the GREY shadow next
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The grey shadow

Check
GREY shadow

Idea of the Grey shadow

If the real shadow R has integer solutions,
but the dark shadow D does not, search R \ D.

In R: bγ ≥ cbz ≥ cβ
Not in D: cb − c − b ≥ bγ − cβ

⇐⇒ cb − c − b + cβ ≥ bγ
⇒ cb − c − b + cβ ≥ cbz ≥ cβ | : c

(cb − c − b)/c + β ≥ bz ≥ β
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The grey shadow

Check
GREY shadow

Try all values of z such that

(cb − c − b)/c + β ≥ bz ≥ β

Optimization: �nd the largest coe�cient c in any upper bound and try
the following for each lower bound bz ≥ β:

bz = β + i for (cb − c − b)/c ≥ i ≥ 0

As before, combine this with the original problem, and solve
recursively.
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Example of the grey shadow

Check
GREY shadow

0.5 1 1.5 2 2.5 3
x

!0.25

0.25
0.5
0.75
1

1.25
1.5
1.75

y

4 y " 2 # 3 x 4 y " 11 ! 3 x

4 y $ 3

0.5 1 1.5 2 2.5 3
x

!0.25

0.25
0.5
0.75
1

1.25
1.5
1.75

y

0.5 1 1.5 2 2.5 3
x

!0.25

0.25
0.5
0.75
1

1.25
1.5
1.75

y

4 y " 2 # 3 x 4 y " 11 ! 3 x

4 y $ 3

0.5 1 1.5 2 2.5 3
x

!0.25

0.25
0.5
0.75
1

1.25
1.5
1.75

y

0.5 1 1.5 2 2.5 3
x

!0.25

0.25
0.5
0.75
1

1.25
1.5
1.75

y

4 y " 2 # 3 x 4 y " 11 ! 3 x

4 y $ 3

0.5 1 1.5 2 2.5 3
x

!0.25

0.25
0.5
0.75
1

1.25
1.5
1.75

y

0.5 1 1.5 2 2.5 3
x

!0.25

0.25
0.5
0.75
1

1.25
1.5
1.75

y

4 y " 2 # 3 x 4 y " 11 ! 3 x

4 y $ 3

0.5 1 1.5 2 2.5 3
x

!0.25

0.25
0.5
0.75
1

1.25
1.5
1.75

y

0.5 1 1.5 2 2.5 3
x

!0.25

0.25
0.5
0.75
1

1.25
1.5
1.75

y

4 y " 2 # 3 x 4 y " 11 ! 3 x

4 y $ 3

0.5 1 1.5 2 2.5 3
x

!0.25

0.25
0.5
0.75
1

1.25
1.5
1.75

y

4y ≤ 3x + 2
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4y ≥ 3

Eliminate y :
c = 4, b = 4, β = 3

New constraint:
4y = 3+ i for
2 ≥ i ≥ 0:

4y = 3
4y = 4
4y = 5

=⇒ Integer solution
with 4y = 4
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