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Kripke structure: Syntax

De�nition

Let AP be a �nite set of atomic propositions. A Kripke structure is a tuple
M = (S , sinit,T , L) with

S a �nite set of states,

sinit ∈ S an initial state,

T ⊆ S × S a transition relation,

L : S → 2AP a labeling function
(2AP denotes the powerset over AP).

The labeling function attaches information to the system: for a state s ∈ S
the set L(s) consists of those atomic propositions that hold in s.
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Kripke structure: Semantics

An (in�nite) path π = s0s1s2 . . . of a Kripke structure
M = (S , sinit,T , L) is a sequence of states such that

s0 = sinit and

for all i ≥ 0, (si , si+1) ∈ T .

The behaviour of M is given by the set of all of its in�nite paths.

A �nite path of M is a �nite pre�x of an in�nite path of M.

For a �nite path π = s0 . . . sk we de�ne |π| = k .

We write π(j) for the jth state (starting with 0) of the path π.

By πj we denote the post�x of π starting at π(j).
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Kripke structure: Semantics
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Fischer's mutual exclusion protocol

There are also more complex systems we want to deal with later.

idle1

test1
4
5
≤ ẋ1 ≤ 1

x1 ≤ A

wait1
4
5
≤ ẋ1 ≤ 1

crit1H1

k=0

x1 ≥ B ∧ k 6= 1

k = 0→ x1 := 0 k , x1 := 1, 0 x1 ≥ B ∧ k = 1

k := 0

idle2

test2
1 ≤ ẋ2 ≤ 11

10

x2 ≤ A

wait2
1 ≤ ẋ2 ≤ 11

10

crit2H2

k=0

x2 ≥ B ∧ k 6= 2

k = 0→ x2 := 0 k , x2 := 2, 0 x2 ≥ B ∧ k = 2

k := 0
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LTL syntax

Syntax of the Linear-Time Temporal Logic (LTL):

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕ U ϕ |
Fϕ | Gϕ

a ∈ AP : atomic proposition

X : next time operator

U : until operator

Syntactic sugar:

∨,→,↔, . . .
F : �nally (eventually) operator (Fϕ := true Uϕ)
G: globally (always) operator (Gϕ := ¬(true U¬ϕ))
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LTL semantics - Next

π:
p

. . . π |= Xp

π: . . .

p p

π 6 |=Xp
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LTL semantics - Until

π:
p p p q

. . . π |= pUq

π: . . .

q

π |= pUq

π:
p p p, q

. . . π 6 |=pUq

π: . . .
. . .p p p p

π 6 |=pUq
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LTL semantics - Eventually

π:
p

. . . π |= Fp

π: . . . π 6 |=Fp
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LTL semantics - Always

π:
p p p p

. . . π |= Gp

π: . . .

p p p

π 6 |=Gp
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LTL semantics

De�nition (LTL Semantics)

π |= p i� p ∈ L(π(0))
π |= ϕ1 ∧ ϕ2 i� π |= ϕ1 and π |= ϕ2

π |= ¬ϕ i� π 6|= ϕ
π |= Xϕ i� π1 |= ϕ
π |= ϕ1 U ϕ2 i� πi |= ϕ2 for some i ≥ 0 and

πj |= ϕ1 for all 0 ≤ j < i
π |= Fϕ i� πi |= ϕ for some i ≥ 0
π |= Gϕ i� πi |= ϕ for all i ≥ 0
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LTL semantics

M |= Aϕ

If all in�nite paths of a Kripke structure M satisfy a property ϕ, then we
say that the property holds for M.

M |= E¬ϕ
If there is an in�nite path of a Kripke structure M that does not satisfy a
property ϕ, then we say that M violates the property ϕ.

M |=k E¬ϕ
Also �nite paths can violate a property, if they contain enough information
to assure the existence of an in�nite path violating the property.
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Model checking

Early 1980s: First implementations of Model Checking as veri�cation
technique

Explicit representations of the transition graphs
Problem: Due to the state explosion not applicable for
most industrial settings

1990: Symbolic Model Checking

BDDs represent characteristic functions of state sets
Problem: Building the BDD may be expensive

1999: Bounded Model Checking [Biere et al.]

Check the existence of �nite paths of incremental length
by a SAT-solver
Problem: Incomplete (in general)
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Model checking and counterexamples

Given a Kripke structure M and an LTL property ϕ, a counterexample
is a path of M violating ϕ.

If a system is buggy, counterexamples are extremely important for
detecting and �xing the error.

Bounded model checking (BMC) is a technique to search for �nite
counterexamples, not only for Kripke structures, but also for more
complex systems.
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Finite and in�nite counterexamples

Property: GFa
Negation: ¬GFa = FG¬a

s1

s2

s3

s4

{a}

{a, b}

∅

{c}

In�nite counterexample: s1 s4 s3 s4 s3 s4 s3 ...

Finite counterexample: s1 s4 s3 s4

�Loop detected�
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De�nition of |=k

Satisfaction relation for �nite paths

π |=i
k ϕ : the �nite segment of π consisting of its ith to kth states

satis�es ϕ
π |=k ϕ : π |=0

k ϕ
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De�nition of |=k

Satisfaction relation for �nite paths with a loop

De�nition

For l ≤ k we call an in�nite path π a (k , l)-loop i� T (π(k), π(l)) and
π = u · vω with u = π(0) . . . π(l − 1) and v = π(l) . . . π(k).

We call π a k-loop i� π is a (k , l)-loop for some 0 ≤ l ≤ k .

De�nition (Bounded semantics for a loop)

Let k ≥ 0 and let π be a k-loop. Then an LTL formula ϕ is valid along π
with bound k (π |=k ϕ) i� π |= ϕ.
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De�nition of |=k

De�nition (Bounded semantics without a loop)

Let k ≥ 0 and let π be path that is not a k-loop. Then an LTL formula ϕ
is valid along π with bound k (π |=k ϕ) i� π |=0

k ϕ, where

π |=i
k a : a ∈ L(π(i))

π |=i
k ¬a : a 6∈ L(π(i))

π |=i
k ϕ1 ∧ ϕ2 : π |=i

k ϕ1 and π |=i
k ϕ2

π |=i
k Xϕ : i < k and π |=i+1

k ϕ

π |=i
k ϕ1 U ϕ2 : π |=j

k ϕ2 for some i ≤ j ≤ k and
π |=n

k ϕ1 for all i ≤ n < j

π |=i
k Fϕ : π |=j

k ϕ for some i ≤ j ≤ k
π |=i

k Gϕ : false
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Properties of |=k

Lemma

Let ϕ be an LTL formula and let π be a path. Then

π |=k ϕ ⇒ π |= ϕ.

Lemma

Let ϕ be an LTL formula and let M be a Kripke structure. Then

M |= Eϕ ⇒ ∃k ≥ 0. M |=k Eϕ.
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Bounded model checking

Overview:
Construction of a Boolean formula ϕ describing a �nite path

through the underlying system

of length k, starting with 0,

and reaching a certain state of interest, i.e., violating a property.

A SAT-solver searches for a satisfying assignment of ϕ

If SAT, the resulting assignment describes a counterexample

If UNSAT, k is incremented and the procedure starts again
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Bounded model checking

Counterexamples of length k for a Kripke structure M and an LTL formula
ϕ can be described by

JM, ϕKk = I (s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧ ¬Prop(s0, . . . , sk)

JM, ϕKk is satis�able ⇐⇒ there exists a �nite counterexample

of length k

→ check JM, ϕKk incrementally for k = 0, 1, . . . using a suitable solver
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Formula encoding

JM, ϕKk = I (s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧ ¬Prop(s0 . . . sk)

How to build this formula?

I and T are (nearly) straightforward for Kripke structures. We build a
sub-formula describing initial paths of length k :

JMKk := I (s0) ∧
k−1∧
i=0

T (si , si+1)

This formula is called the unfolding of the transition relation
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Formula encoding

JM, ϕKk = I (s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧ ¬Prop(s0 . . . sk)

How to build this formula?

To get a counterexample for an LTL formula ϕ we have to �nd a
witness for ¬ϕ.
This will be encoded for paths of length k within the formula
¬Prop(s0, . . . , sk)
The translation of the formula depends on the fact whether the
considered path has a loop or not.
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Encoding of loops

Loop condition: Is there a transition from sk to a previous state?

Loop successor: Successor state of a state inside a loop

De�nition

The loop condition Lk is true i� there exists a back loop from state sk to a
previous state or to itself: Lk :=

∨k
l=0 T (sk , sl )

De�nition

Let k , l and i be non-negative integers with l , i ≤ k .

succ(i) := i + 1, if i is inside a (k , l)-loop, i.e. i < k

succ(i) := l for i = k
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Encoding of loops - Always

Given: LTL formula ϕ and path π with (k , l)-loop

Recursive translation over the sub-terms of ϕ and states in π
Introduce intermediate formula of the form lJ·Kik

l start-state of the loop

k bound

i current position

Translation rule for Gϕ:

lJGϕKik := lJϕKik ∧ lJGϕKsucc(i)k

... ... ...

s0 sl si sk
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Encoding of loops - Eventually

Given: LTL formula ϕ and path π with (k , l)-loop

Recursive translation over the sub-terms of ϕ and states in π
Introduce intermediate formula of the form lJ·Kik

l start-state of the loop

k bound

i current position

Translation rule for Fϕ:

lJFϕKik := lJϕKik ∨ lJFϕKsucc(i)k

... ... ...

s0 sl si sk
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Encoding of loops

lJpKik := p(si )

lJ¬pKik := ¬p(si )
lJϕ ∨ ψKik := lJϕKik ∨ lJψKik
lJϕ ∧ ψKik := lJϕKik ∧ lJψKik

lJGϕKik := lJϕKik ∧ lJGϕKsucc(i)k

lJFϕKik := lJϕKik ∨ lJFϕKsucc(i)k

lJϕUψKik := lJψKik ∨ (lJϕKik ∧ lJϕUψKsucc(i)k )

lJXϕKik := lJϕKsucc(i)k
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Encoding without loops - Always

Given: LTL formula ϕ and path π without (k , l)-loop

Special case of loop translation
Extension to in�nite path with considering all properties beyond sk as
false

k bound

i current position

Translation rule for Gϕ, i ≤ k :

JGϕKik := JϕKik ∨ JGϕKsucc(i)k
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Encoding without loops - Eventually

Given: LTL formula ϕ and path π without (k , l)-loop

Special case of loop translation
Extension to in�nite path with considering all properties beyond sk as
false

k bound

i current position

Translation rule for Fϕ, i ≤ k :

JFϕKik := JϕKik ∨ JFϕKsucc(i)k
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Encoding without loops

JpKik := p(si )

J¬pKik := ¬p(si )
Jϕ ∨ ψKik := JϕKik ∨ JψKik
Jϕ ∧ ψKik := JϕKik ∧ JψKik

JGϕKik := JϕKik ∧ JGϕKi+1
k

JFϕKik := JϕKik ∨ JFϕKi+1
k

JϕUψKik := JψKik ∨ (JϕKik ∧ JϕUψKi+1
k )

JXϕKik := JϕKi+1
k
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General translation to SAT

Combining the components, BMC is encoded in propositional logic

Given: LTL formula ϕ, Kripke structure M, bound k

JM, ϕKk := JMKk ∧
(
(¬Lk ∧ JϕK0k) ∨

k∨
l=0

(T (sk , sl ) ∧ lJϕK0k)
)

Unfolding of the transition relation

There is no back loop  Translation without loops

All possible starting points of a loop are considered  Translation for

(k, l)-loop together with loop condition

Theorem

JM, ϕKk is satis�able i� M |=k Eϕ
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BMC is not complete

Application: Start with k = 0 and increment until witness is found

Termination is guaranteed i� witness exists (M |= Eϕ)

If no witness exists, procedure does not terminate (M 2 Eϕ)
Upper bound for k to ensure property: Completeness threshold
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Completeness threshold

For each (�nite state) system M, property p and given translation
scheme there exists a number CT , called completeness threshold.
Considering Gϕ formulas, CT is equal to the reachability diameter,
i.e., the minimal distance required to reach all (reachable) states of
the system.

De�nition (Reachability Diameter)

rd(M) := min
{
i | ∀n > i . ∀s0, . . . , sn. ∃t ≤ i . ∃s ′0, . . . , s ′t .I (s0) ∧

n−1∧
j=0

T (sj , sj+1)

→
I (s ′0) ∧

t−1∧
j=0

T (s ′j , s
′
j+1) ∧ s ′t = sn

}

�Every state that is reachable in n steps, is also reachable in i steps.�
This yields maximal shortest paths in the system.
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Completeness threshold

Problem: One has to choose n

Let V be the set of variables de�ning the states. Worst case: n = 2|V |

Better: Choose n = i + 1.

De�nition (Reachability Diameter)

rd(M) := min
{
i | ∀s0, . . . , si+1. ∃s ′0, . . . , s ′i .I (s0) ∧

i∧
j=0

T (sj , sj+1)

→
I (s ′0) ∧

i−1∧
j=0

T (s ′j , s
′
j+1) ∧

i∨
j=0

s ′j = si+1

}

�Every state that is reachable in i + 1 steps, it is also reachable in i steps.�
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Completeness threshold

Problem: Formula contains alternation of quanti�ers

Solution: Over-approximation of rd(M)

De�nition (Recurrence Diameter)

rdr(M) :=

max
{
i | ∃s0 . . . si : I (s0) ∧

i−1∧
j=0

T (sj , sj+1) ∧
i−1∧
j=0

i∧
k=j+1

sj 6= sk

}

�Longest loop-free initial path in M.�

As every shortest path is a loop-free path, this is an
over-approximation of rd(M).
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