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Kripke structure

{a, b}
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Kripke structure: Syntax

Let AP be a finite set of atomic propositions. A Kripke structure is a tuple
M = (S, Sinit, T, L) with

m S a finite set of states,

B St € S an initial state,

m 7 C S xS a transition relation,

m L:S — 227 a labeling function
(24P denotes the powerset over AP).

The labeling function attaches information to the system: for a state s € S
the set L(s) consists of those atomic propositions that hold in s.
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Kripke structure: Semantics

An (infinite) path m = sps1sy ... of a Kripke structure
M = (S, sinit, T, L) is a sequence of states such that

®m Sp = Sipit and
m forall i >0, (s;,s41) € T.

The behaviour of M is given by the set of all of its infinite paths.
A finite path of M is a finite prefix of an infinite path of M.

For a finite path m = sp.. . . s, we define |7| = k.

We write 7(j) for the jth state (starting with 0) of the path 7.

By 7; we denote the postfix of 7 starting at 7(j).
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Kripke structure: Semantics
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Fischer's mutual exclusion protocol

There are also more complex systems we want to deal with later.
x1 >BANk#1

X >BANk#2

x2>BAk=2
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Syntax of the Linear-Time Temporal Logic (LTL):

o = a | phe | o | Xo | oUe |
Fo | Gy

m a € AP: atomic proposition
m A next time operator

m U/: until operator

Syntactic sugar:
BV, =,
m F: finally (eventually) operator (Fo := true Uyp)
m G: globally (always) operator (Gy := —(true U—p))
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LTL semantics - Next

e —e—O—@— - T Ap

n @ —@—O——@— T Xp
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LTL semantics - Until

LE @ @ @ @ ™ = plq
P p p q

U= o @ @ @ ™ = pUq
q

m: @ @ @ L ™ fEpUq
p p P.q

T o @ @ @ T f=pUq
p P p p
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LTL semantics - Eventually

n @ —@—O——@— ™| Fp

e —O—@— - T J=Fp
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LTL semantics - Always

T o @ o @ T E=Gp
P P P P

m o @ o @ T f=Gp
P P P
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LTL semantics

Definition (LTL Semantics)

TEDPp iff
T Ep1 Ay iff
T = - iff
T EXp iff

7T‘=(p1u<p2 iff

T = Fp iff
TEGp iff

p € L(m(0))

T = ¢1 and T = 2

ull ol

mEe

i |= @2 for some i > 0 and

miE @i forall0 <)<
i = ¢ for some i >0
mi =@ forall i >0
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LTL semantics

ME Ay

If all infinite paths of a Kripke structure M satisfy a property ¢, then we
say that the property holds for M.

M E E-p

If there is an infinite path of a Kripke structure M that does not satisfy a
property ¢, then we say that M violates the property .

M = E-p

Also finite paths can violate a property, if they contain enough information
to assure the existence of an infinite path violating the property.

Prof. Dr. Erika Abraham - Satisfiability Checking



Model checking

Early 1980s: First implementations of Model Checking as verification
technique
m Explicit representations of the transition graphs
m Problem: Due to the state explosion not applicable for
most industrial settings
1990: Symbolic Model Checking
m BDDs represent characteristic functions of state sets
m Problem: Building the BDD may be expensive
1999: Bounded Model Checking [Biere et al.]
m Check the existence of finite paths of incremental length
by a SAT-solver
m Problem: Incomplete (in general)
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Model checking and counterexamples

m Given a Kripke structure M and an LTL property ¢, a counterexample
is a path of M violating ¢.

m If a system is buggy, counterexamples are extremely important for
detecting and fixing the error.

m Bounded model checking (BMC) is a technique to search for finite
counterexamples, not only for Kripke structures, but also for more
complex systems.
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Finite and infinite counterexamples

Property: GFa
Negation: -G Fa = FG-a

Infinite counterexample: $1 S4 S3 S4 S3 S4 S3

Finite counterexample: 51 s3

“Loop detected”
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Definition of =

Satisfaction relation for finite paths

T |:;( @ : the finite segment of 7 consisting of its ith to kth states
satisfies ¢

ThEep @ TEYe
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Definition of =

Satisfaction relation for finite paths with a loop

For / < k we call an infinite path 7 a (k. /)-loop iff T(mw(k),n(/)) and
m=u-v¥Ywithu=mn(0)...7(/—1) and v =7(/)...7w(k).

We call 7 a k-loop iff 7 is a (k,/)-loop for some 0 </ < k.

Definition (Bounded semantics for a loop)

Let kK > 0 and let 7w be a k-loop. Then an LTL formula ¢ is valid along 7
with bound k (7 ¢ @) iff m = .

Prof. Dr. Erika Abraham - Satisfiability Checking



Definition of =

Definition (Bounded semantics without a loop)

Let kK > 0 and let 7w be path that is not a k-loop. Then an LTL formula ¢
is valid along 7 with bound k (7 =4 ) iff 7 £ ¢, where

7'(‘):2(3 :ace L(n(i))
nep-a o oaglml)
TEyPp1ANe2 T erand T
T X : i<kandw):;(+1g0

TELp1U g ) o for some i < j < k and
. 7T)=Z<p1fora||i§n<j

T Fo . 7w ¢ forsome i <j <k

W)ZLQQO . false
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Properties of =¢

Lemma

Let @ be an LTL formula and let © be a path. Then

TRy = Tk

Lemma

Let @ be an LTL formula and let M be a Kripke structure. Then

MEEy = 3Jk>0.ME,Eep.
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Bounded model checking

Overview:
m Construction of a Boolean formula ¢ describing a finite path

m through the underlying system
m of length k, starting with 0,
m and reaching a certain state of interest, i.e., violating a property.

m A SAT-solver searches for a satisfying assignment of ¢
m If SAT, the resulting assignment describes a counterexample
m If UNSAT, k is incremented and the procedure starts again
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Bounded model checking

Counterexamples of length k for a Kripke structure M and an LTL formula
@ can be described by

[[M, (,D]]k = /(So) AN T(So, 51) VANPIRAN T(Sk_l, Sk) A —|Pr0p($0, - ,Sk)

[M, ]k is satisfiable <= there exists a finite counterexample

of length k

— check [M, ¢]x incrementally for k = 0,1, ... using a suitable solver
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Formula encoding

M, o]k = 1(so) A T(so,81) A... A T(sk_1,5k) A —=Prop(sp...sk)

How to build this formula?

m [ and T are (nearly) straightforward for Kripke structures. We build a
sub-formula describing initial paths of length k:

k—1

MLk = I(so) A )\ T(sisis1)
i=0

m This formula is called the unfolding of the transition relation
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Formula encoding

IM,elk = 1(so) A T(s0,51) A...A T(sk—1,5k) A —=Prop(sp...sk)

How to build this formula?

m To get a counterexample for an LTL formula ¢ we have to find a
witness for —p.

m This will be encoded for paths of length k within the formula
—Prop(so, - - ., Sk)

m The translation of the formula depends on the fact whether the
considered path has a loop or not.
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Encoding of loops

Loop condition: Is there a transition from s, to a previous state?

Loop successor: Successor state of a state inside a loop

The loop condition Ly is true iff there exists a back loop from state s, to a
previous state or to itself: Ly := \/;(:0 T (sk,s1)

Let k,/ and i be non-negative integers with /. i < k.

m succ(i) :=1i+1,if i is inside a (k,/)-loop, i.e. i < k

m succ(i) :=/fori=k
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Encoding of loops - Always

Given: LTL formula ¢ and path 7 with (k,/)-loop

Recursive translation over the sub-terms of ¢ and states in 7
Introduce intermediate formula of the form ;[

m | start-state of the loop
m k bound
® / current position

Translation rule for Gyp:

Gl = ileli A lGele?
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Encoding of loops - Eventually

Given: LTL formula ¢ and path 7 with (k,/)-loop

Recursive translation over the sub-terms of ¢ and states in 7
Introduce intermediate formula of the form ;[

m | start-state of the loop
m k bound
® / current position

Translation rule for Fe:

IFelL = ilel v [Fe] e
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Encoding of loops

el = p(s)
el = —p(s)
e vl = ileli v ilvlk
o Avlie = leli A ilvlk

9ol = el A Gl

IFelie = ileli v ilFepe?)
leuele = iIeli v Glel A Tetdw]Pe?)
xel = /[[wﬂiucc(i)
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Encoding without loops - Always

m Given: LTL formula ¢ and path 7 without (k, /)-loop

m Special case of loop translation

m Extension to infinite path with considering all properties beyond s; as
false

m k bound
® / current position

m Translation rule for Gy, i < k:

151 == [¢li v [l
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Encoding without loops - Eventually

m Given: LTL formula ¢ and path 7 without (k, /)-loop

m Special case of loop translation

m Extension to infinite path with considering all properties beyond s; as
false

m k bound
® / current position

m Translation rule for Fo, i < k:

[Fel = [eli v [Felye?
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Encoding without loops

[pDi
[Pl

[ v ¥l
Lo A9l
[l

[Felic =
[td] =

[X el

p(si)

—p(si)

[elic v [¥0k

[elic A [0k

[eli A Gl

[eli v [Feli™

[wli v ([l A Letd2]; ™)

[l
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General translation to SAT

m Combining the components, BMC is encoded in propositional logic
m Given: LTL formula ¢, Kripke structure M, bound k

k
M ¢l = ML A (LA TRl v\ (Tl A TeTR)
1=0

m Unfolding of the transition relation

m There is no back loop ~+ Translation without loops

m All possible starting points of a loop are considered ~~ Translation for
(k, I)-loop together with loop condition

[M, |k is satisfiable iff M = Ep
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BMC is not complete

Application: Start with k = 0 and increment until witness is found
Termination is guaranteed iff witness exists (M = Eyp)
If no witness exists, procedure does not terminate (M ¥ Ey)
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Completeness threshold

m For each (finite state) system M, property p and given translation
scheme there exists a number CT, called completeness threshold.

m Considering Gy formulas, CT is equal to the reachability diameter,
i.e., the minimal distance required to reach all (reachable) states of
the system.

Definition (Reachability Diameter)

rd(M) := min{i | Vn > i. Vs, ...,sp. 3t <i.3sh,....s..

n—1 t—1

I(s0) A /\ T(sj,si+1) | — | 1(s) A /\ T(sj,8j41) A St = sn }

“Every state that is reachable in n steps, is also reachable in / steps.”
m This yields maximal shortest paths in the system.
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Completeness threshold

m Problem: One has to choose n
m Let V be the set of variables defining the states. Worst case: n = 2!V
m Better: Choose n =17+ 1.

Definition (Reachability Diameter)

1

rd(M) = min{i | VS0, .-y Siv1. 380,50

i i—1 i
Hso) A A\ T(s54) | = [ 1) A A TCshsh) A of = siva |
j=0 j=0 j=0

“Every state that is reachable in 7 + 1 steps, it is also reachable in i steps.”
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Completeness threshold

m Problem: Formula contains alternation of quantifiers

m Solution: Over-approximation of rd(M)

Definition (Recurrence Diameter)

rdr(M) :=

i—1 i—1 i
max{i | 3sp...s7: 1(s0) A /\ T(sj,sj+1) A /\ /\ sj # Sk}

j=0 j=0 k=j+1

“Longest loop-free initial path in M.”

m As every shortest path is a loop-free path, this is an
over-approximation of rd(M).
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