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Non-linear real arithmetic (NRA)

Real algebra

First-order theory of (R,+, ·, 0, 1, <)

Syntax:

Terms: t := 0 | 1 | x | t + t | t · t
Constraints: c := t < t

Formulas: ϕ := c | ¬ϕ | ϕ ∧ ϕ | ∃xϕ

where x is a variable.

The term non-linear real arithmetic is mainly used in the SMT community
and is the non-linear existential fragment of real algebra.
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Real algebra: applications

Systems of linear real constraints:

∃x ( Ax ≤ b )

Linear real optimization:

∃x
(
Ax ≤ b ∧ x ≥ 0 ∧ ∀y ( Ay ≤ b ∧ y ≥ 0→ y ≥ x )

)
Geometric problems: intersection, union, . . . of geometric shapes e.g.

∃x , y ( x2 + 4y2 = 1 ∧ x − y = 1 )

Prof. Dr. Erika Ábrahám and Florian Corzilius - Non-linear Real Arithmetic: Virtual Substitution 3 / 26



Real algebra: on the border of decidability

Theorem (Alfred Tarski 1948)

FO theory of (R,+, ·, 0, 1, <) is decidable.

The proof was �rst published in the book [Tarski1948].

Time-complexity of a decision procedure in the number of variables
would be �greater than all �nite towers of powers of 2�
[Feferman2006].

Already undecidable

FO theory of (R,+, ·, sin, 0, 1, <)
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Real algebra: some historic facts

1637 Descartes' rule of signs

1835 Jaques Charles François Sturm's theorem

1948 Alfred Tarski's �A decision method for elementary algebra and
geometry�

1975 Cylindrical algebraic decomposition (CAD) method by George E.
Collins

1979�80 First implementation of the CAD method by Dennis S. Arnon

1988 Virtual substitution by Volker Weispfenning

1990 First implementation of virtual substitution (Klaus-Dieter
Burhenne)

1993 Gröbner bases approach by P. Pedersen, M.-F. Roy, A. Szpirglas,
later extended by V. Weispfenning

1994 Implementation of the Gröbner bases approach (Andreas
Dolzmann)

Prof. Dr. Erika Ábrahám and Florian Corzilius - Non-linear Real Arithmetic: Virtual Substitution 5 / 26



Real algebra: implementations

Virtual substitution

Computer logic system Redlog (package of Reduce)

Cylindrical algebraic decomposition

QEPCAD, Redlog, . . .

Gröbner bases

Maple, Mathematica, Singular, Maxima, CoCoA, Reduce, . . .

Other methods

Interval arithmetic (Ariadne or HySAT)
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http://redlog.dolzmann.de/
http://www.reduce-algebra.com/
http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html
http://redlog.dolzmann.de/
http://www.singular.uni-kl.de/
http://maxima.sourceforge.net/
http://cocoa.dima.unige.it/
http://www.reduce-algebra.com/
http://trac.parades.rm.cnr.it/ariadne/
http://hysat.informatik.uni-oldenburg.de/


The idea of quanti�er elimination

Given: ϕ (FO sentence over (R,+, ·, 0, 1, <) containing n quanti�ers)

1 Transform ϕ into prenex normal form:

ϕ ≡ Q1x1 . . .Qnxnϕ
′, with ϕ′ quanti�er free

2 Eliminate iteratively the quanti�ers Q1 . . .Qn and thus the quanti�ed
variables.
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The idea of quanti�er elimination

What if we can only eliminate existential quanti�er?

∃x1∃x2 ∀x3 ∃x4 ∀x5 ∀x6 ∃x7 ∃x8 ϕ′

≡ ∃x1 ∃x2 ¬(∃x3 ¬(∃x4 ¬(∃x5 ¬(¬(∃x6 ¬(∃x7 ∃x8 ϕ′ ))))))

≡ ∃x1 ∃x2 ¬(∃x3 ¬(∃x4 ¬(∃x5 ∃x6 ¬(∃x7 ∃x8 ϕ′ ))))
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Existential quanti�er elimination: Brute force

Given: ϕ = ∃x1 . . . ∃xnϕ′, where ϕ′ is an quanti�er-free FO sentence
over (R,+, ·, 0, 1, <)

Brute force: (elimination of one quanti�er)

∃x1 . . . ∃xn ϕ′ ≡ ∃x1 . . . ∃xn−1
∨
r∈R

ϕ′[r/x ].

But: R is in�nite.

Idea: Find a �nite set T ⊂ R with

∃t ∈ T : ϕ[t/x ] ⇔ ∃r ∈ R : ϕ[r/x ].
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Virtual substitution

Is an existential quanti�er elimination procedure:

∃x1 . . . ∃xnϕ′ → ∃x1 . . . ∃xn−1ψ′,

where ϕ′, ψ′ quanti�er free and ∃x1 . . . ∃xnϕ′ ≡ ∃x1 . . . ∃xn−1ψ′.

Restricted in the degree of the variable to eliminate:

p(x) ∼ 0 constraint of ϕ ⇒ degree of x in p(x) must be ≤ 2.

Virtual substitution

Virtual substitution constructs a �nite set T ⊂ R of test candidates with

∃x1 . . . ∃xn ϕ′ ≡ ∃x1 . . . ∃xn−1
∨
t∈T

ϕ′[t/x ].

Prof. Dr. Erika Ábrahám and Florian Corzilius - Non-linear Real Arithmetic: Virtual Substitution 10 / 26



Construction of the set of test candidates T

1.) g(x) = ax2 + bx + c constant in x (a = 0 ∧ b = 0)

Consider the constraint: g(x) = 0 or g(x) ≤ 0 or g(x) < 0
g(x) ≥ 0 or g(x) > 0 or g(x) 6= 0 g(x) = 0 or g(x) ≤ 0 or g(x) ≥ 0
g(x) < 0 or g(x) > 0 or g(x) 6= 0

c > 0 :

(c < 0 analog)

( )
−∞ ∞

c = 0 :

( )
−∞ ∞

x

g(x)
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Construction of the set of test candidates T

2.) g(x) = ax2 + bx + c linear in x (a = 0 ∧ b 6= 0)

Consider the constraint: g(x) = ≤ < ≥ > 6= 0

x

g(x)b > 0 :

(b < 0 analog)

|
− c

b

(
−∞

]
− c

b

(
−∞

)
− c

b

)
∞

[
− c

b

)
∞

(
− c

b

(
−∞

)
∞

()
− c

b
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Construction of the set of test candidates T

3.) g(x) = ax2 + bx + c quadratic in x (a 6= 0)

Consider the constraint: g(x) = 0 or g(x) ≥ 0 or g(x) > 0 g(x) ≤ 0 or
g(x) < 0 or g(x) 6= 0 g(x) ≥ 0 or g(x) > 0 g(x) = 0 g(x) ≤ 0
g(x) < 0 or g(x) 6= 0 g(x) = 0 g(x) ≤ 0 g(x) ≥ 0 g(x) < 0
g(x) > 0 g(x) 6= 0

a < 0 :

(a > 0 analog)
g(x)

b2 − 4ac < 0

x

( )
−∞ ∞

b2 − 4ac = 0
xx

−b
2a

( )
−∞ ∞
( )

()

−b
2a

−∞ ∞

b2 − 4ac ≥ 0 x

−b−
√

b2−4ac
2a

−b+
√

b2−4ac
2a

| |] [

( )
−∞ ∞

[ ]) (

( )
−∞ ∞

( ))( )(

( )
−∞ ∞
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Construction of the set of test candidates T

Given: A constraint p ∼ 0 . (p = ax2 + bx + c, ∼∈ {=, <,>,≤,≥, 6=}).

The �nite endpoints of its non-empty solution intervals are the zeros of p:

Linear in x : x0 = − c
b

, if a = 0 ∧ b 6= 0

Quadratic in x , �rst solution: x1 =
−b+
√

b2−4ac
2a , if a 6= 0 ∧ b2 − 4ac ≥ 0

Quadratic in x , second solution: x2 =
−b−
√

b2−4ac
2a , if a 6= 0 ∧ b2 − 4ac > 0

All possible non-empty solution intervals for x in p ∼ 0:

constraints possible solution intervals (0 ≤ i , j ≤ 2, i 6= j)

p = 0 [xi , xi ] (−∞, ∞)
p < 0 p > 0 (−∞, xi ) (xi , xj ) (xi , ∞) (−∞, ∞)
p 6= 0 (−∞, xi ) (xi , ∞) (−∞, ∞)
p ≤ 0 p ≥ 0 (−∞, xi ] [xi , xi ] [xi , xj ] [xi , ∞) (−∞, ∞)
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Construction of the set of test candidates T

Consider we have two constraints:

p1 ∼1 0 and p2 ∼2 0.

When do they both hold?

If the intersection of their solution intervals is not empty!

Then the intersection consists of at least one non-empty interval.

The interval's endpoints are endpoints of the intersected intervals.
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Construction of the set of test candidates T

We search for a value full�lling several constraints.

Idea: We search for the 'smallest value' ful�lling the constraints.

We know ..
.. that the solution space of the constraints is a set of intervals.
.. the endpoints of these intervals.

Hence, the 'smallest value' full�lling the constraints is
either a left endpoint of an left closed interval
or a left endpoint of an left opened interval plus an in�nitesimal.
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Construction of the set of test candidates T

Idea: We search for the 'smallest value' ful�lling the constraints.

The constraints provide �nitely many test candidates:
p = 0

1 Zeros of the polynomial p

p ≤ 0, p ≥ 0

1 Zeros of the polynomial p

2 −∞ (:= su�cient small value)

p < 0, p > 0, p 6= 0

1 Zeros of the polynomial p plus an in�nitesimal ε

2 −∞

Example: xy + 1 < 0 →
{ 1

y
+ ε if y 6= 0
−∞
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Construction of the set of test candidates T

Example: y · x2 + z · x ≥ 0

The �nite endpoints are: x0 = x1 = 0 and x2 = − z
y
.

The possible solution intervals are:
Case Solution interval Side condition

Constant (−∞, ∞) y = z = 0
Linear (−∞, 0] or [0, ∞) y = 0 ∧ z 6= 0
Quadratic (−∞, 0] or [0, ∞) y 6= 0 ∧ z2 ≥ 0
Quadratic (−∞, − z

y
] or [− z

y
, ∞) y 6= 0 ∧ z2 > 0

The test candidates are:
Test candidate Side condition

−∞ none
0 y = 0 ∧ z 6= 0
0 y 6= 0
− z

y
y 6= 0
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Construction of the set of test candidates T

Example: ∃y∃x : (y = 0 ∨ y2 + 1 < 0) ∧ x − 3 ≤ 0 ∧ xy + 1 < 0

eliminate x≡

∃y : ( (y = 0 ∨ y2 + 1 < 0) ∧ x − 3 ≤ 0 ∧ xy + 1 < 0 )[−∞/x]

∨ ( (y = 0 ∨ y2 + 1 < 0) ∧ x − 3 ≤ 0 ∧ xy + 1 < 0 )[3/x] )

∨ ( y 6= 0 ∧ ( (y = 0 ∨ y2 + 1 < 0) ∧ x − 3 ≤ 0 ∧ xy + 1 < 0 )[− 1
y
+ ε/x] )

eliminate y
≡

. . .

Test candidates

Side condition
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How to substitute a variable by a test candidate in a
constraint

Standard substitution → expressions with ε, ∞, √ or division.

Virtual Substitution de�nes rules, which give an equivalent FO
sentence over (R,+, ·, 0, 1, <) to the expression resulting by the above
standard substitution.

The substitution rules distinguish between
the constraint's relation symbol
the test candidate's type (−∞, +ε, contains √)
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Substitution of a variable by a test candidate in a constraint

Example: (g(x) = 0)[q+r
√
t

s
/x ]

Result: (r̂ = 0 ∧ q̂ = 0) ∨ (r̂ 6= 0 ∧ q̂r̂ ≤ 0 ∧ q̂2 − r̂2t = 0),

where q̂, r̂ , and ŝ are polynomials.

Explanation:

1 Substitute x by q+r
√
t

s
in g = 0 in the common way.

2 Transform the result to q̂+r̂
√
t

ŝ
= 0 where q̂, r̂ , and ŝ are polynomials

(always possible, proof exercise)
3 Compare:

1 r̂ = 0 ∧ q̂+r̂
√
t

ŝ
= 0 ⇔ r̂ = 0 ∧ q̂

ŝ
= 0 ⇔ r̂ = 0 ∧ q̂ = 0

2 r̂ 6= 0 ∧ q̂+r̂
√
t

ŝ
= 0 ⇔ r̂ 6= 0 ∧ q̂ + r̂

√
t = 0

⇔ r̂ 6= 0 ∧ r̂ q̂ ≤ 0 ∧ ‖q̂‖ = ‖r̂
√
t‖
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Substitution of a variable by a test candidate in a constraint

Example: (g(x) < 0)[e + ε/x ]

Result:

g [e/x ] < 0︸ ︷︷ ︸
Case 1

∨ g [e/x ] = 0 ∧ g
′[e/x ] < 0︸ ︷︷ ︸

Case 2

∨ g [e/x ] = 0 ∧ g
′[e/x ] = 0 ∧ g

′′[e/x ] < 0︸ ︷︷ ︸
Case 3

Explanation:

x

g(x)

(
e

Case 1

x

g(x)

(
e

Case 2

x

g(x)

(
e

Case 3
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Virtual Substitution: Example

∃x , y (( xy − 1 = 0 ∨ y − x ≥ 0 ) ∧ y2 − 1 < 0 )

Eliminate y :

1. Test candidate: −∞

∃x( ( (xy − 1 = 0)[−∞/y ]

∨ (y − x ≥ 0)[−∞/y ] )

∧ (y2 − 1 < 0)[−∞/y ] )

1. Test candidate: −∞

∃x( ( (y = 0 ∧ − 1 = 0)

∨ (1 < 0 ∨ (1 = 0 ∧ − x ≥ 0)) )

∧ (1 < 0 ∨ (1 = 0 ∧ 0 > 0) ∨ (1 = 0 ∧ 0 = 0 ∧ − 1 < 0)) )

2. Test candidate: 1

x
, if x 6= 0

∃x( ( (xy − 1 = 0)[ 1
x
/y ]

∨ (y − x ≥ 0)[ 1
x
/y ] )

∧ (y2 − 1 < 0)[ 1
x
/y ]

∧ x 6= 0 )

2. Test candidate: 1

x
, if x 6= 0

∃x( ( (0 = 0)

∨ ((x > 0 ∧ x − x2 ≥ 0) ∨ (x < 0 ∧ x − x2 ≤ 0)) )

∧ ((1 > 0 ∧ 1− x2 < 0) ∨ (1 < 0 ∧ 1− x2 > 0))

∧ x 6= 0 )

2. Test candidate: 1

x
, if x 6= 0

∃x( ((x > 0 ∧ x − x2 ≥ 0) ∨ (x < 0 ∧ x − x2 ≤ 0))

∧ 1− x2 < 0

∧ x 6= 0 )
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Virtual Substitution: Example

∃x (((x > 0False ∧ x − x2 ≥ 0) ∨ (x < 0True ∧ x − x2 ≤
0True)) ∧ 1− x2 < 0True ∧ x 6= 0True)

Eliminate x :

1. Test candidate: −∞

(x > 0)[−∞/x ]

= (1 < 0 ∨ (1 = 0 ∧ 0 > 0))

= False

1. Test candidate: −∞

(x < 0)[−∞/x ]

= (1 > 0 ∨ (1 = 0 ∧ 0 < 0))

= True

1. Test candidate: −∞

(x − x2 ≤ 0)[−∞/x ]

= (−1 < 0 ∨ (−1 = 0 ∧ 1 > 0) ∨ (−1 = 0 ∧ 1 = 0 ∧ 0 ≤ 0))

= True

1. Test candidate: −∞

(1− x2 < 0)[−∞/x ]

= (−1 < 0 ∨ (−1 = 0 ∧ 0 > 0) ∨ (−1 = 0 ∧ 0 = 0 ∧ 1 < 0))

= True

1. Test candidate: −∞

(x 6= 0)[−∞/x ]

= (1 6= 0 ∨ 0 6= 0)

= True
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Complexity

We consider in the following the elimination of one existential quanti�er
(existentially quanti�ed variable):

∃x1 . . . ∃xn ϕ′ ≡ ∃x1 . . . ∃xn−1
∨
t∈T

ϕ′[t/x ].

Degree of a remaining variable xi , 1 ≤ i < n, in ϕ′, i.e. D(xi , ϕ
′):

D(xi ,
∨
t∈T

ϕ′[t/x ]) ∈ O(6D(xi , ϕ
′)− 8)

Number of atoms in ϕ′, i.e. at(ϕ′):

at(
∨
t∈T

ϕ′[t/x ]) ∈ O(8at(ϕ′) + at(ϕ′)(8+ 63at(ϕ′)))
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