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Repetition: non-linear real arithmetic (NRA)

Syntax

Polynomials: p ::= 0 | 1 | x | p + p | p − p | (p · p)
Constraints: c ::= p = 0 | p < 0 | p > 0

Formulas: ϕ ::= c | ¬ϕ | ϕ ∧ ϕ | ∃xϕ

where x is a variable.

p = a1x
e1,1
1 · · · xen,1

n + · · ·+ akx
e1,k
1 · · · xen,k

n ,
deg(p) := max1≤j≤k(

∑n
i=1 ei ,j) degree of p

ϕ non-linear, if there is a polynomial p in ϕ with deg(p) > 1.

Linear real arithmetic (LRA): deg(p) ≤ 1 for all polynomials p in ϕ.
NRA mainly used in the SMT context to differentiate from LRA.
Here: NRA indicates that non-linear constraints are not forbidden.
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Recall: connection to SMT

ϕ
E.g.

(x42y − 2y4 < 1 ∨ y − x ≥ 0) ∧ x2 − y > 0

SAT-solver SAT/UNSAT

Add/Delete constraints Provide assignment/reason

Solves

 p1 ∼1 0
...

pm ∼m 0

 where pi ∈ Z[x1, . . . , xn], n ∈ N,
∼i ∈ {<,=, >}

for 1 ≤ i ≤ m.

Theory solver

Boolean skeleton
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Repetition: NRA solving history

1997
Virtual substitution [W97]
Computing realizable sign conditions (RiSC) [BPR97]

1993 Gröbner basis approach [W93]

1975 Cylindrical algebraic decomposition (CAD) method [C75]1975 Cylindrical algebraic decomposition (CAD) method [C75]

1948 First decision procedure [T48]
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NRA solution space (12)

Solution set: S

 p1 ∼1 0
...

pm ∼m 0

 = {a ∈ Rn | pi (a) ∼i 0, 1 ≤ i ≤ m}, where

pi ∈ Z[x1, . . . , xn], n ∈ N, ∼i ∈ {<,=, >} for 1 ≤ i ≤ m.

Example (one-dimensional)

S
(
x2 − 1 > 0
1− x > 0

)

= ]−∞,−1[

x

0−1 1

Example (two-dimensional)

S

(x − 2)2+
(y − 2)2 − 1 = 0

x − y = 0



=
{
(2−

√
2

2 , 2−
√

2
2 ),

(2+
√

2
2 , 2+

√
2

2 )
}

x

y

2

2
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Sign-invariance

Sign of a polynomial

Given a polynomial p ∈ Z[x1, . . . , xn], a ∈ Rn,

sgn(p(a)) :=


−1, p(a) < 0,
0, p(a) = 0,
1, p(a) > 0.

Sign invariant set = solution set

Given pi ∈ Z[x1, . . . , xn], n ∈ N, ∼i ∈ {<,=, >} for 1 ≤ i ≤ m, then

S

 p1 ∼1 0
...

pm ∼m 0

 = S

 sgn(p1) = σ1
...

sgn(pm) = σm

 =: Sσ(P)

with P ∈ Z[x1, . . . , xn]
m and σ ∈ {−1, 0, 1}m.
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Sign-invariant regions

Region

R ∈ Rn is called a region if
R 6= (A ∩ R) ∪ (B ∩ R)

with A∩R 6= ∅ and B ∩R 6= ∅ for all open, ∅ 6= A,B ⊆ Rn with A∩B = ∅.

Example

For a, b ∈ R, ]a, b[ , {a}, are regions, and R × R ′ for regions R,R ′.

Remarks
Let P ∈ Z[x1, . . . , xn]

m and σ ∈ {−1, 0, 1}m.
Sσ(P) can be decomposed into maximal regions.
Rn can be decomposed into maximal sign-invariant regions.
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Example: sign-invariant regions

P = (x2 − 1, 1− x)

x

−1 1

σ = (1, 1)

σ = (0, 0)

σ = (−1,−1)

σ = (−1, 1)

Prof. Dr. Erika Ábrahám and Ulrich Loup - NRA: Cylindrical Algebraic Decomposition 10 / 25



Outline

1 Preliminaries

2 Cylindrical Algebraic Decomposition

3 CAD Construction

4 Technical Remarks

Prof. Dr. Erika Ábrahám and Ulrich Loup - NRA: Cylindrical Algebraic Decomposition 11 / 25



Delineability

Let R ⊆ Rn−1 be a region, and P = (p1, . . . , pm) ∈ Z[x1, . . . , xn]
m where

m ≥ 1 and n ≥ 2.

Definition
R P-delineable if for 1 ≤ i , j ≤ m with i 6= j and for all a ∈ R :
1 the number of complex roots of pi (a) is constant,
2 the number of different complex roots of pi (a) is constant,
3 the number of common complex roots of pi (a) and pj(a) is constant.
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Example: delineability

P =

(x − 2)2+
(y − 2)2 − 1,

x − y


x

y

2

2

P-delineable regions:

]2−
√

2
2 , 2+

√
2

2 [

{2−
√

2
2 }, {2+

√
2

2 }

]1, 2−
√

2
2 [ , ]2+

√
2

2 , 3[

{1}, {3}
]−∞, 1[ , ]3,∞[

Prof. Dr. Erika Ábrahám and Ulrich Loup - NRA: Cylindrical Algebraic Decomposition 13 / 25



Cylindrical algebraic decomposition

Let P = (p1, . . . , pm) ∈ Z[x1, . . . , xn]
m and C ⊆ 2R

n
finite with m, n ≥ 1.

Definition
C is called cylindrical algebraic decomposition (CAD) of Rn for P if the
following holds:
1
⋃
C = Rn,

2 C ∩ C ′ = ∅ for all C ,C ′ ∈ C with C 6= C ′,
3 If n = 1, then every C ∈ C is a maximal P-sign invariant region.
4 If n > 1 and C′ is a cylindrical algebraic decomposition of Rn−1 such

that any C ′ ∈ C′ is P-delineable, then for every C ∈ C there is a C ′ ∈ C′
such that C ⊆ C ′ × R is a maximal P-sign invariant region in C ′ × R.

An element C ∈ C is called a cell.

Remark
One sample point per cell is sufficient in order to represent a CAD.
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Example: CAD with 48 cells

P =

(x − 2)2+
(y − 2)2 − 1,

x − y


x

y

2

2

P-delineable regions:

]2−
√

2
2 , 2+

√
2

2 [

{2−
√

2
2 }, {2+

√
2

2 }

]1, 2−
√

2
2 [ , ]2+

√
2

2 , 3[

{1}, {3}
]−∞, 1[ , ]3,∞[
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CAD projection

Let P = (p1, . . . , pm) ∈ Z[x1, . . . , xn]
m where n ≥ 2 and m,m′ ≥ 1.

Definition
A mapping

proj : Z[x1, . . . , xn]
m −→ Z[x1, . . . , xn−1]

m′

is called a CAD-Projection, if any region R ⊆ Rn−1 is proj(P)-sign
invariant iff R is P-delineable.

Remarks

Usually, |proj(P)| = m′ = m2. Thus, m′ ∈ O(m2n−1
).

Given a CAD C for P , then for every cell C ∈ C there is a C ′ ∈ C′ such
that C ′ �Rn−1⊆ C is a maximal P-sign invariant region in C ′ × R.
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Example: CAD projection

P =

(x − 2)2+
(y − 2)2 − 1,

x − y


x

y

2

2

Projection computed by GiNaCRA . . . its real roots
proj(P) = {x2 − 4x + 3,

−4x + x2 + 7
2 ,

x4 − 8x3 + 30x2 − 56x + 49,
x2 − 4x + 7,
x}

{1, 3}
{2−

√
2

2 , 2+
√

2
2 }
{}
{}
{0}
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The CAD sample construction in a nutshell

Pn ⊆ Z[x1, . . . , xn]

Pn−1 ⊆ Z[x1, . . . , xn−1]

...

P1 ⊆ Z[x1]

eliminate
xn

eliminate
xn−1

eliminate
x2

Z1 × · · · × Zn ⊆ Rn

...

Z1 × Z2 ⊆ R2

Z1 ⊆ R

roots of P1

roots of
{p(z) | p ∈ P2, z ∈ Z1}

roots of
{p(z) | p ∈ P3, z ∈ Z1 × Z2}

roots of
{p(z)|p ∈ Pn, z ∈ Z1×· · ·×Zn−1}
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Example: CAD sample construction

P =

(x − 2)2+
(y − 2)2 − 1,

x − y


Samples for proj(P):

{0, 1, 2−
√

2
2 , 2+

√
2

2 , 3}
{−0.5, 0.5, 1.135,
2, 2.835, 3.5} x

y

2

2

Example sample constructions

(x − 2)2 + (2− 2)2 − 1 yields (1, 2) and (3, 2).

(x − 2)2 + (2−
√

2
2 − 2)2 − 1 yields (2−

√
2

2 , 2±
√

2
2 ).
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Non-trivial roots

Remark
Let p ∈ Z[x ].

p has between 0 and deg(p) real roots.

Example

x3 − 6x2 + 11x − 6 has rational roots: 1, 2 and 3.
x3 − x2 − 2x + 2 has one rational and two irrational roots: 1, −

√
2 and√

2.
x5 − 3x4 + x3 − x2 + 2x − 2 has only one real root ≈ 2.70312, not
representable by radicals.
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Representing a real algebraic number

Interval representation

(
p,︸︷︷︸ ] l , r [︸ ︷︷ ︸ )
∈ Z[x ] exactly one real root of p in (l , r)

Example

x2 − 2

R
-3 -2 -1 0 1 2 3
] [

−
√
2

] [

√
2
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